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SPICE ("Simulation Program with Integrated Circuit Emphasis")[1][2] is a general-purpose, 
open-source analog electronic circuit simulator. It is a program used in integrated circuit and 
board-level design to check the integrity of circuit designs and to predict circuit behavior.  
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Introduction 

Unlike board-level designs composed of discrete parts, it is not practical to breadboard integrated 
circuits before manufacture. Further, the high costs of photolithographic masks and other 
manufacturing prerequisites make it essential to design the circuit to be as close to perfect as 
possible before the integrated circuit is first built. Simulating the circuit with SPICE is the 
industry-standard way to verify circuit operation at the transistor level before committing to 
manufacturing an integrated circuit.  

Board-level circuit designs can often be breadboarded for testing. Even with a breadboard, some 
circuit properties may not be accurate compared to the final printed wiring board, such as 
parasitic resistances and capacitances. These parasitic components can often be estimated more 
accurately using SPICE simulation. Also, designers may want more information about the circuit 
than is available from a single mock-up. For instance, circuit performance is affected by 
component manufacturing tolerances. In these cases it is common to use SPICE to perform 
Monte Carlo simulations of the effect of component variations on performance, a task which is 
impractical using calculations by hand for a circuit of any appreciable complexity.  

Circuit simulation programs, of which SPICE and derivatives are the most prominent, take a text 
netlist describing the circuit elements (transistors, resistors, capacitors, etc.) and their 
connections, and translate[3] this description into equations to be solved. The general equations 
produced are nonlinear differential algebraic equations which are solved using implicit 
integration methods, Newton's method and sparse matrix techniques.  

Origins 

SPICE was developed at the Electronics Research Laboratory of the University of California, 
Berkeley by Laurence Nagel with direction from his research advisor, Prof. Donald Pederson. 
SPICE1 is largely a derivative of the CANCER program,[4] which Nagel had worked on under 
Prof. Ronald Rohrer. CANCER is an acronym for "Computer Analysis of Nonlinear Circuits, 
Excluding Radiation," a hint to Berkeley's liberalism in the 1960s:[5] at these times many circuit 
simulators were developed under contracts with the United States Department of Defense that 
required the capability to evaluate the radiation hardness of a circuit. When Nagel's original 



advisor, Prof. Rohrer, left Berkeley, Prof. Pederson became his advisor. Pederson insisted that 
CANCER, a proprietary program, be rewritten enough that restrictions could be removed and the 
program could be put in the public domain.[6]  

SPICE1 was first presented at a conference in 1973.[7] SPICE1 is coded in FORTRAN and uses 
nodal analysis to construct the circuit equations. Nodal analysis has limitations in representing 
inductors, floating voltage sources and the various forms of controlled sources. SPICE1 has 
relatively few circuit elements available and uses a fixed-timestep transient analysis. The real 
popularity of SPICE started with SPICE2[8] in 1975. SPICE2, also coded in FORTRAN, is a 
much-improved program with more circuit elements, variable timestep transient analysis using 
either the trapezoidal (second order Adams-Moulton method) or the Gear integration method 
(also known as BDF), equation formulation via modified nodal analysis[9] (avoiding the 
limitations of nodal analysis), and an innovative FORTRAN-based memory allocation system 
developed by another graduate student, Ellis Cohen. The last FORTRAN version of SPICE is 
2G.6 in 1983. SPICE3[10] was developed by Thomas Quarles (with A. Richard Newton as 
advisor) in 1989. It is written in C, uses the same netlist syntax, and added X Window System 
plotting.  

As an early public domain software program with source code available,[11] SPICE was widely 
distributed and used. Its ubiquity became such that "to SPICE a circuit" remains synonymous 
with circuit simulation.[12] SPICE source code was from the beginning distributed by UC 
Berkeley for a nominal charge (to cover the cost of magnetic tape). The license originally 
included distribution restrictions for countries not considered friendly to the US, but the source 
code is currently covered by the BSD license.  

The birth of SPICE was named an IEEE Milestone in 2011; the entry mentions that SPICE 
"evolved to become the worldwide standard integrated circuit simulator."[13] Nagel was awarded 
the 2019 IEEE Donald O. Pederson Award in Solid-State Circuits for the development of 
SPICE.[14]  

Successors 

Open-source successors 

No newer versions of Berkeley SPICE have been released after version 3f.5 in 1993.[15] Since 
then, the open-source or academic continuations of SPICE include: XSPICE,[16] developed at 
Georgia Tech, which added mixed analog/digital "code models" for behavioral simulation, 
CIDER[17] (previously CODECS), developed by UC Berkeley and Oregon State Univ., which 
added semiconductor device simulation, SPICE OPUS,[18][19] developed and maintained by the 
University of Ljubljana is based on SPICE 3f.4 and on XSPICE, ngspice, based on SPICE 3f.5, 
XSPICE and CIDER.[20][21]  

Commercial versions and spinoffs 

Berkeley SPICE inspired and served as a basis for many other circuit simulation programs, in 
academia, in industry, and in commercial products. The first commercial version of SPICE is 



ISPICE,[22] an interactive version on a timeshare service, National CSS. The most prominent 
commercial versions of SPICE include HSPICE (originally commercialized by Ashawna and 
Kim Hailey of Meta Software, but now owned by Synopsys) and PSPICE (now owned by 
Cadence Design Systems). The integrated circuit industry adopted SPICE quickly, and until 
commercial versions became well developed many IC design houses had proprietary versions of 
SPICE.[23]  

Today a few IC manufacturers, typically the larger companies, have groups continuing to 
develop SPICE-based circuit simulation programs. Among these are ADICE at Analog Devices, 
LTspice at Analog Devices (available to the public as freeware), Mica at Freescale 
Semiconductor, and TINA-TI[24] at Texas Instruments. Both LTspice and TINA-TI come 
bundled with models from their respective company.[25][26] Analog Devices offers a similar free 
tool called ADIsimPE (based on the SIMetrix/SIMPLIS[27] implementation of SPICE).[28] Other 
companies maintain internal circuit simulators which are not directly based upon SPICE, among 
them PowerSpice at IBM, TITAN at Infineon Technologies, Lynx at Intel Corporation, and Pstar 
at NXP Semiconductor.[citation needed]  

Program features and structure 

SPICE became popular because it contained the analyses and models needed to design integrated 
circuits of the time, and was robust enough and fast enough to be practical to use.[29] Precursors 
to SPICE often had a single purpose: The BIAS[30] program, for example, did simulation of 
bipolar transistor circuit operating points; the SLIC[31] program did only small-signal analyses. 
SPICE combined operating point solutions, transient analysis, and various small-signal analyses 
with the circuit elements and device models needed to successfully simulate many circuits.  

Analyses 

SPICE2 includes these analyses:  

 AC analysis (linear small-signal frequency domain analysis) 
 DC analysis (nonlinear quiescent point calculation) 
 DC transfer curve analysis (a sequence of nonlinear operating points calculated while 

sweeping an input voltage or current, or a circuit parameter) 
 Noise analysis (a small signal analysis done using an adjoint matrix technique which 

sums uncorrelated noise currents at a chosen output point) 
 Transfer function analysis (a small-signal input/output gain and impedance calculation) 
 Transient analysis (time-domain large-signal solution of nonlinear differential algebraic 

equations) 

Since SPICE is generally used to model nonlinear circuits, the small signal analyses are 
necessarily preceded by a quiescent point calculation at which the circuit is linearized. SPICE2 
also contains code for other small-signal analyses: sensitivity analysis, pole-zero analysis, and 
small-signal distortion analysis. Analysis at various temperatures is done by automatically 
updating semiconductor model parameters for temperature, allowing the circuit to be simulated 
at temperature extremes.  



Other circuit simulators have since added many analyses beyond those in SPICE2 to address 
changing industry requirements. Parametric sweeps were added to analyze circuit performance 
with changing manufacturing tolerances or operating conditions. Loop gain and stability 
calculations were added for analog circuits. Harmonic balance or time-domain steady state 
analyses were added for RF and switched-capacitor circuit design. However, a public-domain 
circuit simulator containing the modern analyses and features needed to become a successor in 
popularity to SPICE has not yet emerged.[29]  

It is very important to use appropriate analyses with carefully chosen parameters. For example, 
application of linear analysis to nonlinear circuits should be justified separately. Also, 
application of transient analysis with default simulation parameters can lead to qualitatively 
wrong conclusions on circuit dynamics.[32]  

Device models 

SPICE2 includes many semiconductor device compact models: three levels of MOSFET model, 
a combined Ebers–Moll and Gummel–Poon bipolar model, a JFET model, and a model for a 
junction diode. In addition, it had many other elements: resistors, capacitors, inductors (including 
coupling), independent voltage and current sources, ideal transmission lines, active components 
and voltage and current controlled sources.  

SPICE3 added more sophisticated MOSFET models, which were required due to advances in 
semiconductor technology. In particular, the BSIM family of models were added, which were 
also developed at UC Berkeley.  

Commercial and industrial SPICE simulators have added many other device models as 
technology advanced and earlier models became inadequate. To attempt standardization of these 
models so that a set of model parameters may be used in different simulators, an industry 
working group was formed, the Compact Model Council,[33] to choose, maintain and promote the 
use of standard models. The standard models today include BSIM3, BSIM4, BSIMSOI, PSP, 
HICUM, and MEXTRAM.  

Exclusion for integrated photonic circuits 

Traditional photonic device simulators apply direct methods to solve Maxwell's equations for the 
complete structure, whereas photonic circuit simulators are based on a segmentation into 
building blocks (BBs), each of which is represented at a logic level by a phothonic device, 
"coupled to other BBs by guided modes of optical waveguides". At the circuit-level modeling, a 
photonic integrated circuit (PIC) contain both electrical wires and optical signals, respectively 
described by voltage/current and by complex-valued envelope for the forward- and backward-
propagating modes.[34]  

The building block netlist of both the photonic and electronic circuits, including their net and 
port connections, can be expressed in a SPICE format with some schematic editors, like the ones 
used for electronic design automation.[35]  



To reproduce the complete photonic signal information, without losing eventual optical 
phenomena, it is needed the real-time waveform of both the electric and the magnetic field for 
every mode or polarization in the waveguide.[clarification needed] While SPICE works with 10−15 time 
steps, timescale datacommunications of ≈10–100 10−12 are common. To make the amount of 
information tractable, the modulation increases of complexity, having to encode both amplitude 
and phase, in a way similar as in the simulation of RF circuits.[36]  

However, Photonic Integrated Circuit simulators need to test multiple communication channels 
in match with different Carrier frequencies, or equivalently more amplitudes in any single 
channel, a type of sophisticated signal that is unsupported on the SPICE program features and 
structure as described above.[34] At 2019, SPICE can't be used to "simulate photonics and 
electronics together in a photonic circuit simulator",[37] and thus it isn't yet considered as a test 
simulator for photonic integrated circuits.  

Input and output: Netlists, schematic capture and plotting 

SPICE2 takes a text netlist as input and produces line-printer listings as output, which fits with 
the computing environment in 1975. These listings are either columns of numbers corresponding 
to calculated outputs (typically voltages or currents), or line-printer character "plots". SPICE3 
retaines the netlist for circuit description, but allows analyses to be controlled from a command-
line interface similar to the C shell. SPICE3 also added basic X plotting, as UNIX and 
engineering workstations became common.  

Vendors and various free software projects have added schematic capture front-ends to SPICE, 
allowing a schematic diagram of the circuit to be drawn and the netlist to be automatically 
generated. Also, graphical user interfaces were added for selecting the simulations to be done 
and manipulating the voltage and current output vectors. In addition, very capable graphing 
utilities have been added to see waveforms and graphs of parametric dependencies. Several free 
versions of these extended programs are available, some as introductory limited packages, and 
some without restrictions.  

Transient analysis 

Since transient analysis is dependent on time, it uses different analysis algorithms, control 
options with different convergence-related issues and different initialization parameters than DC 
analysis. However, since a transient analysis first performs a DC operating point analysis (unless 
the UIC option is specified in the .TRAN statement), most of the DC analysis algorithms, control 
options, and initialization and convergence issues apply to transient analysis.  

Initial conditions for transient analysis 

Some circuits, such as oscillators or circuits with feedback, do not have stable operating point 
solutions. For these circuits, either the feedback loop must be broken so that a DC operating 
point can be calculated or the initial conditions must be provided in the simulation input. The DC 
operating point analysis is bypassed if the UIC parameter is included in the .TRAN statement. If 
UIC is included in the .TRAN statement, a transient analysis is started using node voltages 



specified in an .IC statement. If a node is set to 5 V in a .IC statement, the value at that node for 
the first time point (time 0) is 5 V. 

You can use the .OP statement to store an estimate of the DC operating point during a transient 
analysis.  

.TRAN 1ns 100ns UIC .OP 20ns 

The .TRAN statement UIC parameter in the above example bypasses the initial DC operating 
point analysis. The .OP statement calculates transient operating point at t = 20 ns during the 
transient analysis.  

Although a transient analysis might provide a convergent DC solution, the transient analysis 
itself can still fail to converge. In a transient 
small" indicates that the circuit failed to converge. The convergence failure might be due to 
stated initial conditions that are not close enough to the actual DC operating point values. 
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