
HSPICE

For other uses, see Spice (disambiguation).

SPICE 1

Original author(s)
Laurence Nagel

Initial release 1973; 47 years ago

Written in Fortran

Type
Electronic circuit simulation

License Public-domain software

Website bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/

SPICE 2

Initial release 1975; 45 years ago

Stable release
2G.6 / 1983

Written in Fortran

Type Electronic circuit simulation

License
BSD 3 Clause

Website bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/

SPICE 3

Original author(s) Thomas Quarles

Initial release 1989; 31 years ago

Stable release
3f.5 / July 1993

Written in C

Type
Electronic circuit simulation

License BSD license

Website bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/

SPICE ("Simulation Program with Integrated Circuit Emphasis")[1][2] is a general-purpose,
open-source analog electronic circuit simulator. It is a program used in integrated circuit and
board-level design to check the integrity of circuit designs and to predict circuit behavior.

Contents

 1 Introduction
 2 Origins
 3 Successors

o 3.1 Open-source successors
o 3.2 Commercial versions and spinoffs

 4 Program features and structure
o 4.1 Analyses
o 4.2 Device models
o 4.3 Exclusion for integrated photonic circuits
o 4.4 Input and output: Netlists, schematic capture and plotting
o 4.5 Transient analysis

 4.5.1 Initial conditions for transient analysis
 5 See also
 6 References
 7 External links

o 7.1 Histories, original papers

Introduction

Unlike board-level designs composed of discrete parts, it is not practical to breadboard integrated
circuits before manufacture. Further, the high costs of photolithographic masks and other
manufacturing prerequisites make it essential to design the circuit to be as close to perfect as
possible before the integrated circuit is first built. Simulating the circuit with SPICE is the
industry-standard way to verify circuit operation at the transistor level before committing to
manufacturing an integrated circuit.

Board-level circuit designs can often be breadboarded for testing. Even with a breadboard, some
circuit properties may not be accurate compared to the final printed wiring board, such as
parasitic resistances and capacitances. These parasitic components can often be estimated more
accurately using SPICE simulation. Also, designers may want more information about the circuit
than is available from a single mock-up. For instance, circuit performance is affected by
component manufacturing tolerances. In these cases it is common to use SPICE to perform
Monte Carlo simulations of the effect of component variations on performance, a task which is
impractical using calculations by hand for a circuit of any appreciable complexity.

Circuit simulation programs, of which SPICE and derivatives are the most prominent, take a text
netlist describing the circuit elements (transistors, resistors, capacitors, etc.) and their
connections, and translate[3] this description into equations to be solved. The general equations
produced are nonlinear differential algebraic equations which are solved using implicit
integration methods, Newton's method and sparse matrix techniques.

Origins

SPICE was developed at the Electronics Research Laboratory of the University of California,
Berkeley by Laurence Nagel with direction from his research advisor, Prof. Donald Pederson.
SPICE1 is largely a derivative of the CANCER program,[4] which Nagel had worked on under
Prof. Ronald Rohrer. CANCER is an acronym for "Computer Analysis of Nonlinear Circuits,
Excluding Radiation," a hint to Berkeley's liberalism in the 1960s:[5] at these times many circuit
simulators were developed under contracts with the United States Department of Defense that
required the capability to evaluate the radiation hardness of a circuit. When Nagel's original

advisor, Prof. Rohrer, left Berkeley, Prof. Pederson became his advisor. Pederson insisted that
CANCER, a proprietary program, be rewritten enough that restrictions could be removed and the
program could be put in the public domain.[6]

SPICE1 was first presented at a conference in 1973.[7] SPICE1 is coded in FORTRAN and uses
nodal analysis to construct the circuit equations. Nodal analysis has limitations in representing
inductors, floating voltage sources and the various forms of controlled sources. SPICE1 has
relatively few circuit elements available and uses a fixed-timestep transient analysis. The real
popularity of SPICE started with SPICE2[8] in 1975. SPICE2, also coded in FORTRAN, is a
much-improved program with more circuit elements, variable timestep transient analysis using
either the trapezoidal (second order Adams-Moulton method) or the Gear integration method
(also known as BDF), equation formulation via modified nodal analysis[9] (avoiding the
limitations of nodal analysis), and an innovative FORTRAN-based memory allocation system
developed by another graduate student, Ellis Cohen. The last FORTRAN version of SPICE is
2G.6 in 1983. SPICE3[10] was developed by Thomas Quarles (with A. Richard Newton as
advisor) in 1989. It is written in C, uses the same netlist syntax, and added X Window System
plotting.

As an early public domain software program with source code available,[11] SPICE was widely
distributed and used. Its ubiquity became such that "to SPICE a circuit" remains synonymous
with circuit simulation.[12] SPICE source code was from the beginning distributed by UC
Berkeley for a nominal charge (to cover the cost of magnetic tape). The license originally
included distribution restrictions for countries not considered friendly to the US, but the source
code is currently covered by the BSD license.

The birth of SPICE was named an IEEE Milestone in 2011; the entry mentions that SPICE
"evolved to become the worldwide standard integrated circuit simulator."[13] Nagel was awarded
the 2019 IEEE Donald O. Pederson Award in Solid-State Circuits for the development of
SPICE.[14]

Successors

Open-source successors

No newer versions of Berkeley SPICE have been released after version 3f.5 in 1993.[15] Since
then, the open-source or academic continuations of SPICE include: XSPICE,[16] developed at
Georgia Tech, which added mixed analog/digital "code models" for behavioral simulation,
CIDER[17] (previously CODECS), developed by UC Berkeley and Oregon State Univ., which
added semiconductor device simulation, SPICE OPUS,[18][19] developed and maintained by the
University of Ljubljana is based on SPICE 3f.4 and on XSPICE, ngspice, based on SPICE 3f.5,
XSPICE and CIDER.[20][21]

Commercial versions and spinoffs

Berkeley SPICE inspired and served as a basis for many other circuit simulation programs, in
academia, in industry, and in commercial products. The first commercial version of SPICE is

ISPICE,[22] an interactive version on a timeshare service, National CSS. The most prominent
commercial versions of SPICE include HSPICE (originally commercialized by Ashawna and
Kim Hailey of Meta Software, but now owned by Synopsys) and PSPICE (now owned by
Cadence Design Systems). The integrated circuit industry adopted SPICE quickly, and until
commercial versions became well developed many IC design houses had proprietary versions of
SPICE.[23]

Today a few IC manufacturers, typically the larger companies, have groups continuing to
develop SPICE-based circuit simulation programs. Among these are ADICE at Analog Devices,
LTspice at Analog Devices (available to the public as freeware), Mica at Freescale
Semiconductor, and TINA-TI[24] at Texas Instruments. Both LTspice and TINA-TI come
bundled with models from their respective company.[25][26] Analog Devices offers a similar free
tool called ADIsimPE (based on the SIMetrix/SIMPLIS[27] implementation of SPICE).[28] Other
companies maintain internal circuit simulators which are not directly based upon SPICE, among
them PowerSpice at IBM, TITAN at Infineon Technologies, Lynx at Intel Corporation, and Pstar
at NXP Semiconductor.[citation needed]

Program features and structure

SPICE became popular because it contained the analyses and models needed to design integrated
circuits of the time, and was robust enough and fast enough to be practical to use.[29] Precursors
to SPICE often had a single purpose: The BIAS[30] program, for example, did simulation of
bipolar transistor circuit operating points; the SLIC[31] program did only small-signal analyses.
SPICE combined operating point solutions, transient analysis, and various small-signal analyses
with the circuit elements and device models needed to successfully simulate many circuits.

Analyses

SPICE2 includes these analyses:

 AC analysis (linear small-signal frequency domain analysis)
 DC analysis (nonlinear quiescent point calculation)
 DC transfer curve analysis (a sequence of nonlinear operating points calculated while

sweeping an input voltage or current, or a circuit parameter)
 Noise analysis (a small signal analysis done using an adjoint matrix technique which

sums uncorrelated noise currents at a chosen output point)
 Transfer function analysis (a small-signal input/output gain and impedance calculation)
 Transient analysis (time-domain large-signal solution of nonlinear differential algebraic

equations)

Since SPICE is generally used to model nonlinear circuits, the small signal analyses are
necessarily preceded by a quiescent point calculation at which the circuit is linearized. SPICE2
also contains code for other small-signal analyses: sensitivity analysis, pole-zero analysis, and
small-signal distortion analysis. Analysis at various temperatures is done by automatically
updating semiconductor model parameters for temperature, allowing the circuit to be simulated
at temperature extremes.

Other circuit simulators have since added many analyses beyond those in SPICE2 to address
changing industry requirements. Parametric sweeps were added to analyze circuit performance
with changing manufacturing tolerances or operating conditions. Loop gain and stability
calculations were added for analog circuits. Harmonic balance or time-domain steady state
analyses were added for RF and switched-capacitor circuit design. However, a public-domain
circuit simulator containing the modern analyses and features needed to become a successor in
popularity to SPICE has not yet emerged.[29]

It is very important to use appropriate analyses with carefully chosen parameters. For example,
application of linear analysis to nonlinear circuits should be justified separately. Also,
application of transient analysis with default simulation parameters can lead to qualitatively
wrong conclusions on circuit dynamics.[32]

Device models

SPICE2 includes many semiconductor device compact models: three levels of MOSFET model,
a combined Ebers–Moll and Gummel–Poon bipolar model, a JFET model, and a model for a
junction diode. In addition, it had many other elements: resistors, capacitors, inductors (including
coupling), independent voltage and current sources, ideal transmission lines, active components
and voltage and current controlled sources.

SPICE3 added more sophisticated MOSFET models, which were required due to advances in
semiconductor technology. In particular, the BSIM family of models were added, which were
also developed at UC Berkeley.

Commercial and industrial SPICE simulators have added many other device models as
technology advanced and earlier models became inadequate. To attempt standardization of these
models so that a set of model parameters may be used in different simulators, an industry
working group was formed, the Compact Model Council,[33] to choose, maintain and promote the
use of standard models. The standard models today include BSIM3, BSIM4, BSIMSOI, PSP,
HICUM, and MEXTRAM.

Exclusion for integrated photonic circuits

Traditional photonic device simulators apply direct methods to solve Maxwell's equations for the
complete structure, whereas photonic circuit simulators are based on a segmentation into
building blocks (BBs), each of which is represented at a logic level by a phothonic device,
"coupled to other BBs by guided modes of optical waveguides". At the circuit-level modeling, a
photonic integrated circuit (PIC) contain both electrical wires and optical signals, respectively
described by voltage/current and by complex-valued envelope for the forward- and backward-
propagating modes.[34]

The building block netlist of both the photonic and electronic circuits, including their net and
port connections, can be expressed in a SPICE format with some schematic editors, like the ones
used for electronic design automation.[35]

To reproduce the complete photonic signal information, without losing eventual optical
phenomena, it is needed the real-time waveform of both the electric and the magnetic field for
every mode or polarization in the waveguide.[clarification needed] While SPICE works with 10−15 time
steps, timescale datacommunications of ≈10–100 10−12 are common. To make the amount of
information tractable, the modulation increases of complexity, having to encode both amplitude
and phase, in a way similar as in the simulation of RF circuits.[36]

However, Photonic Integrated Circuit simulators need to test multiple communication channels
in match with different Carrier frequencies, or equivalently more amplitudes in any single
channel, a type of sophisticated signal that is unsupported on the SPICE program features and
structure as described above.[34] At 2019, SPICE can't be used to "simulate photonics and
electronics together in a photonic circuit simulator",[37] and thus it isn't yet considered as a test
simulator for photonic integrated circuits.

Input and output: Netlists, schematic capture and plotting

SPICE2 takes a text netlist as input and produces line-printer listings as output, which fits with
the computing environment in 1975. These listings are either columns of numbers corresponding
to calculated outputs (typically voltages or currents), or line-printer character "plots". SPICE3
retaines the netlist for circuit description, but allows analyses to be controlled from a command-
line interface similar to the C shell. SPICE3 also added basic X plotting, as UNIX and
engineering workstations became common.

Vendors and various free software projects have added schematic capture front-ends to SPICE,
allowing a schematic diagram of the circuit to be drawn and the netlist to be automatically
generated. Also, graphical user interfaces were added for selecting the simulations to be done
and manipulating the voltage and current output vectors. In addition, very capable graphing
utilities have been added to see waveforms and graphs of parametric dependencies. Several free
versions of these extended programs are available, some as introductory limited packages, and
some without restrictions.

Transient analysis

Since transient analysis is dependent on time, it uses different analysis algorithms, control
options with different convergence-related issues and different initialization parameters than DC
analysis. However, since a transient analysis first performs a DC operating point analysis (unless
the UIC option is specified in the .TRAN statement), most of the DC analysis algorithms, control
options, and initialization and convergence issues apply to transient analysis.

Initial conditions for transient analysis

Some circuits, such as oscillators or circuits with feedback, do not have stable operating point
solutions. For these circuits, either the feedback loop must be broken so that a DC operating
point can be calculated or the initial conditions must be provided in the simulation input. The DC
operating point analysis is bypassed if the UIC parameter is included in the .TRAN statement. If
UIC is included in the .TRAN statement, a transient analysis is started using node voltages

specified in an .IC statement. If a node is set to 5 V in a .IC statement, the value at that node for
the first time point (time 0) is 5 V.

You can use the .OP statement to store an estimate of the DC operating point during a transient
analysis.

.TRAN 1ns 100ns UIC .OP 20ns

The .TRAN statement UIC parameter in the above example bypasses the initial DC operating
point analysis. The .OP statement calculates transient operating point at t = 20 ns during the
transient analysis.

Although a transient analysis might provide a convergent DC solution, the transient analysis
itself can still fail to converge. In a transient
small" indicates that the circuit failed to converge. The convergence failure might be due to
stated initial conditions that are not close enough to the actual DC operating point values.

See also

 Electronics portal

 Free and open-source software portal

 Comparison of EDA Software
 List of free electronics circuit simulators
 Input Output Buffer Information Specification
 Transistor models

specified in an .IC statement. If a node is set to 5 V in a .IC statement, the value at that node for
me point (time 0) is 5 V.

You can use the .OP statement to store an estimate of the DC operating point during a transient

.TRAN 1ns 100ns UIC .OP 20ns

The .TRAN statement UIC parameter in the above example bypasses the initial DC operating
nt analysis. The .OP statement calculates transient operating point at t = 20 ns during the

Although a transient analysis might provide a convergent DC solution, the transient analysis
itself can still fail to converge. In a transient analysis, the error message "internal timestep too
small" indicates that the circuit failed to converge. The convergence failure might be due to
stated initial conditions that are not close enough to the actual DC operating point values.

source software portal

Comparison of EDA Software
List of free electronics circuit simulators
Input Output Buffer Information Specification (IBIS)

specified in an .IC statement. If a node is set to 5 V in a .IC statement, the value at that node for

You can use the .OP statement to store an estimate of the DC operating point during a transient

The .TRAN statement UIC parameter in the above example bypasses the initial DC operating
nt analysis. The .OP statement calculates transient operating point at t = 20 ns during the

Although a transient analysis might provide a convergent DC solution, the transient analysis
analysis, the error message "internal timestep too

small" indicates that the circuit failed to converge. The convergence failure might be due to
stated initial conditions that are not close enough to the actual DC operating point values.

