Features

- Operating voltage: $\mathrm{V}_{\mathrm{DD}}=2.2 \mathrm{~V} \sim 3.6 \mathrm{~V}$
- Complete Sub-1GHz OOK (BT=0.5) modulation transmitter
- Key input function
- 2 key inputs for the 8 -pin SOP-EP package type
- 8 key inputs for the 16 -pin NSOP-EP package types
- Avoid battery exhaust due to jammed button (MAX_FCNT[7:0])
- Frequency bands: $315 \mathrm{MHz}, 433 \mathrm{MHz}, 868 \mathrm{MHz}$, 915 MHz
- Integrated 320-bit FUSE data memory
- Output power of up to 13 dBm
- Supports 2-wire $\mathrm{I}^{2} \mathrm{C}$ interface
- Low sleep current of $0.4 \mu \mathrm{~A}$
- TX current consumption @ 433MHz:
- TYP. $18.5 \mathrm{~mA}(10 \mathrm{dBm}$, Data=1)/Typ. 11.2 mA (10dBm, 50\% duty cycle)
- Programmable symbol rate from 1.5 ksps to 24 ksps for OOK modulation
- Integrated full range VCO, loop filter and Fractional-N PLL synthesizer
- Supports 16 MHz crystal
- 4-step programmable TX Power: 0/5/10/13 dBm
- FCC / ETSI Compliant
- Small size package types: 8-pin SOP-EP, 16-pin NSOP-EP/QFN

Abbreviation Notes

- TX: RF Transmitter
- SX: Synthesizer
- PA: Power Amplifier
- OOK: On-Off Keying
- PLL: Phase Lock Loop
- MMD: Multi-Mode Divider
- XTAL: External Crystal

Development Tools

For rapid product development and to simplify device parameter setting, Holtek has provided relevant development tools which users can download from the following link:
https://www.holtek.com/rf-chip-parameters-settingtool

General Description

The BC2161 is a highly integrated OOK transmitter for remote wireless applications. The transmitter is a true "data-in, antenna-out" monolithic device making it very easy for users to implement wireless systems.

The BC2161 can operate at the $315 \mathrm{MHz}, 433 \mathrm{MHz}$, 868 MHz and 915 MHz frequency bands. It supports an OOK modulation scheme and can operate with a symbol rate of up to 24 ksps .
The BC2161 offers a programmable output power level. It is capable of delivering +13 dBm maximum power into a 50Ω load. The BC2161 adopts agile state machines to ease the control and minimize the power consumption. With an external crystal and a few external components, the BC2161 can implement a complete solution for an effective RF transmitter.
These features can be easily programmed through $I^{2} \mathrm{C}$ interface or internal FUSE. With these combined features the BC2161 can provide a power-saving and cost effective solution for a huge range of remote wireless applications.

Block Diagram

: Expose Pad

Pin Assignment

Pin Description

The function of each pin is listed in the following table. Note that where more than one package type exists the table will reflect the situation for the 16 -pin NSOP-EP package type.

Pin No.	Pin Name	Function	Type	Description
1	D0/SDA/ICPDA	D0	1	Data input
		SDA	I/O	$1^{2} \mathrm{C}$ data pin
		ICPDA	I/O	ICP data pin
2	LED	LED	0	LED indicator
3	DVDD	DVDD	PWR	RF digital positive power supply
4	NC	No connection	-	-
5	VSS	Ground	PWR	Ground
6	RFOUT	PA_OUT	AO	RF output signal from power amplifier - Connect to matching circuit
7	PAVSS	VSSRF_PA	PWR	RF ground
8	VDDRF	VDDRF	PWR	Analog positive power supply
9	XOSCIN	Crystal	AI	Crystal input
10~13	D4/A0~D7/A3	D4/A0~D7/A3	1	Compound pin Data / Address / Key Trigger input
14,15	D2, D3	D2, D3	1	Data input
16	D1/SCL/ICPCK	D1	1	Data input
		SCL	I	$I^{2} \mathrm{C}$ clock pin
		ICPCK	I	ICP clock pin
-	VSS/EP	Ground	PWR	Exposed pad, must be connected to ground

Legend:	I: Digital Input	O: Digital Output	AI: Analog Input
	AO: Analog Output	PWR: Power	

Absolute Maximum Ratings

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those has listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{XTAL}}=16 \mathrm{MHz}$, OOK modulation with Matching circuit PAOUT is powered by $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, unless otherwise noted

Symbol	Parameter	Description	Min.	Typ.	Max.	Unit
V_{DD}	Operating Voltage	-	2.2	3.3	3.6	V
$\mathrm{T}_{\text {A }}$	Operating Temperature	-	-40	-	85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {FP }}$	FUSE Program Temperature	-	-	25	-	${ }^{\circ} \mathrm{C}$
V_{H}	High Level Input Voltage	-	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$\mathrm{V}_{\text {D }}$	V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	-	0	-	$0.3 \mathrm{~V}_{\text {D }}$	V
V_{OH}	High Level Output Voltage	@ $\left.\right\|_{\text {OH }}=-5 \mathrm{~mA}$	$0.8 \mathrm{~V}_{\text {D }}$	-	$V_{D D}$	V
V_{oL}	Low Level Output Voltage	@ $1_{0-}=5 \mathrm{~mA}$	0	-	$0.2 \mathrm{~V}_{\text {D }}$	V
	Current Consumptions	$\mathrm{I}_{\text {sleep }}$ in the Deep Sleep Mode	-	0.4	-	$\mu \mathrm{A}$
	Curent Consumptions	l_{L} Data low \& PA off current	-	6.0	-	mA
I_{H}	Current Consumption @ 315MHz Band (Data=1)	$\mathrm{P}_{\text {OUT }}=0 \mathrm{dBm}$	-	10.5	-	mA
		$\mathrm{P}_{\text {OUT }}=10 \mathrm{dBm}$	-	18.5	-	
		$\mathrm{P}_{\text {Out }}=13 \mathrm{dBm}$	-	24.5	-	
	Current Consumption @ 433MHz Band (Data=1)	$\mathrm{P}_{\text {Out }}=0 \mathrm{dBm}$	-	11.0	-	mA
		$\mathrm{P}_{\text {out }}=10 \mathrm{dBm}$	-	18.5	-	
		$\mathrm{P}_{\text {OUt }}=13 \mathrm{dBm}$	-	25.0	-	
	Current Consumption @ 868MHz Band (Data=1)	$\mathrm{P}_{\text {OUT }}=0 \mathrm{dBm}$	-	13.5	-	mA
		$\mathrm{P}_{\text {OUt }}=10 \mathrm{dBm}$	-	20.0	-	
		$\mathrm{P}_{\text {Out }}=13 \mathrm{dBm}$	-	24.5	-	
	Current Consumption @ 915MHz Band (Data=1)	$\mathrm{P}_{\text {out }}=0 \mathrm{dBm}$	-	12.5	-	mA
		$\mathrm{P}_{\text {Out }}=10 \mathrm{dBm}$	-	19	-	
		$\mathrm{P}_{\text {OUT }}=13 \mathrm{dBm}$	-	24	-	

A.C. Characteristics

RF Characteristics

$\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{f}_{\mathrm{XTAL}}=16 \mathrm{MHz}$, OOK modulation with Matching circuit, PAOUT is powered by $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, unless otherwise noted.

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
ZRF						
f_{RF}	RF Operating Frequency Range	-	-	315	-	MHz
				433		
				868		
				915		
XTAL						
$\mathrm{f}_{\text {XTAL }}$	RF Operating XTAL Frequency	General case	-	16	-	MHz
ESR	XTAL Equivalent Series Resistance	-	-	-	100	Ω
C_{L}	XTAL Capacitor Load	-	-	16	-	pF
	XTAL Tolerance ${ }^{(1)}$	-	-	± 20	-	ppm
$\mathrm{t}_{\text {Startup }}$	XTAL Startup Time ${ }^{(2)}$	-	-	1	-	ms
PLL						
$\mathrm{f}_{\text {Step }}$	RF Frequency Synthesizer Step	-	-	0.5	-	kHz
PN PLLL	PLL Phase Noise @ 433MHz	Phase Noise @ 100k offset	-	-78	-	$\begin{gathered} \mathrm{dBc} / \\ \mathrm{Hz} \end{gathered}$
		Phase Noise @ 1M offset		-105		
	PLL Phase noise @ 868MHz	Phase Noise @ 100k offset	-	-68	-	
		Phase Noise @ 1M offset		-100		

Symbol	Parameter	Condition	Min.	Typ.	Max.	Unit
TX						
	Symbol Rate	OOK modulation	1.5	-	24	ksps
Pout	RF Transmitter Output Power	@ 433MHz	0	-	13	dBm
		@ 868MHz	0	-	13	
ER ${ }_{\text {оок }}$	OOK Extinction Ratio	OOK Modulation depth	-	70	-	dB
	Occupied Bandwidth (OOK, -20dBc)	@ 315MHz	-	400	-	kHz
		@ 433MHz				
		@ 868MHz				
		@ 915MHz				
$\mathrm{SE}_{\text {TX }}$	Transmitter Spurious Emission ($\mathrm{P}_{\mathrm{out}}=10 \mathrm{dBm}$)	$\mathrm{f}<1 \mathrm{GHz}$	-	-	-36	dBm
		$\begin{aligned} & 47 \mathrm{MHz}<\mathrm{f}<74 \mathrm{MHz} \\ & 87.5 \mathrm{MHz}<\mathrm{f}<118 \mathrm{MHz} \\ & 174 \mathrm{MHz}<\mathrm{f}<230 \mathrm{MHz} \\ & 470 \mathrm{MHz}<\mathrm{f}<790 \mathrm{MHz} \end{aligned}$	-	-	-54	
		$22^{\text {nd }}, 3^{\text {rd }}$ Harmonic	-	-	-30	

Note: 1. This is the total tolerance including (1)Initial tolerance (2)Crystal loading (3)Aging and (4)Temperature dependence.
2. Depend on crystal property.
$I^{2} \mathrm{C}$ Characteristics
$\mathrm{Ta}=-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}, \mathrm{Ta}=25^{\circ} \mathrm{C}$ Typical

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$I^{2} \mathrm{C}$ Characteristics						
$\mathrm{f}_{\text {SCL }}$	Serial Clock Frequency	-	-	-	1	MHz
$\mathrm{t}_{\text {BuF }}$	Bus Free Time between Stop and Start Condition	SCL=1MHz	250	-	-	ns
tıow	SCL Low Time	SCL=1MHz	500	-	-	ns
$\mathrm{t}_{\text {HIGH }}$	SCL High Time	SCL=1MHz	500	-	-	ns
$\mathrm{t}_{\text {sul(Dat }}$	Data Setup Time	SCL=1MHz	100	-	-	ns
$\mathrm{t}_{\text {sul(TA) }}$	Start Condition Setup Time	SCL=1MHz	250	-	-	ns
$\mathrm{t}_{\text {sul(To) }}$	Stop Condition Setup Time	SCL=1MHz	250	-	-	ns
$\mathrm{th}_{\text {(DAT) }}$	Data Hold Time	SCL=1MHz	100	-	-	ns
$\mathrm{t}_{\text {h(STA) }}$	Start Condition Hold Time	SCL=1MHz	250	-	-	ns
$\mathrm{t}_{\text {(SCL) }}$	Rise Time of SCL Signal	SCL=1MHz	-	-	100	ns
$\mathrm{t}_{\text {(SCL) }}$	Fall Time of SCL Signal	SCL=1MHz	-	-	100	ns
$\mathrm{t}_{\text {(SDA }}$	Rise Time of SDA Signal	SCL=1MHz	-	-	100	ns
$\mathrm{t}_{\text {(SDA }}$	Fall Time of SDA Signal	SCL=1MHz	-	-	100	ns

Power on Reset Electrical Characteristics

$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} \mathrm{Ta}=25^{\circ} \mathrm{C}$ Typical

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
		V_{DD}	Conditions				
$V_{\text {POR }}$	$\mathrm{V}_{\text {DD }}$ Start Voltage to Ensure Power-on Reset	-	-	-	-	100	mV
$\mathrm{RR}_{\text {POR }}$	$V_{D D}$ Rising Rate to Ensure Power-on Reset	-	-	0.035	-	-	V / ms
$t_{\text {POR }}$	Minimum Time for $\mathrm{V}_{D D}$ Stays at $\mathrm{V}_{\text {POR }}$ to Ensure Power-on Reset	-	-	1	-	-	ms

Functional Description

This fully integrated RF transmitter can operate in the $315 \mathrm{MHz}, 433 \mathrm{MHz}, 868 \mathrm{MHz}$ and 915 MHz frequency bands. The additional of a crystal and a limited number of external components are all that is required to create a complete and versatile RF transmitter system. The device includes an internal power amplifier and is capable of delivering up to +13 dBm . Such a power level enables a small form factor transmitter to operate near the maximum transmission regulation limits. The device can operate with OOK receiver type.

To provide extra user flexibility, the device contains an area of FUSE memory, which is a kind of one-time programmable non-volatile memory. If the FUSE has not been programmed, which can be determined by checking the EFPGM bit in the CFG0 register, users should connect the device to an MCU and setup the relevant $R F$ register configurations in the $I^{2} C$ Mode using an $I^{2} \mathrm{C}$ interface. For devices whose FUSE are already programmed, the FUSE memory contents will be copied to the relevant registers automatically. However, the registers will be reset to their initial state when the device is powered off.

State Contro

The device has integrated state machines that control the state transition between the different modes.

Power-on States

After power on, if the ICPCK pin is kept at a High level by the internal pull-high function and the EFPGM bit state is high, the FUSE data will be automatically copied to the corresponding registers and will be also used for CRC calculation. If the EFPGM bit state is low, the FUSE power will be turned off and the device will enter the $I^{2} \mathrm{C}$ mode.

Key Mode

If users want to enter the Key mode, the Fuse must be programmed, the Encoder bit should be set high. During the Standby mode, if there is no key trigger event, the device will enter the Deep Sleep Mode after a 2 ms delay. When a key trigger event occurs, which is a level trigger generated by pressing a button for more than 1 ms , the transmitter will start to transfer data. The interval between data frames can be figured out using the following equation: 2 ms \times (FRAME_GAP[2:0]). The transmission will end when the Frame counter stops. The device will then enter the Deep Sleep Mode after a fixed delay time of 2 ms . In the Deep Sleep Mode, the clock stops and register configurations will all be reset. The device can only be woken up by an edge detection, which is implemented by pulling the Key pins from high to low. After this happens the FUSE memory will be automatically copied to the relevant registers and the device will enter the Standby mode.

FUSE ICP Mode

After powering on, the device checks the ICPCK pin state, which is active low but which will be pulled high by the internal pull high function. By adding this procedure, the device can still enter the programming interface to check the programmed value even if it has been programmed. For the 8 -pin package applications, it is recommended that the D0 pin should be used as a Key. As the device clock frequency is 16 MHz , the device will enter the ICP Mode for FUSE programming after a delay time of 32 ms . Note that the FUSE can only be programmed once.

$I^{2} C$ Mode

The device will enter the $I^{2} \mathrm{C}$ Mode if the Encoder bit is low. Note that in the $\mathrm{I}^{2} \mathrm{C}$ mode, the device should be connected with an MCU and operate as an $\mathrm{I}^{2} \mathrm{C}$ slave. During the Light Sleep Mode, the timer will be on and will start counting. After a delay time of 10 ms the device will enter the Deep Sleep Mode. If a toggle action occurs on the SDA or SCL pin, the timer will be reset and will restart counting. The device can be woken up from the Deep Sleep Mode if a falling edge is detected on pin SCL or SDA. Here it should be noted that the high-to-low pulse should be maintained for at least 1 ms . In this situation the FUSE data will be copied to the registers again and the device will return to the Light Sleep Mode. In this way the MCU can generate a complete $I^{2} \mathrm{C}$ format to initiate the follow-up state machine. To start a data transmission, the $I^{2} \mathrm{C}$ write TX data procedure must be executed first and when finished the TX transmission will be initiated after the $\mathrm{I}^{2} \mathrm{C}$ stop. The frames are transmitted continuously, the TX transmission ends when the frame counter stops after which the device will return to the Light Sleep Mode.

Note: In the Key Mode, pins D0~D7 can be used as key triggers, however in the $\mathrm{I}^{2} \mathrm{C}$ Mode, pins D0~D7 have no key trigger function and only pins D0 and D1 have wake-up functions. Therefore it is suggested that for the 16-pin package types, pins D2~D7 should be pulled high in the $\mathrm{I}^{2} \mathrm{C}$ Mode.

$I^{2} C$ Serial Programming

In the $\mathrm{I}^{2} \mathrm{C}$ Mode, the MCU can configure the internal relevant registers using $\mathrm{I}^{2} \mathrm{C}$ serial programming. The transmitter only supports the $I^{2} \mathrm{C}$ format for byte write, page write, byte read and page read formats. The transmission procedure is shown below.

It should be noted that the $\mathrm{I}^{2} \mathrm{C}$ is a non-standard $\mathrm{I}^{2} \mathrm{C}$ interface, which only supports a single device for connection.

- Symbol definition
- S: Start symbol
- RS: Repeat Start
- P: Stop symbol
- DADDR[6:0]: device address, 21h
- R/W: read write select, $\mathrm{R}(0)$:write, (1): read
- RADDR[7:0]: register address
- ACK: A(0): ACK, NA(1): NAK
- Bus Direction:
- Host to device: \square
Device to host: \square

Byte Write

S DADDR[6:0]	W	A RADDR[7:0]	A	DATA		P								
Page Write														
S DADDR[6:0]	W	A RADDR[7:0]	A	DATA	A	D	DAT	TA($\mathrm{n}+1$)	1) A			A ${ }^{\text {P }}$		
Byte Read														
S ${ }^{\text {S }}$ DADDR[6:0]	W	A RADDR[7:0]	A RS	DADD	[6:0]	R	R ${ }^{\prime}$	A	DATA	NA				
Page Read														
S DADDR[6:0]	W	A RADDR[7:0]	A RS	DADD	6:0]	R	R ${ }^{\text {A }}$	A D	DATA(n)		DAT	$A(n+1) \quad A$	5 S $^{\text {T }}$ A $(\mathrm{n}+\mathrm{x})$	NA P

S = Start (1 bit)
SA = Slave Address (7 bits)
SR = SRW bit (1 bit)
M = Slave device send acknowledge bit (1 bit)
$\mathrm{D}=$ Data (8 bits)
A = ACK (RXAK bit for transmitter, TXAK for receiver, 1 bit)
$P=\operatorname{Stop}(1$ bit) $I^{2} \mathrm{C}$ Communication Timing Diagram

Programming Methodology

The device programming interface should utilise an adaptor with an integrated 16 MHz crystal.

Programming Function	Pin Name	Pin Description
ICPCK	ICPCK	ICP clock
ICPDA	ICPDA	ICP data/address
VDD	VDDRF \& DVDD	Power supply
VSS, EP	 Exposed-Pad	Ground
XTAL IN (Adaptor)	XOSCIN	IC system clock

When programming the device needs to be located on a Socket with a 16 MHz crystal connected between pin XOSCIN and ground. Holtek provides an e-link or e-WriterPro tool for communication with the PC. Between the e-link and the device there are four interconnecting lines, namely VDD, VSS, ICPCK and ICPDA pins.

Note: * may be resistor or capacitor - the resistance of * must be greater than $1 \mathrm{k} \Omega$ and the capacitance of * must be less than 1 nF .

Encoder Packet Example - OOK Modulation

Packet Structure:

In the above structure, the procedures enclosed in brackets mean optional and can therefore be disabled. The rest are leading code, address and data, which are necessary parts of the packet. These parameters can be configured but can never be disabled.

Example 1: HT6P20B

Format:

Pilot(24 λ)	Address(22-bit)	Data(2-bit)	End(4-bit)

Pilot code is $24 \lambda \rightarrow$ LEAD_CODE[2:0]=000b;
Address: [155555h], Address Length is 22-bit \rightarrow ADDR_LEN[2:0]=100b;

DATA: 2 Keys (D1/D0) \rightarrow KEY_SEL[1:0]=00b;
End code is 4-bit \rightarrow END_CODE[1:0]=01b;
Bit format: Low to High \rightarrow Waveform $=0 \mathrm{~b}$;
$\rightarrow 1 \lambda$ low $+2 \lambda$ high $($ Data $=$ Zero $) / 2 \lambda$ low $+1 \lambda$ high (Data=One)

Example 2: HT6P20D

Format:

Pilot(24 λ)	Address(20-bit)	Data(4-bit)	End(4-bit)

Pilot code is $24 \lambda \rightarrow$ LEAD_CODE[2:0]=000b;
Address: [55555h]; Address Length is 20-bit \rightarrow ADDR_LEN[2:0]=011b;

DATA: 4 Keys (D3/D2/D1/D0) \rightarrow KEY_SEL[1:0]=01b;
End code is 4-bit \rightarrow END_CODE[1:0]=01b;
Bit format: Low to High \rightarrow Waveform $=0 b ;$
$\rightarrow 1 \lambda$ low $+2 \lambda$ high (Data=Zero) $/ 2 \lambda$ low $+1 \lambda$ high (Data=One)

Example 3: HT6P427A

Format:

Pilot(32 λ)	Address(20-bit)	Data(4-bit)

Pilot code is $32 \lambda \rightarrow$ LEAD_CODE[2:0]=001b;
Address: [99999h]; Address Length is 20-bit \rightarrow ADDR_LEN[2:0]=011b;

DATA: 4 Keys (D3/D2/D1/D0) \rightarrow KEY_SEL[1:0]=01b;
Bit format: High to Low \rightarrow Waveform=1b;
$\rightarrow 1 \lambda$ high $+3 \lambda$ low $($ Data $=$ Zero $) / 3 \lambda$ high $+1 \lambda$ low (Data=One)

Example 4: HT6P437A

Format:

Pilot(32 λ)	Internal Address(20-bit)	External Address(4-bit)	Data(4-bit)

Pilot code is $32 \lambda \rightarrow$ LEAD_CODE[2:0]=001b;
Address: [DDDDDh] + Dipswitch; Address Length is 20-bit \rightarrow ADDR_LEN[2:0]=011b;

DATA: 4 Dipswitches (A3/A2/A1/A0) +4 Keys (D3/ D2/D1/D0) \rightarrow KEY_SEL[1:0]=10b;

Bit format: High to Low \rightarrow Waveform=1b;
$\rightarrow 1 \lambda$ high $+3 \lambda$ low $($ Data $=$ Zero $) / 3 \lambda$ high $+1 \lambda$ low (Data=One)

Example 5: HT6P237A

Format:

Pilot(24 λ)	Address(22-bit)	Data(2-bit)	End(4-bit)

Pilot code is $24 \lambda \rightarrow$ LEAD_CODE[2:0]=000b;
Address: [3EEEEEh]; Address Length is 22 -bit \rightarrow ADDR_LEN[2:0]=100b;

DATA: 2 Keys (D1/D0) \rightarrow KEY_SEL[1:0]=00b;
End code is 4-bit \rightarrow END_CODE[1:0]=01b;
Bit format: Low to High \rightarrow Waveform $=0$ b;
$\rightarrow 1 \lambda$ low $+2 \lambda$ high $($ Data $=$ Zero $) / 2 \lambda$ low $+1 \lambda$ high (Data=One)

Example 6: HT6P247A

Format:

Pilot(24 λ)	Address(24-bit)	Data(4-bit)	End(4-bit)

Pilot code is $24 \lambda \rightarrow$ LEAD_CODE[2:0]=000b;
Address: [777777h]; Address Length is 24-bit \rightarrow ADDR_LEN[2:0]=101b;

DATA: 4 Keys (D3/D2/D1/D0) \rightarrow KEY_SEL[1:0]=01b;

End code is 4-bit \rightarrow END_CODE[1:0]=01b;
Bit format: Low to High \rightarrow Waveform $=0$ b;
$\rightarrow 1 \lambda$ low $+2 \lambda$ high (Data=Zero) $/ 2 \lambda$ low $+1 \lambda$ high (Data=One)

Example 7: HT12E

Format:

Pilot(37 λ)	Address(8-bit)	Data(4-bit)

Pilot code is $37 \lambda \rightarrow$ LEAD_CODE[2:0]=010b;
Address: [55h]; Address Length is 8 -bit \rightarrow ADDR_ LEN[2:0]=000b;

DATA: 4 Keys (D3/D2/D1/D0) \rightarrow KEY_SEL[1:0]=01b; Bit format: Low to High \rightarrow Waveform $=0 b ;$
$\rightarrow 1 \lambda$ low $+2 \lambda$ high (Data=Zero) $/ 2 \lambda$ low $+1 \lambda$ high (Data=One)

Example 8: Custom Format

Format:

$\left.\begin{array}{c}\text { Pilot } \\ (16 ~\end{array}\right)$	Start (6λ)	Address $(8$-bit $)$	Data $(4-$ bit $)$	CRC $(8$-bit $)$	End (4λ)

Pilot code is $16 \lambda \rightarrow$ LEAD_CODE[2:0] $=100 \mathrm{~b}$;
Start code is $6 \lambda \rightarrow$ START_BIT[1:0] $=01 \mathrm{~b}$;
Address: [93h]; Address Length is 8 -bit \rightarrow ADDR LEN[2:0]=000b;

DATA: 4 Keys (D3/D2/D1/D0) \rightarrow KEY_SEL[1:0]=01b;
CRC: 8 -bit \rightarrow CRC[1:0]=10b;
End Code is $4 \lambda \rightarrow$ END_CODE[1:0]=10b;
Bit format: High to Low \rightarrow Waveform=1b;
$\rightarrow 1 \lambda$ high $+3 \lambda$ low $($ Data $=$ Zero $) / 3 \lambda$ high $+1 \lambda$ low (Data=One)

Fuse Register Map

This list provides a summary of all internal registers. Their detailed operation is described under their relevant section in the functional description.

Address	Register Name	Bit							
		7	6	5	4	3	2	1	0
00h	CFG0	Reserved	EFPGM	XO_TRIM[5:0]					
01h	CFG1	FRAME_GAP[2:0]			Reserved				
02h	CFG2	Reserved							
03h	CFG3	Reserved							
04h	CFG4	Reserved							
05h	CFG5	Reserved							
06h	CFG6	Reserved							
07h	CFG7	Reserved							
08h	CFG8	Reserved							
09h	CFG9	Reserved							
OAh	CFG10	D_K[3:0]				TXPWR[3:0]			
0Bh	CFG11	D_N[5:0]						BAND_SEL[1:0]	
0Ch	CFG12	D_K[11:4]							
0Dh	CFG13	D_K[19:12]							
0Eh	CFG14	BIT_WIDTH[4:0]					LEAD_CODE[2:0]		
0Fh	CFG15	ADDR_LEN[2:0]			END_CODE[1:0]		START_BIT[1:0]		Waveform
10h	CFG16	Reserved	Encoder	Reserved		CRC_SEL[1:0]		KEY_SEL[1:0]	
11h	CFG17	Reserved							
12h	CFG18	Reserved							
13h	CFG19	Reserved							
14h	CFG20	Reserved							
15h	CFG21	ENCODER_ADDRL[7:0]							
16h	CFG22	ENCODER_ADDRM[7:0]							
17h	CFG23	ENCODER_ADDRH[7:0]							
18h	CFG24	ENCODER_ADDRU[7:0]							
19h	CFG25	FRAME_CNTR[7:0]							
1Ah	CFG26	Reserved							
1Bh	CFG27	Reserved							
1Ch	CFG28	Reserved	TXD_INV	TXD_REV	LED_S	Reserved			
1Dh	CFG29	Reserved							
1Eh	CFG30	MAX_FCNT[7:0]							
1Fh	CFG31	EFCRC_L[7:0]							
20h	CFG32	EFCRC_H[7:0]							
21h	CFG33	Reserved							TX_FLAG
22h	CFG34	Reserved							
23h	CFG35	Reserved							
24h	CFG36	Reserved							
25h	CFG37	Reserved							
26h	CFG38	Reserved							
27h	CFG39	Reserved							
28h	CFG40	$1^{2} \mathrm{C}$ _DATA							

If the Fuse is un-programmed, the BC2161 device will have a default state, determined by register initial values.

Operating Frequency: 433.92 MHz
XTAL Capacitor Load: 14.85pF
Symbol Rate: 4ksps

TX Output Power: 10 dBm
Encoding Format: HT6P427A
Encoder: I ${ }^{2} \mathrm{C}$ Mode

- CFGO: Configuration Control Register 0

Address	Bit	7	6	5	4	3	2	1	0
00h	Name	Reserved	EFPGM	XO_TRIM[5:0]					
	R/W	R/W	R	R/W					
	Initial Value	1	0	1	0	0	0	0	0

Bit 7 Reserved, must be [0b1]
Bit 6 EFPGM: FUSE programmed, read only by the Holtek RF Tool
0 : Fuse is not programmed - FUSE data is not mapped to the configuration registers
1: Fuse is programmed - FUSE data is mapped to the configuration registers
Bit 5~0 XO_TRIM[5:0]: Trim the internal capacitor load value for the crystal

XO_TRIM[5:0]	Equiv. \mathbf{C}_{L} (pF)
0	9.87
4	10.00
8	10.12
12	11.44
16	12.16
17	12.33
18	12.49
20	12.83
24	13.50
28	14.15

XO_TRIM[5:0]	Equiv. \mathbf{C}_{L} (pF)
32	14.85
36	15.48
40	16.16
44	16.81
48	17.49
52	18.07
56	18.67
60	19.20
63	19.61

- CFG1: Configuration Control Register 1

Address	Bit	7	6	5	4	3	2	1	0
01h	Name	FRAME_GAP[2:0]			Reserved				
	R/W	R/W			R/W				
	Initial Value	0	0	0	1	0	1	0	1

Bit 7~5 FRAME_GAP[2:0]: TX frame interval time
$\mathrm{t}=2 \mathrm{~ms} \times($ FRAME_GAP[2:0] $)$
000: 0 ms
001: 2 ms
010: 4ms
011: 6 ms
100: 8 ms
101: 10 ms
110: 12ms
111: 14ms
Bit 4~0 Reserved, must be [0b10101]

- CFG2: Configuration Control Register 2

Address	Bit	7	6	5	4	3	2	1	0
02h	Name	Reserved							
	R/W	R/W							
	Initial Value	1	0	1	1	0	1	1	0

Bit 7~0 Reserved, must be [0b10110110]

- CFG3: Configuration Control Register 3

| Address | Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 03 h | Name | Reserved | | | | | | | |
| | R/W | R/W | | | | | | | |
| | Initial Value | 0 | 1 | 0 | 0 | 0 | 0 | 1 | |

Bit 7~0 Reserved, must be [0b01000001]

- CFG4: Configuration Control Register 4

Address	Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
03 h	Name	Reserved								
	R/W	R/W								
	Initial Value	0	1	0	0	0	0	1	0	

Bit 7~0 Reserved, must be [0b01000010]

- CFG5: Configuration Control Register 5

Address	Bit	7	6	5	4	3	2	1	0
05h	Name	Reserved							
	R/W	R/W							
	Initial Value	0	0	0	1	0	1	0	0

Bit 7~0 Reserved, must be [0b00010100]

- CFG6: Configuration Control Register 6

Address	Bit	7	6	5	4	3	2	1	0
06h	Name	Reserved							
	R/W	R/W							
	Initial Value	1	0	0	1	1	0	0	1

Bit 7~0 Reserved, must be [0b10011001]

- CFG7: Configuration Control Register 7

Address	Bit	7	6	5	4	3	2	1	0
07h	Name	Reserved							
	R/W	R/W							
	Initial Value	0	1	0	1	1	0	0	0

Bit 7~0 Reserved, must be [0b01011000]

- CFG8: Configuration Control Register 8

| Address | Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 03 h | Name | Reserved | | | | | | | | |
| | R/W | R/W | | | | | | | | |
| | Initial Value | 1 | 0 | 1 | 0 | 0 | 1 | 0 | | |

Bit 7~0 Reserved, must be [0b10100010]

- CFG9: Configuration Control Register 9

Address	Bit	7	6	5	4	3	2	1	0
09h	Name	Reserved							
	R/W	R/W							
	Initial Value	0	1	0	1	0	0	0	1

Bit 7~0 Reserved, must be [0b01010001]

- CFG10: Configuration Control Register10

Address	Bit	7	6	5	4	3	2	1	0
OAh	Name	D_K[3:0]				TXPWR[3:0]			
	R/W	R/W				R/W			
	Initial Value	0	0	1	1	1	0	0	0

Bit 7~4 D_K[3:0]: Fractional of dividend for MMD, which will be described later.
Bit 3~0 TXPWR[3:0]: RF output power stage selection
The device has several output power values which are $0,5,10$ and 13 dBm .

TXPWR[3:0]	RF Output Power (Typ.)
$\underline{0000}$	OdBm
$\underline{0100}$	5 dBm
$\underline{1000}$	10 dBm
$\underline{1100}$	13 dBm

TXPWR[3:0]	Fine Tune Level (Typ.)
XX00	0
XX01	1
XX10	2
XX11	3

Note that the adjusting range: Level $3>$ Level $2>$ Level $1>$ Level 0

- CFG11: Configuration Control Register11

Address	Bit	7	6	5	4	3	2	1	0
OBh	Name	D_N[5:0]						BAND_SEL[1:0]	
	R/W	R/W						R/W	
	Initial Value	0	1	0	1	1	0	0	1

Bit 7~2 D_N[5:0]: Integer of dividend for MMD
Bit 1~0 BAND_SEL[1:0]: Band Frequency Coarse Selection

BAND_SEL	Frequency	Divider
00	315 MHz	2
01	433 MHz	2
10	868 MHz	1
11	915 MHz	1

Note that the BAND_SEL only selects an approximate frequency range while the exact frequency value is determined by the $\mathrm{D}_{-} \mathrm{N}$ and $\mathrm{D}_{-} \mathrm{K}$ bit fields. For example, the 433.92 MHz belongs to 433 MHz frequency band in the BAND_SEL setting.

BC2161

- CFG12: Configuration Control Register12

Address	Bit	7	6	5	4	3	2	1	0
0Ch	Name	D_K[11:4]							
	R/W	R/W							
	Initial Value	0	1	1	1	0	0	0	0

- CFG13: Configuration Control Register13

Address	Bit	7	6	5	4	3	2	1	0
0Dh	Name	D_K[19:12]							
	R/W	R/W							
	Initial Value	0	0	1	1	1	1	0	1

D_K [19:0]: 20-bit fractional of dividend for MMD
For example: $\mathrm{XO}=16 \mathrm{MHz}$ and TX frequency band $=433 \mathrm{MHz}$

1. For D_N field, $(433 \mathrm{M} \times$ Divider $) / 16 \mathrm{M}=54.125$,

Take the integer part \rightarrow D_N[5:0] $=54-32=22=010110 \mathrm{~b}$
2. For D_K field, ($433 \mathrm{M} \times$ Divider $) / 16 \mathrm{M}=54.125$,

Take the fractional part \rightarrow D_K[19:0] $=0.125 \times 2^{20}=131072=0010-0000-0000-0000-0000 \mathrm{~b}$

Frequency	Divider	X'TAL	D_N[5:0]	D_K[19:4]	D_K[3:0]
315 MHz	2	16 MHz	000111	$0110-0000-0000-0000$	0000
433 MHz	2	16 MHz	010110	$0010-0000-0000-0000$	0000
433.92 MHz	2	16 MHz	010110	$0011-1101-0111-0000$	1010
868 MHz	1	16 MHz	010110	$0100-0000-0000-0000$	0000
915 MHz	1	16 MHz	011001	$0011-0000-0000-0000$	0000

- CFG14: Configuration Control Register14

Address	Bit	7	6	5	4	3	2	1	0
OEh	Name	OOK Bit Rate[4:0]					LEAD_CODE[2:0]		
	R/W	R/W					R/W		
	Initial Value	0	0	1	0	1	0	0	1

Bit 7~3 OOK Bit Rate[4:0]: Define the data bit rate ($0.5 \mathrm{k} \sim 6 \mathrm{kbps}$)

OOK Bit Rate	Data Rate	\mathbf{t}_{bw}
00000	0.5 kbps	2 ms
00001	0.6 kbps	1.67 ms
00010	0.7 kbps	1.43 ms
00011	0.8 kbps	1.25 ms
00100	0.9 kbps	1.11 ms
00101	1.0 kbps	1 ms
00110	1.1 kbps	0.91 ms
00111	1.2 kbps	0.83 ms
01000	1.3 kbps	0.77 ms
01001	1.4 kbps	0.72 ms
01010	1.5 kbps	0.667 ms
01011	1.6 kbps	0.625 ms
01100	1.7 kbps	0.59 ms
01101	1.8 kbps	0.55 ms
01110	1.9 kbps	0.53 ms
01111	2.0 kbps	0.5 ms

OOK Bit Rate	Data Rate	\mathbf{t}_{bw}
10000	2.1 kbps	0.476 ms
10001	2.2 kbps	0.454 ms
10010	2.3 kbps	0.434 ms
10011	2.4 kbps	0.416 ms
10100	2.5 kbps	0.4 ms
10101	2.6 kbps	0.384 ms
10110	2.7 kbps	0.37 ms
10111	2.8 kbps	0.357 ms
11000	2.9 kbps	0.344 ms
11001	3.0 kbps	0.333 ms
11010	3.5 kbps	0.285 ms
11011	4.0 kbps	0.25 ms
11100	4.5 kbps	0.222 ms
11101	5.0 kbps	0.2 ms
11110	5.5 kbps	0.181 ms
11111	6.0 kbps	0.166 ms

Bit 2~0 LEAD_CODE[2:0]: Define the lead code
000: 23λ Low $+1 \lambda$ High (HT6P20B/HT6P2x7A)

001: 1λ High $+31 \lambda$ Low (HT6P4x7A)

010: 36λ Low $+1 \lambda$ High (HT12E)

011: 16λ High $+16 \lambda$ Low

100: $(1 \lambda$ High $+1 \lambda$ Low $) \times 8$ times, 16 symbols in total

101: $(2 \lambda$ High $+2 \lambda$ Low $) \times 8$ times, 16 symbols in total

110: $(1 \lambda$ High $+1 \lambda$ Low $) \times 12$ times, 24 symbols in total

111: $(2 \lambda$ High $+2 \lambda$ Low $) \times 12$ times, 24 symbols in total

- CFG15: Configuration Control Register15

Address	Bit	7	6	5	4	3	2	1	0
OFh	Name	ADDR_LEN[2:0]			END_CODE[1:0]		START_BIT[1:0]		Waveform
	R/W	R/W			R/W		R/W		R/W
	Initial Value	0	1	1	0	0	0	0	1

Bit 7~5 ADDR_LEN[2:0]: Define the address length

ADDR_LEN	Format
000 (HT12E)	8 bits
001	12 bits
010	16 bits
011 (HT6P427A)	20 bits
100 (HT6P20B, HT6P237A)	22 bits
101 (HT6P247A, HT6P437A)	24 bits
110	28 bits
111	32 bits

Bit 4~3 END_CODE[1:0]: Define the End code

END_CODE	Format
00	Disable
01 (HT6P20B, HT6P237A, HT6P247A)	$(1 \lambda$ Low $+2 \lambda$ High $+2 \lambda$ Low $+1 \lambda$ High $) \times 2=(12 \lambda)$
10	$4 \lambda^{\text {(Note 1) }}$
11	$2 \lambda+2 \lambda^{\text {(Note } 2)}$

Notes:

1. The high or low level of the 4λ END_CODE is the opposite of the previous symbol level.

- Example 1: Clear the Waveform to " 0 ", no matter that whether the data is " 1 " or " 0 ", the last symbol will be High, here the 4λ must be 4λ Low.

Pilot(24 λ)	Address(22-bit)	Data(2-bit)	End(4 λ)

Pilot code is $24 \lambda \rightarrow$ LEAD CODE[2:0]=000b;
Address: [155555h]; Address length is 22-bit \rightarrow ADDR_LEN[2:0]=100b;
DATA: 2 Keys (D1/D0) \rightarrow KEY_SEL[1:0]=00b;
End code is 4 -bit \rightarrow END_CODE[1:0]=10b;
Bit format: Low to High \rightarrow Waveform $=0 b ;$
1λ Low $+2 \lambda$ High (Data=Zero) $/ 2 \lambda$ Low $+1 \lambda$ High (Data=One)

- Example 2: Set the Waveform to " 1 ", no matter whether the data is " 1 " or " 0 ", the last symbol will be Low, here the 4λ must be 4λ High.

2. $2 \lambda+2 \lambda$: these two 2λ are opposite to each other, while the high or low level of the first 2λ is opposite to the previous symbol level.

- Example 1: Clear the Waveform to " 0 ", no matter whether the data is " 1 " or " 0 ", the last symbol will be High, and here the $2 \lambda+2 \lambda$ must be 2λ Low $+2 \lambda$ High.

Pilot(24 λ)	Address(22-bit)	Data(2-bit)	End(2 $\lambda+2 \lambda$)

Pilot code is $24 \lambda \rightarrow$ LEAD_CODE[2:0]=000b;
Address: [155555h]; Address length is 22-bit \rightarrow ADDR_LEN[2:0]=100b;
DATA: 2 Keys (D1/D0) \rightarrow KEY_SEL[1:0]=00b;
End code is 4 -bit \rightarrow END_CODE[1:0]=11b;
Bit format: Low to High \rightarrow Waveform=0b;
1λ Low $+2 \lambda$ High (Data=Zero) $/ 2 \lambda$ Low $+1 \lambda$ High (Data=One)

- Example 2: Set the Waveform to " 1 ", no matter that the data is " 1 " or " 0 ", the last symbol will be Low, and here the $2 \lambda+2 \lambda$ must be 2λ High $+2 \lambda$ Low.

Bit 2~1 START_BIT[1:0]: Only for OOK Encoder

START_BIT	Format
00	Disable
01	$(2 \lambda$ Low $+4 \lambda$ High $)$
10	$(4 \lambda$ High $+2 \lambda$ Low $)$
11	6λ Low

Bit 0
Waveform:

- CFG16: Configuration Control Register16

Address	Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
10 h	Name	Reserved	Encoder	Reserved	CRC_SEL[1:0]		KEY_SEL[1:0]		
	R/W	R/W	R/W	R/W		R/W		R/W	
	Initial Value	1	0	0	0	0	0	0	1

Bit 7 Reserved, must be [0b1]
Bit 6 Encoder: Mode selection
0: I ${ }^{2} \mathrm{C}$ Mode
1: Key Mode
Bit 5~4 Reserved, must be [0b00]

Bit 3~2 CRC_SEL[1:0]: Select the address + data for CRC processing
The unit is Bit (not λ), the address is used as the high order of CRC polynomial and the data is used as the low order.

CRC_SEL	Format	Polynomial	Initial Value	Note
00	Disable	-	-	OOK
01	4 Bits \rightarrow Take the low nibble of the CRC8 calculated result	-	-	OOK
10	8 Bits $\rightarrow X^{8}+X^{5}+X^{4}+1$	0×31	0x00	OOK
11	Reserved	-	-	-

Bit 1~0 KEY_SEL[1:0]

KEY_SEL	Format	Data bits
00	2 Keys	2 bits
01	4 Keys	4 bits
10	4 Dipswitches +4 Keys	4 bits (4-bit external address + 4-bit data)
11	8 Keys	8 bits

For the 16-pin package type, in the Key mode:

1. If this bit field is set as " 00 " then to select Keys D0~D1, the other 6 keys D2~D7 have no trigger function;
2. If the value is " 01 " then to select Keys D0~D3, the other 4 keys D4~D7 have no trigger function;
3. If the value is " 10 " then to select 4 Dipswitches +4 Keys, the 4 dipswitch I/O status will be latched after power on, the dipswitches will maintain a pull-high or pull low status according to the latched high or low level to avoid current leakage in the Deep Sleep mode. These four dipswitches D4~D7 have no trigger function but will affect the address.
4. If dipswitch ever been changed, it is recommended to re-trigger key or re-power on.

In the $I^{2} \mathrm{C}$ Mode, the TX transmitting data is determined by the $\mathrm{I}^{2} \mathrm{C}$ _DATA bit field while the transmitting data bit format is determined by the KEY_SEL bit field. The Data bit formats is shown as below:

$\mathrm{I}^{2} \mathrm{C}$ Mode	OOK
2 Keys	xx
4 Keys	xxxx
$4+4$ Keys	AAAAxxxx
8 Keys	xxxx_xxxx

For 2-key/4-key/8-key configurations the data bit can be 2 bits, 4 bits and 8 bits respectively. As the above table shows, if the KEY_SEL bit field is set as " 10 " to select 4 Dipswitches + 4 Keys, then I2C will transmit 8 -bit data (bit $7 \sim$ bit 0) and the bit $7 \sim$ bit 4 is regarded as Address.

In the Key Mode, the TX transmitting data is determined by the keys while the transmitting data bit format is determined by the KEY_SEL bit field. The Data bit formats is shown as below:

Key Mode	OOK
2 Keys	xx
4 Keys	xxxx
$4+4$ Keys	AAAAxxxx
8 Keys	xxxx_xxxx

As the above table shows, if the KEY_SEL bit field is set as " 10 " to select 4 Dipswitches +4 Keys, the value of "A"is determined by Dipswitches and have no TX transmit trigger function. The data bit format can be 2 bits, 4 bits and 8 bits when the KEY SEL bit field is configured to select 2 keys, 4 keys and 8 keys respectively. When the bit field is set to select 4 Dipswitches +4 Keys, then the low nibble, bit 3~bit 0 , is regarded as data and the 4-bit Dipswitches values is regarded as address.

- HT6P427A

Pilot-code	A0~A19	D0~D3

- HT6P437A

Pilot-code	A0~A23	D0~D3

- HT6P237A

Pilot-code	A0~A21	D1~D0	"0101"

- HT6P247A

Pilot-code	A0~A23	D3~D0	"0101"

- HT6P20B

Pilot-code	A0~A21	D1~D0	"0101"

- HT12E2Tx

Pilot-code	A0~A7	D0~D3

- CFG17: Configuration Control Register17

Address	Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
11 h	Name	Reserved								
	R/W	R/W								
	Initial Value	1	0	1	0	0	0			

- CFG18: Configuration Control Register18

Address	Bit	7	6	5	4	3	2	1	0
12h	Name	Reserved							
	R/W	R/W							
	Initial Value	1	0	1	1	0	0	0	1

- CFG19: Configuration Control Register19

Address	Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
13 h	Name	Reserved								
	R/W	R/W								
	Initial Value	1	0	1	0	0	1	0		

- CFG20: Configuration Control Register20

Address	Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
14 h	Name	Reserved								
	R/W	R/W								
	Initial Value	1	0	1	1	0	0	1		

The CFG17~CFG20 are reserved registers, whose default value must be fixed as $0 x B 0,0 x B 1,0 x B 2$ and $0 x B 3$ respectively.

- CFG21: Configuration Control Register21

Address	Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
15 h	Name	ENCODER_ADDRL[7:0]								
	R/W									
	Initial Value	0	0	0	0	0	0	0		

- CFG22: Configuration Control Register22

Address	Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
16 h	Name	ENCODER_ADDRM[7:0]								
	R/W	R/W								
	Initial Value	0	0	0	0	0	0	0		

- CFG23: Configuration Control Register23

Address	Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
17 h	Name	ENCODER_ADDRH[7:0]								
	R/W									
	Initial Value	0	0	0	0	0	0			

- CFG24: Configuration Control Register24

Address	Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
18 h	Name	ENCODER_ADDRU[7:0]								
	R/W									
	R/Wial Value	0	0	0	0	0	0	0		

The CFG21~CFG24 define the encoder address.

- CFG25: Configuration Control Register25

Address	Bit	7	6	5	4	3	2	1	0
19h	Name	FRAME_CNTR[7:0]							
	R/W	R/W							
	Initial Value	0	0	0	0	0	0	0	0

Bit 7~0 FRAME_CNTR[7:0]
The Frame Counter calculates the frame numbers using the following equation:
CNTR=FRAME_CNTR[7:0] + 1
0000: Transmit 1 complete frame
0001: Transmit 2 complete frames
0010: Transmit 3 complete frames

1111: Transmit 16 complete frames

- CFG26: Configuration Control Register26

Address	Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
1 Ah	Name	Reserved								
	R/W									
	Initial Value	0	0	0	0	1	1			

Bit 7~0 Reserved, must be [0b00000111]

- CFG27: Configuration Control Register27

Address	Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
1 Bh	Name	Reserved								
	R/W	R/W								
	Initial Value	0	0	0	1	0	0	0		

Bit 7~0 Reserved, must be [0b00001000]

- CFG28 : Configuration Control Register28

| Address | Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 Ch | Name | Reserved | TXD_INV | TXD_REV | LED_SWD | Reserved | | | |
| | R/W | R/W | R/W | R/W | R/W | R/W | | | |
| | Initial Value | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |

Bit 7 Reserved, must be [0b0]
Bit 6 TXD_INV: data inverse
0 : No inverse. If key trigger, data will be " 1 ".
1: DATA " 0 " will be inversed as " 1 " and vice versa. If key trigger, data will be " 0 ".
Bit 5 TXD_REV: Data MSB and LSB reverse control
0: LSB
Bit 4 LED_SWD: LED switch
0 : LED follows the TX
1: LED follows the symbol high

MSB

Internal Address (ENCODER_ADDR)	External Address(dipswitch)

Data			
D0	D1	D2	D3

1: LSB
MSB

Internal Address (ENCODER_ADDR)	External Address(dipswitch)	Data			
	D3	D2	D1	D0	

Bit 3~0 Reserved, must be [0b0000]

- CFG30: Configuration Control Register30

Address	Bit	7	6	5	4	3	2	1	0
1Eh	Name	MAX_FCNT[7:0]							
	R/W	R/W							
	Initial Value	0	0	0	0	0	0	0	0

Bit 7~0 MAX_FCNT[7:0]

The TX will be disabled when the Frame Counter stops. However this bit field is used for the counted frames multiplication. This function is disabled when the bit field value is " 0 ", otherwise the keys should be pressed and hold for a maximum waiting time to disable the TX, where the maximum waiting time $=($ FRAME_CNTR[7:0]+1) \times MAX_FCNT[7:0]
The TX will be disabled when the Frame Counter stops. This feature can be used to prevent battery exhaust due to continued transmission made by jammed button.
BC2161 Frame (HT6P20B packet format)

Pilot(24 λ)	Address(22-bit)	Data(2-bit)	End(4-bit)

Bit format:
1λ low $+2 \lambda$ high \rightarrow Data $=$ Zero
2λ low $+1 \lambda$ high \rightarrow Data $=$ One

Data Rate: 1kbps
1λ Time: $1 \mathrm{~ms} / 3=0.3333 \mathrm{~ms}$
Numbers of λ in a frame $\rightarrow 28$-bit $\times 3 \lambda+24 \lambda=108 \lambda$
1 Frame time $\rightarrow 108 \lambda \times 0.3333 \mathrm{~ms}=35.9964 \mathrm{~ms}$
Example 1:
FRAME_CNTR[7:0] $=03 \mathrm{~b} \rightarrow$ Frame $1 /$ Frame $2 /$ Frame $3 /$ Frame 4
MAX_FCNT[7:0] $=00 \mathrm{~b}$

Example 2:
FRAME_CNTR[7:0]= $00 \mathrm{~b} \rightarrow$ Frame 1
MAX_FCNT[7:0] $=04 \mathrm{~b}$
When stuck key occurs, the power consumption caused by Tx continuous transmission can be avoided by setting the MAX_FCNT[7:0] bits.
Total Frame Numbers $=($ FRAME_CNTR[7:0] +1$) \times$ MAX_FCNT[7:0]

: Key de-bounce

- CFG31: Configuration Control Register31

Address	Bit	7	6	5	4	3	2	1	0
1Fh	Name	EFCRC_L[7:0]							
	R/W	R/W							
	Initial Value	0	0	0	0	0	0	0	0

- CFG32: Configuration Control Register32

| Address | Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 h | Name | EFCRC_H[7:0] | | | | | | | |
| | R/W | R / W | | | | | | | |
| | Initial Value | 0 | 0 | 0 | 0 | 0 | 0 | | |

EFCRC field: for FUSE CRC calculation
The address range of the CRC calculation is from 00 h to 1 Eh , which contains 31 bytes in total. The input order is LSB first, the CRC polynomial is $\mathrm{X}^{16}+\mathrm{X}^{15}+\mathrm{X}^{2}+1$. The CRC on-line calculator can be accessed by the following website: http://www.sunshine2k.de/coding/javascript/crc/crc_js.html

For example:
Data filled in the address range of $00 \mathrm{~h} \sim 1 \mathrm{Eh}$ are listed below:
0x4F 0x03 0x99 0x48 0xAB 0xCD 0xEF 0x7B 0x33 0x44 0xAB 0xCD 0xEF 0x93 0xFA 0x00 0x45 0xA9 0xB8 0xC7 0xD6 0xE5 0xF4 0x03 0x12 0x03 0x03 0x08 0xB6 0x00 0x00

The online calculator should be setup with the following configuration:

1. CRC width: select "CRC-16"
2. CRC parametrization: select "Custom"
3. CRC detailed parameters: select "Input reflected"
4. Polynomial: 0x8005
5. Initial Value: 0xFFFF
6. Final Xor Value: 0x0
7. CRC Input Data: select "Bytes" and fill in the data
8. Click on "Calculate CRC!"
9. Result CRC Value: 0x768C

As the following on-line calculator web interface screenshot shows:

Show reflected lookup table: \square (This option does not affect the CRC calculation, only the displayed lookup table)

Calculate CRC!

Result CRC value: $0 \times 768 \mathrm{C}$

- CFG33: Configuration Control Register33

Address	Bit	7	6	5	4	3	2	1	0
21h	Name	Reserved							TX_FLAG
	R/W	R/W							R
	Initial Value	0	0	0	0	0	0	0	1

Bit 7~1 Reserved, must be [0b0000000]
Bit $0 \quad$ TX_FLAG: Transmission flag
0 : Transmission is in progress, LED on
1: No transmission, LED off

- CFG40: Configuration Control Register 40

Address	Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
28 h	Name	I $^{2} \mathrm{C}$ _DATA[7:0]								
	R/W	R / W								
	Initial Value	0	0	0	0	0	0	1		

Bit 7~0 I \mathbf{I}^{2} C_DATA[7:0]: Data and address to be transmitted in the $\mathrm{I}^{2} \mathrm{C}$ mode
As the $\mathrm{I}^{2} \mathrm{C}$ state machine shows, the TX transmission will only be initiated after the $\mathrm{I}^{2} \mathrm{C}$ _DATA[7:0] field has been written and the $I^{2} \mathrm{C}$ stop is executed. The relationship between this bit field and the KEY_SEL field in the CFG16 is described as below:

1. If KEY_SEL selects 2 Keys, the $I^{2} C$ will only transmit the data of bit 0 and bit 1, namely 2 -bit data.
2. If KEY_SEL selects 4 Keys, the $I^{2} \mathrm{C}$ will only transmit the data of bit $0 \sim$ bit 3 , namely 4 -bit data.
3. If KEY_SEL selects 4 Dipswitches +4 Keys, the $I^{2} \mathrm{C}$ will transmit the data of bit $0 \sim$ bit 7 , so the 4 -bit External Address (Bit 4~Bit 7) and 4-bit data (Bit 0~Bit 3).
4. If KEY_SEL selects 8 Keys, the $I^{2} \mathrm{C}$ will transmit the data of bit $0 \sim$ bit 7 , namely 8 -bit data.
5. It should be noted that in the $\mathrm{I}^{2} \mathrm{C}$ mode, $\mathrm{D} 0 \sim \mathrm{D} 7$ have no trigger function, the data is all determined by the I^{2} C_DATA bit field while the bit number is controlled by the KEY_SEL bit field.

Application Circuits

Package Information

Note that the package information provided here is for consultation purposes only. As this information may be updated at regular intervals users are reminded to consult the Holtek website for the latest version of the Package/ Carton Information.

Additional supplementary information with regard to packaging is listed below. Click on the relevant section to be transferred to the relevant website page.

- Package Information (include Outline Dimensions, Product Tape and Reel Specifications)
- The Operation Instruction of Packing Materials
- Carton information

8-pin SOP-EP (150mil) Outline Dimensions

Symbol	Dimensions in inch		
	Min.	Nom.	Max.
A	-	0.236 BSC	-
B	-	0.154 BSC	-
C	0.012	-	0.020
C'	-	0.193 BSC	-
D	-	-	0.069
D1	0.076	-	0.090
E	-	-	-
E2	0.076	-	0.090
F	0.000	-	0.006
G	0.016	-	0.050
H	0.004	-	0.010
a	0°	-	8°

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	-	6.00 BSC	-
B	-	3.90 BSC	-
C	0.31	-	0.51
D	-	4.90 BSC	-
D1	-	-	1.75
E	1.94	-	2.29
E2	-	-	-
G	1.94	-	2.29
H	0.00	-	0.15
α	0.40	-	1.27

Note: For this package type, refer to the package information provided here, which will not be updated by the Holtek website.

BC2161

16-pin NSOP-EP (150mil) Outline Dimension

Symbol	Dimensions in inch		
	Min.	Nom.	Max.
A	-	0.236 BSC	-
B	-	0.154 BSC	-
D1	0.152	-	0.180
E2	0.066	-	0.095
C	0.012	-	0.020
C'	-	-	-
D	-	-	0.069
F	-	-	-
G	0.004	-	0.010
H	0.004	-	0.050
	0°	-	0.010

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	-	6.00 BSC	-
B	-	3.90 BSC	-
D1	3.86	-	4.57
E2	1.68	-	2.41
C	0.31	-	0.51
C	-	9.90 BSC	-
D	-	-	1.75
E	-	1.27 BSC	-
F	0.10	-	0.25
G	0.40	-	1.27
α	0.10	-	0.25

SAW Type 16 -pin QFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$ for FP0.25mm) Outline Dimensions

Symbol	Dimensions in inch		
	Min.	Nom.	Max.
A	0.028	0.030	0.031
A1	0.000	0.001	0.002
A3	-	0.008 BSC	-
b	0.007	0.010	0.012
D	-	0.118 BSC	-
E	-	0.118 BSC	-
e	-	0.020 BSC	-
D2	0.063	0.067	0.069
E2	0.063	0.067	0.069
L	0.008	0.010	0.012
K	0.008	-	-

Symbol	Dimensions in mm		
	Min.	Nom.	Max.
A	0.700	0.750	0.800
A1	0.000	0.020	0.050
A3	-	0.200 BSC	-
b	0.180	0.250	0.300
D	-	3.000 BSC	-
E	-	3.000 BSC	-
e	-	0.50 BSC	-
D2	1.60	1.70	1.75
E2	1.60	1.70	1.75
L	0.20	0.25	0.30
K	0.20	-	-

Copyright ${ }^{\circ} 2021$ by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.

