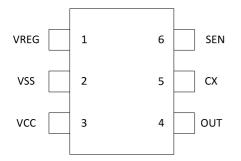


General Description

With human-machine interfacing requiring ever higher functionality and intuitiveness, touch panel type interfaces are rapidly becoming the norm for the new millennium.

TC301A(B) is a one channel capacitive sensing device. The device can operate as a controller for one key.


Features

- \Box The device controls one touch sensing keys
- □ Autocal for life no adjustments required
- \Box System cost reduction
- □ Reliability through reducing system complexity
- □ Embedded noise immunity circuit
- □ RoHS compliant SOT23-6L package

Applications

- □ Media Players
- \Box Consumer Electronics
- □ Home appliances
- □ Keypads
- \Box Mechanical switch replacement
- \Box Sealed control panels, keypads

Pin Diagram

Pin Description

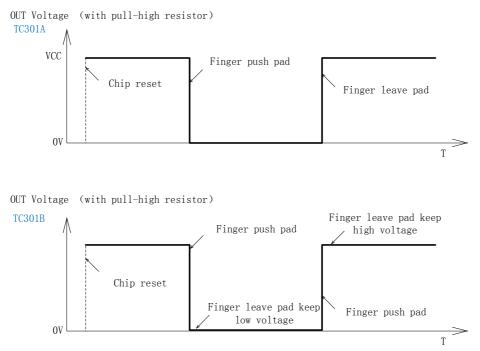
Pin	Name	I/O	Description
1	VREG	Analog Output	Reference output
2	VSS	Ground	Supply Ground
3	VCC	Pwr	Power in
4	OUT	Digital Output	Output for chanel0
5	СХ	Analog I/O	Sensor pad
6	SEN	Analog I/O	Sensitivity Set

Nutech Semiconductor

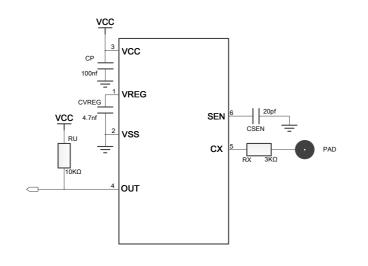
SEN

Sensitivity set pin, the capacitance range is 10pf~100pf, the smaller the value the higher the sensitivity.

VREG


Reference voltage output, connected to 4.7nf capacitance.

СХ


Capacitive sense pin connected to electrode. Series resistance is $3K\Omega$.

OUT

Output ports of CX. The structure of output ports is open drain NMOS for active low output level operation.

Application Circuit

PCB Layout Notice

1. VCC and VSS power line should be drawn alone, and can not share power line with other chips(micro-controller and LCD driver, etc.). So as to prevent the chip from being affected by noise signal going throng the power line.

2. CP, CVREG, CSEN these three capacitances should be placed as close as possible to the chip. And the series resistors on wire of sense pad should also be placed as close as possible to the chip.

3. The larger area of grounded copper, the more immunity to noise Interference.

4. The sense traces and pad should be paid more attention to. The chip should be placed as close as possible to sense pad. The sense traces should be drawn to sense pad directly. The length of the different sense traces is not necessarily equal. The width of sense traces should be as small as possible. There should not be other power line and signal traces around the sense trace. If it can not be avoided, the other traces should cross the sense trace vertically. The distance between sense pads should be greater than 5mm. The distance between sense pad and grounded copper should be greater than 1.5mm.

Absolute Maximum Rating *

Operating temperature	$-40 \sim +85^{\circ}C$
Storage temp	$-50 \sim +150^{\circ}C$
VCC	$-0.3 \sim +6.5 V$
Max continuous pin current, any control or drive pin	±10mA
Voltage forced onto any pin	$-0.3V \sim (Vcc+0.3)$ Volts

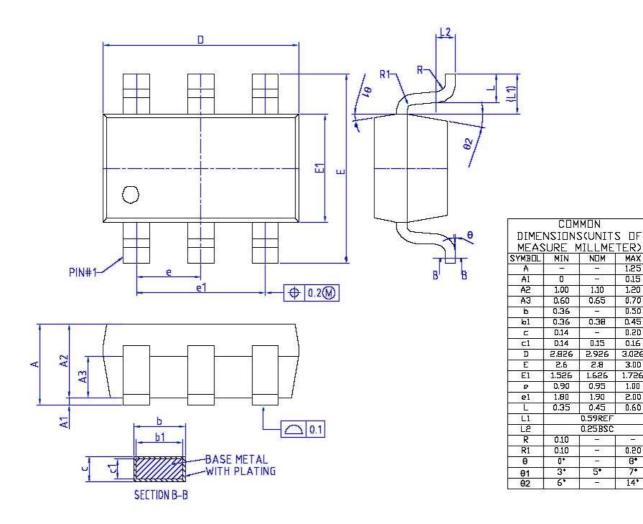
* NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

Electrical Characteristics

Characteristics	Symbo	Condition	Min	Тур	Max	Units
Operating voltage	Vcc		2.5		6.5	V
Current consumption	Idd	VCC=5.0V		810		uA
		VCC=3.0V		460		uA
		VCC=5.0V		70		uA
		&SLEEP				
		VCC=3.0V		38		uA
		&SLEEP				
Self calibration time	Tini			120		ms
after chip reset						
Range of capacitance on	СХ				2.5*CSE	
Pad					Ν	
Output impedance	Zo	Low voltage		50		Ohm
(open drain)		Hi-z		100M		
					10.0	
Output sink current	Isk	VCC=5V			10.0	mA
Minimum detective	delta_CX	CSEN=15pf		0.2		pF
capacitance difference						
Sample cycle	Tsi	Normal working		2.7		ms

TA = 25℃

Nutech Semiconductor


TC301A(B)_DataSheet_V1.3

	state		

ESD Characteristics

Mode	Polarity	Max	Reference	
		8000V	VDD	
H.B.M	POS/NEG	8000V	VSS	
		8000V	P to P	
		500V	VDD	
M.M	POS/NEG	500V	VSS	
		500V	P to P	

Package Diagram (SO-16)

MAX 1.25

0.15

1.20

0.70

0.50

0.45 0.20

0.16

3.026

3.0D

1.726

1.00 2.00 0.60

0.20

6.

7. 14.