SNMP Overview

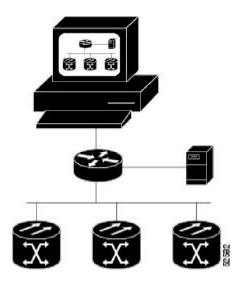
Note

SNMP is an application-layer communication protocol that allows NCS network devices to exchange management information among these systems and with other devices outside the network. Through SNMP, network administrators can manage network performance, find and solve network problems, and plan network growth. Up to 10 SNMP trap destinations and five concurrent Cisco Transport Controller (CTC) user sessions are allowed per node.

The NCS uses SNMP for asynchronous event notification to a network management system (NMS). NCS SNMP implementation uses standard Internet Engineering Task Force (IETF) management information bases (MIBs) to convey node-level inventory, fault, and performance management information for generic DS-1, DS-3, SONET, and Ethernet read-only management. SNMP allows a generic SNMP manager such as HP OpenView Network Node Manager (NNM) or Open Systems Interconnection (OSI) NetExpert to be utilized for limited management functions.

The Cisco NCS supports SNMP Version 1 (SNMPv1), SNMP Version 2c (SNMPv2c), and SNMP Version 3 (SNMPv3). As compared to SNMPv1, SNMPv2c includes additional protocol operations and 64-bit performance monitoring support. SNMPv3 provides authentication, encryption, and message integrity and is more secure. This chapter describes the SNMP versions and describes the configuration parameters for the NCS.

The CERENT-MSDWDM-MIB.mib, CERENT-FC-MIB.mib, and CERENT-GENERIC-PM-MIB.mib in the CiscoV2 directory support 64-bit performance monitoring counters. The SNMPv1 MIB in the CiscoV1 directory does not contain 64-bit performance monitoring counters, but supports the lower and higher word values of the corresponding 64-bit counter. The other MIB files in the CiscoV1 and CiscoV2 directories are identical in content and differ only in format.

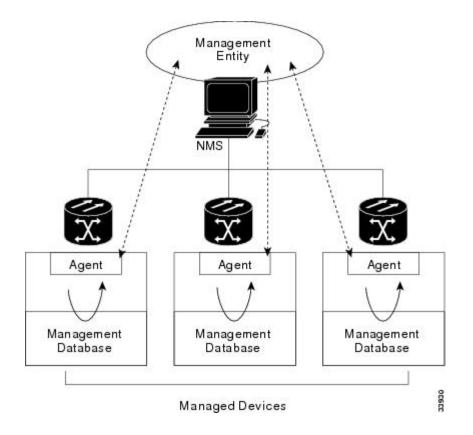

It is recommended that the SNMP Manager timeout value be set to 60 seconds. Under certain conditions, if this value is lower than the recommended time, the TCC card can reset. However, the response time depends on various parameters such as object being queried, complexity of what and number of hops in the node, etc.

The port names configured in CTC and TL1 can be up to 80 characters; however, SNMP accepts only up to 64 characters for port names.

The SNMP management interface supports the IEEE 802.3 LAG MIB.

The following figure illustrates the basic layout idea of an SNMP-managed network.

Figure 1. Basic Network Managed by SNMP



Basic SNMP Components

In general terms, an SNMP-managed network consists of a management system, agents, and managed devices.

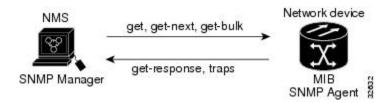

A management system such as HP OpenView executes monitoring applications and controls managed devices. Management systems execute most of the management processes and provide the bulk of memory resources used for network management. A network might be managed by one or several management systems. The following figure illustrates the relationship between the network manager, the SNMP agent, and the managed devices.

Figure 2. Example of the Primary SNMP Components

An agent (such as SNMP) residing on each managed device translates local management information data—such as performance information or event and error information—caught in software traps, into a readable form for the management system. The following figure illustrates SNMP agent get-requests that transport data to the network management software.

Figure 3. Agent Gathering Data from a MIB and Sending Traps to the Manager

The SNMP agent captures data from MIBs, which are device parameter and network data repositories, or from error or change traps.

A managed element—such as a router, access server, switch, bridge, hub, computer host, or network element (such as an NCS)—is accessed through the SNMP agent. Managed devices collect and store management information, making it available through SNMP to other management systems having the same protocol compatibility.

SNMP External Interface Requirement

Since all SNMP requests come from a third-party application, the only external interface requirement is that a third-party SNMP client application can upload RFC 3273 SNMP MIB variables in the etherStatsHighCapacityTable, etherHistoryHighCapacityTable, or mediaIndependentTable.

SNMP Version Support

The NCS supports SNMPv1 and SNMPv2c traps and get requests. The NCS SNMP MIBs define alarms, traps, and status. Through SNMP, NMS applications can query a management agent for data from functional entities such as Ethernet switches and SONET multiplexers using a supported MIB.

NCS MIB files in the CiscoV1 and CiscoV2 directories are almost identical in content
except for the difference in 64-bit performance monitoring features. The CiscoV2 directory
Note contains three MIBs with 64-bit performance monitoring counters:. CERENT-MSDWDM-MIB.mib, CERENT-FC-MIB.mib, and CERENT-GENERIC-PM-MIB.mib The CiscoV1 directory does not contain any 64-bit counters, but it does support the lower and higher word values used in 64-bit counters. The two directories also have somewhat different formats.