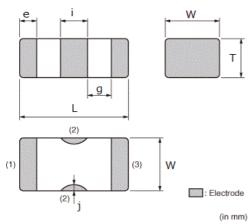
CHIP EMIFIL®CHIP 3-TERMINAL CAPACITOR FOR GENERAL NFM41CC Series

Reference Sheet

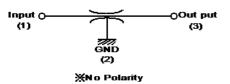
1.Scope

This product specification is applied to Chip EMIFIL®Chip 3-terminal Capacitor used for General Electronic equipment.


2.Reference PART No. List

	Customer PART NO.	MURATA PART NO.
1		NFM41CC101U2A3L
2		NFM41CC102R2A3L
3		NFM41CC220U2A3L
4		NFM41CC221U2A3L
5		NFM41CC222R2A3L
6		NFM41CC223R2A3L
7		NFM41CC470U2A3L
8		NFM41CC471R2A3L

3.MURATA Part NO. System



4. Type & Dimensions

		(i	n mm)			(Unit:mm)
	MURATA PART NO.	(1)-1 L	(1)-2 W	Т	е	g
	MONATA PART NO.	i	j			
1	NFM41CC101U2A3L	4.5±0.3	1.6±0.3	1.0±0.2	0.4±0.3	0.8 min.
	INFINIATOC TO TOZASE	1.5±0.3	0.3+0.3/-0.2			
2	NFM41CC102R2A3L	4.5±0.3	1.6±0.3	1.0±0.2	0.4±0.3	0.8 min.
2	INFINIA ICC IUZRZASL	1.5±0.3	0.3+0.3/-0.2		•	
2	NFM41CC220U2A3L	4.5±0.3	1.6±0.3	1.0±0.2	0.4±0.3	0.8 min.
3		1.5±0.3	0.3+0.3/-0.2		•	•
		4.5±0.3	1.6±0.3	1.0±0.2	0.4±0.3	0.8 min.
4	NFM41CC221U2A3L	1.5±0.3	0.3+0.3/-0.2		•	
_	NFM41CC222R2A3L	4.5±0.3	1.6±0.3	1.0±0.2	0.4±0.3	0.8 min.
5		1.5±0.3	0.3+0.3/-0.2		•	•
6		4.5±0.3	1.6±0.3	1.0±0.2	0.4±0.3	0.8 min.
6	NFM41CC223R2A3L	1.5±0.3	0.3+0.3/-0.2		·	•
7	NFM41CC470U2A3L	4.5±0.3	1.6±0.3	1.0±0.2	0.4±0.3	0.8 min.
· /		1.5±0.3	0.3+0.3/-0.2			
		4.5±0.3	1.6±0.3	1.0±0.2	0.4±0.3	0.8 min.
8	NFM41CC471R2A3L	1.5±0.3	0.3+0.3/-0.2		·	•

a)Equivalent Circuit

5.Rated value

	MURATA PART NO.	(3) Nominal Capacitance	Capacitance Tolerance	(5) Rated Voltage	Rated Current (mA)	DC Resistance	Insulation Resistance	Specifications and Test Methods (Operating / Storage Temp. Range)
1	NFM41CC101U2A3L	100 pF	+50/-20 %	DC 100 V	300mA(DC)	0.3Ωmax.	10000MΩmin.	Section 7.1 (-55 to 125 °C / -55 to 125 °C)
2	NFM41CC102R2A3L	1000 pF	+50/-20 %	DC 100 V	300mA(DC)	0.3Ωmax.	10000MΩmin.	Section 7.1 (-55 to 125 °C / -55 to 125 °C)
3	NFM41CC220U2A3L	22 pF	+50/-20 %	DC 100 V	300mA(DC)	0.3Ωmax.	10000MΩmin.	Section 7.1 (-55 to 125 °C / -55 to 125 °C)
4	NFM41CC221U2A3L	220 pF	+50/-20 %	DC 100 V	300mA(DC)	0.3Ωmax.	10000MΩmin.	Section 7.1 (-55 to 125 °C / -55 to 125 °C)
5	NFM41CC222R2A3L	2200 pF	+50/-20 %	DC 100 V	300mA(DC)	0.3Ωmax.	10000MΩmin.	Section 7.1 (-55 to 125 °C / -55 to 125 °C)
6	NFM41CC223R2A3L	22000 pF	+50/-20 %	DC 100 V	300mA(DC)	0.3Ωmax.	10000MΩmin.	Section 7.1 (-55 to 125 °C / -55 to 125 °C)
7	NFM41CC470U2A3L	47 pF	+50/-20 %	DC 100 V	300mA(DC)	0.3Ωmax.	10000MΩmin.	Section 7.1 (-55 to 125 °C / -55 to 125 °C)
8	NFM41CC471R2A3L	470 pF	+50/-20 %	DC 100 V	300mA(DC)	0.3Ωmax.	10000MΩmin.	Section 7.1 (-55 to 125 °C / -55 to 125 °C)

6.Package

_	MURATA PART NO.	(7) Packaging	Packaging Unit
1	NFM41CC101U2A3L	∳180mm Reel EMBOSSED	4000 pcs./Reel
2	NFM41CC102R2A3L	∳180mm Reel EMBOSSED	4000 pcs./Reel
3	NFM41CC220U2A3L	∳180mm Reel EMBOSSED	4000 pcs./Reel
4	NFM41CC221U2A3L	∳180mm Reel EMBOSSED	4000 pcs./Reel
5	NFM41CC222R2A3L	∳180mm Reel EMBOSSED	4000 pcs./Reel
6	NFM41CC223R2A3L	∳180mm Reel EMBOSSED	4000 pcs./Reel
7	NFM41CC470U2A3L	∳180mm Reel EMBOSSED	4000 pcs./Reel
8	NFM41CC471R2A3L	∳180mm Reel EMBOSSED	4000 pcs./Reel

Product specifications in this catalog are as of Dec.15,2014,and are subject to change or obsolescence without notice. Please consult the approval sheet before ordering. Please read rating and !Cautions first. 7.

Electrical Performance

muRata

IC A TION	TESTI	METHODS

No	Item	Encoification	Test Method
1	Capacitance (Cap.)	Specification Meet item 5.	Frequency 22 to 220pF : 1.0±0.1MHz 470 to 22000pF : 1.0±0.1kHz Voltage : 1±0.2V(rms)
2	Insulation Resistance(I.R.)		Voltage : Rated Voltage Time : 2 minutes max.
3	DC Resistance (Rdc1,2)		Measured with 100mA max. Rdc1 : between signal terminals Rdc2 : between ground terminals Rdc2 Rdc1 Rdc1 Rdc2 Rdc1
4	Withstanding Voltage	Products shall not be damaged.	Test Voltage : 250V(DC) Time : 1 to 5 s Charge Current : 50 mA max.
	Operating Temperature Storage Temperature	Shown in item 5.	Includes self-heating

Standard Testing Condition

< Unless otherwise specified >

Temperature : Ordinary Temp. / 15 °C to 35 °CTemperature: 20 °C ± 2 °CHumidity: Ordinary Humidity / 25 %(RH) to 85 %(RH)Humidity: 60 %(RH) to 70 %(RH)

< In case of doubt > Temperature: 20 °C ± 2 °C Humidity: 60 %(RH) to 70 %(RH) Atmospheric pressure: 86 kPa to 106 kPa 7.

maRata

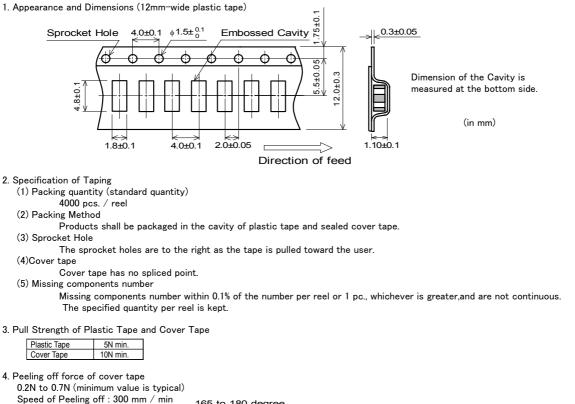
SPECIFICATIONS AND TEST METHODS

Mechanical Performance

No	Item	Specification	Test Method
1	Appearance and Dimensions	Meet item 4.	Visual Inspection and measured with Slide Calipers.
2	Solderability	Electrodes shall be at least 95% covered with new solder coating.	Flux : Ethanol solution of rosin, 25(wt)% Pre-heat : 150±10°C, 60 to 90s Solder : Sn-3.0Ag-0.5Cu Solder Temperature : 240 ± 3°C Immersion Time : 3±1 s Immersion and emersion rates : 25mm / s
3	Resistance to soldering heat	Meet Table 1. Table 1 Appearance No damaged Cap. Change Within ±7.5% I.R. 1000MΩ min. Rdc1.2 0.5 Ωmax.	Flux : Ethanol solution of rosin, 25(wt)% Pre-heat : $150\pm10^{\circ}$ C, 60 to 90s Solder : Sn-3.0Ag-0.5Cu Solder Temperature : $270 \pm 5^{\circ}$ C Immersion Time : 10 ± 1 s Immersion and emersion rates : 25 mm / s Initial values : About 470 to 22000pF, measured after heat treatment ($150+0/-10^{\circ}$ C,1hour) and exposure in the room condition for 24 ± 2 hours. Then measured after exposure in the room condition for 24 ± 2 hours.
4	Bending Strength	Meet Table 2. <u>Table 2</u> <u>Appearance</u> <u>No damaged</u> Cap. Change <u>Within ±12.5%</u> Rdc1.2 <u>0.5 Ωmax.</u>	It shall be soldered on the Paper-phenol substrate (t = 1.6mm). Deflection : 2 mm Keeping Time : 30 s Pressure jig
5	Drop	Products shall be no failure after tested.	It shall be dropped on concrete or steel board. Method : Free fall Height : 75 cm Attitude from which the product is dropped : 3 directions The Number of Time : 3 times for each direction (Total 9 times)
6	Bonding Strength	The electrodes shall be no failure after tested.	It shall be soldered on the glass-epoxy substrate. Applying Force (F) : 9.8 N Applying Time : 30 s 1.2 1.2 0.5 ϕ 1.0 (in mm)
7	Vibration	Meet Table 3. Table 3 Appearance No damaged Capacitance Meet the initial rated value. Rdc1.2 0.5 Ωmax.	It shall be soldered on the glass-epoxy substrate. Oscillation Frequency : 10 to 55 to 10Hz for 1 minute. Double Amplitude : 1.5 mm Time : A period of 2 hours in each of 3 mutually perpendicular directions. (Total 6 hours) Preconditioning : About 470 to 22000pF, Heat treatment (150+0/-10 °C,1hour)

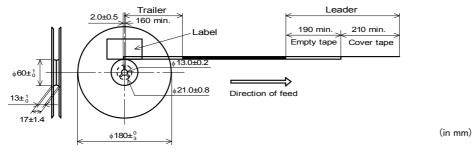
7.

SPECIFICATIONS AND TEST METHODS


Environment Performance

It shall be soldered on the glass-epoxy substi	rate
--	------

lt	shall be soldered on the	e glass-epoxy substrate.	
No	Item	Specification	Test Method
1	Temperature Cycling	Meet Table 4. <u>Table 4</u> <u>Appearance</u> <u>No damaged</u> Cap. Change <u>Within ±7.5%</u> I.R. <u>Meet the initial rated</u> value. Rdc1.2 0.5 Ωmax.	 1 Cycle 1 step : -55+0/-3°C / 30+3/-0 min 2 step : Room Temperature / within 3 min 3 step : +125+3/-0°C / 30+3/-0 min 4 step : Room Temperature / within 3 min Total of 10 cycles Initial values : About 470 to 22000pF, measured after heat treatment(150+0/-10°C, 1hour) and exposure in the room condition for 24±2 hours. Then measured after exposure in the room condition for 24±2 hours.
	Humidity Heat Life	Meet Table 5. Table 5 Appearance No damaged Cap. Change Within ±12.5% I.R. 1000MΩ min. Rdc1.2 0.5 Ωmax.	Temperature : 40±2°C Humidity : 90 to 95%(RH) Time : 1000+48/-0 hours Then measured after exposure in the room condition for 24±2 hours. Temperature : 125±2°C Test Voltage : Rated Voltage x 200% Current : Rated Current Charge Current : 50 mA max. Time : 1000+48/-0 hours Initial values : About 470 to 22000pF,measured after voltage treatment (125±2°C, Rated Voltage x 200%, 1hour) and exposure in the room condition for 24±2 hours. Then measured after exposure in the room condition for 24±2 hours.
4	Cold Resistance		Temperature : -55±2°C Time : 500+24/-0 hours Then measured after exposure in the room condition for 24±2 hours.



ACKAGING NEM41 Type

5. Dimensions of Leader-tape, Trailer and Reel

There shall be leader-tape (cover tape only and empty tape) and trailer-tape (empty tape) as follows.

1. Mounting density

Add special attention to radiating heat of products when mounting this product near the products with heating. The excessive heat by other products may cause deterioration of insulation resistance and excessive heat at this product, resulting in a fire.

2. Limitation of Applications

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

(1)Aircraft equipment (2)Aerospace equipment (3)Undersea equipment (4)Power plant control equipment

(5)Medical equipment (6)Transportation equipment(automobiles, trains, ships, etc.) (7)Traffic signal equipment

(8)Disaster prevention / crime prevention equipment (9)Data-processing equipment
 (10)Applications of similar complexity or with reliability requirements comparable to the applications listed in the above

Notice

9.

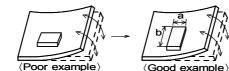
This product is designed for solder mounting.

Please consult us in advance for applying other mounting method such as conductive adhesive.

1. Flux and Solder

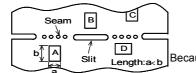
Flux	Use rosin-based flux, Do not use highly acidic flux (with chlorine content exceeding 0.2(wt)%).	
	Do not use water-soluble flux.	
	Other flux (except above) Please contact us for details, then use.	
Solder	Use Sn-3.0Ag-0.5Cu solder	
	Use of Sn-Zn based solder will deteriorate performance of products.	
	In case of using Sn-Zn based solder, please contact Murata in advance.	

2. Note for Assembling


< Thermal Shock >

Pre-heating should be in such a way that the temperature difference between solder and products surface is limited to 100°C max. Also cooling into solvent after soldering should be in such a way that the temperature difference is limited to 100°C max.

3. Attention Regarding P.C.B. Bending


The following shall be considered when designing P.C.B.'s and laying out products.

(1) P.C.B. shall be designed so that products are not subject to the mechanical stress for board warpage. [Products direction]

Products shall be located in the sideways direction (Length:a<b) to the mechanical stress.

(2) Products location on P.C.B. near seam for separation.

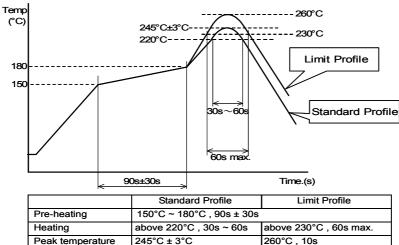
Products (A,B,C,D) shall be located carefully so that products are not subject to the mechanical stress due to warping the board. Because they may be subjected the mechanical stress in order of A>C>B≒D.

4. Pre-heating Temperature

Soldering shall be handled so that the difference between pre-heating temperature and solder temperature shall be limited to 100°C max. to avoid the heat stress for the products.

5. Reflow Soldering

- 1) Soldering paste printing for reflow
- Standard thickness of solder paste: 100µm to 200µm.
- Use the solder paste printing pattern of the right pattern.

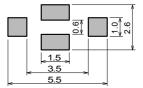

Cycle of reflow

• For the resist and copper foil pattern, use standard land dimensions.

2) Soldering Conditions

Standard soldering profile and the limit soldering profile is as follows.

The excessive limit soldering conditions may cause leaching of the electrode and/or resulting in the deterioration of product quality.



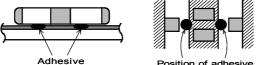
8

2 times

2 times

• Standard printing pattern of solder paste.

(in mm)

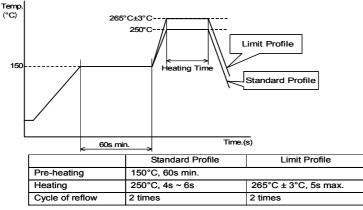

muRata Notice

6. Flow Soldering

1) Printing of Adhesive

Adhesive amount shall be about 0.10mg per chip to obtain enough adhesive strength.

The adhesive position is as follows.



2) Soldering Conditions

Standard soldering profile and the limit soldering profile is as follows.

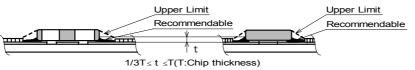
The excessive limit soldering conditions may cause leaching of the electrode and/or resulting in the deterioration of product quality.

< Flow Soldering Profile (Eutectic solder, Sn-3.0Ag-0.5Cu solder) >

7. Reworking with Soldering iron

The following conditions shall be strictly followed when using a soldering iron.

• Pre-heating : 150°C, 1 minute • Soldering iron output : 30W max.


• Tip temperature : 350°C max. • Tip diameter : φ3mm max.

Soldering time : 3(+1,-0) s Times : 2times max.

Note: Do not directly touch the products with the tip of the soldering iron in order to prevent the crack on the ceramic material due to the thermal shock.

8. Solder Volume

Solder shall be used not to be exceeded as shown below.

Accordingly increasing the solder volume, the mechanical stress to product is also increased. Excessive solder volume may cause the failure of mechanical or electrical performance.

9. Cleaning Conditions

Products shall be cleaned on the following conditions.

(1) Cleaning temperature shall be limited to 60°C max. (40°C max. for Isopropyl alcohol (IPA))

(2) Ultrasonic cleaning shall comply with the following conditions, with avoiding the resonance phenomenon at the mounted products and P.C.B.

Power	: 20W / I max.
Frequency	: 28kHz to 40kHz
Time	: 5 minutes max.

(3) Cleaner

1. Cleaner Isopropyl alcohol (IPA)

2. Aqueous agent

PINE ALPHA ST-100S

(4) There shall be no residual flux and residual cleaner after cleaning.

In the case of using aqueous agent, products shall be dried completely after rinse with de-ionized water in order to remove the cleaner.

(5) Other cleaning

Please contact us.

Notice

10. Operating Environment

Do not use this product under the following environmental conditions, on deterioration of the performance, such as insulation resistance may result from the use.

(1) in the corrodible atmosphere (acidic gases, alkaline gases, chlorine, sulfur gases, organic gases and etc.)

(2) in the atmosphere where liquid such as organic solvent, may splash on the products.

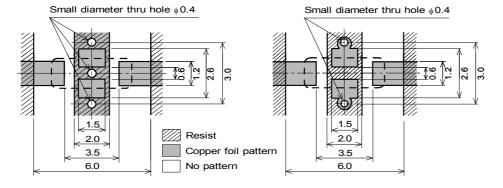
11. Resin coating

The capacitance value may change and/or it may affect on the product's performance due to high cure-stress of resin to be used for coating / molding products. So please pay your careful attention when you select resin. In prior to use, please make the reliability evaluation with the product mounted in your application set.

12. Handling of a substrate

After mounting products on a substrate, do not apply any stress to the product caused by bending or twisting to the substrate when cropping the substrate, inserting and removing a connector from the substrate or tightening screw to the substrate. Excessive mechanical stress may cause cracking in the product.

Bending



13. Standard Land Dimensions

The chip EMI filter suppresses noise by conducting the high-frequency noise element to ground. Therefore, to get enough noise reduction, feed through holes which is connected to ground-plane should be arranged according to the figure to reinforce the ground-pattern.

< Standard land dimensions for reflow > •Side on which chips are mounted

< Standard land dimensions for flow > •Side on which chips are mounted

14. Storage condition

(1) Storage period

Use the products within 12 months after delivered.

Solderability should be checked if this period is exceeded.

(2) Storage environment condition

• Products should be stored in the warehouse on the following conditions.

Temperature: -10 to +40°C

Humidity: 15 to 85% relative humidity

No rapid change on temperature and humidity

• Don't keep products in corrosive gases such as sulfur, chlorine gas or acid, or it may cause oxidization of electrode, resulting in poor solderability.

• Products should be stored on the palette for the prevention of the influence from humidity, dust and so on.

•Products should be stored in the warehouse without heat shock, vibration, direct sunlight and so on.

· Products should be stored under the airtight packaged condition.

(3) Delivery

Care should be taken when transporting or handling product to avoid excessive vibration or mechanical shock.

(1) Please make sure that your product has been evaluated in view of your specifications with our product being mounted

(1) Please make sure that your product has been evaluated in view of your specifications with our product being mote to your product.
(2) You are requested not to use our product deviating from the agreed specifications.
(3) We consider it not appropriate to include any terms and conditions with regard to the business transaction in the product specifications, drawings or other technical documents. Therefore, if your technical documents as above include such terms and conditions such as warranty clause, product liability clause, or intellectual property infringement liability clause, they will be deemed to be invalid.