SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

- Industry-Standard Driver Replacement
- 25-ns Max Rise/Fall Times and 40-ns Max Propagation Delay – 1-nF Load, V_{CC} = 14 V
- 2-A Peak Output Current, V_{CC} = 14 V
- 5-µA Supply Current Input High or Low
- 4-V to 14-V Supply-Voltage Range; Internal Regulator Extends Range to 40 V (TPS2811, TPS2812, TPS2813)
- -40°C to 125°C Ambient-Temperature Operating Range

description

The TPS28xx series of dual high-speed MOSFET drivers are capable of delivering peak currents of 2 A into highly capacitive loads. This performance is achieved with a design that inherently minimizes shoot-through current and consumes an order of magnitude less supply current than competitive products.

The TPS2811, TPS2812, and TPS2813 drivers include a regulator to allow operation with supply inputs between 14 V and 40 V. The regulator output can power other circuitry, provided power dissipation does

TPS2811, TPS2812, TPS28 PACKA (TOP VI	GES
REG_IN [1	8] REG_OUT
1IN [2	7] 1OUT
GND [3	6] V _{CC}
2IN [4	5] 2OUT
TPS2814 D, P, AN (TOP VI	
1IN1 [1	8] GND
1IN2 [2	7] 1OUT
2IN1 [3	6] V _{CC}
2IN2 [4	5] 2OUT
TPS2815 D, P, AN (TOP VI	
1IN1 [1	8] GND
1IN2 [2	7] 10UT
2IN1 [3	6] V _{CC}
2IN2 [4	5] 20UT

not exceed package limitations. When the regulator is not required, REG_IN and REG_OUT can be left disconnected or both can be connected to V_{CC} or GND.

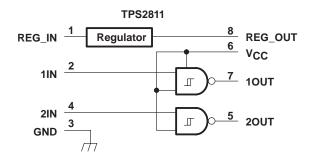
The TPS2814 and the TPS2815 have 2-input gates that give the user greater flexibility in controlling the MOSFET. The TPS2814 has AND input gates with one inverting input. The TPS2815 has dual-input NAND gates.

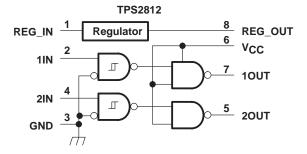
TPS281x series drivers, available in 8-pin PDIP, SOIC, and TSSOP packages operate over a ambient temperature range of –40°C to 125°C.

AVAILABLE OF HONS								
			PACKAGED DEVICES					
	INTERNAL REGULATOR	LOGIC FUNCTION	SMALL OUTLINE (D)	PLASTIC DIP (P)	TSSOP (PW)			
-40°C	Yes	Dual inverting drivers Dual noninverting drivers One inverting and one noninverting driver	TPS2811D TPS2812D TPS2813D	TPS2811P TPS2812P TPS2813P	TPS2811PW TPS2812PW TPS2813PW			
to 125°C	No	Dual 2-input AND drivers, one inverting input on each driver Dual 2-input NAND drivers	TPS2814D TPS2815D	TPS2814P TPS2815P	TPS2814PW TPS2815PW			

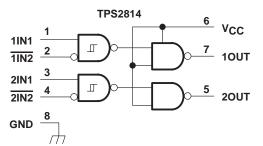
AVAILABLE OPTIONS

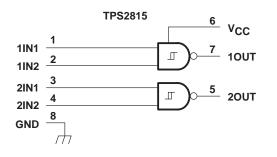
The D package is available taped and reeled. Add R suffix to device type (e.g., TPS2811DR). The PW package is only available left-end taped and reeled and is indicated by the R suffix on the device type (e.g., TPS2811PWR).

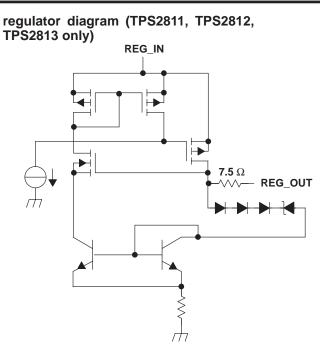


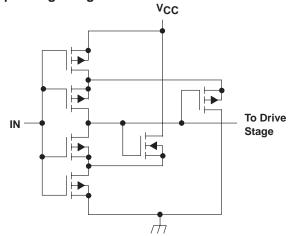

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

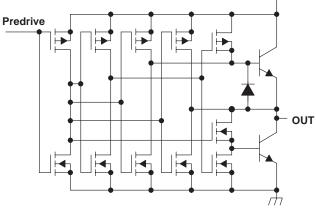



SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004


functional block diagram

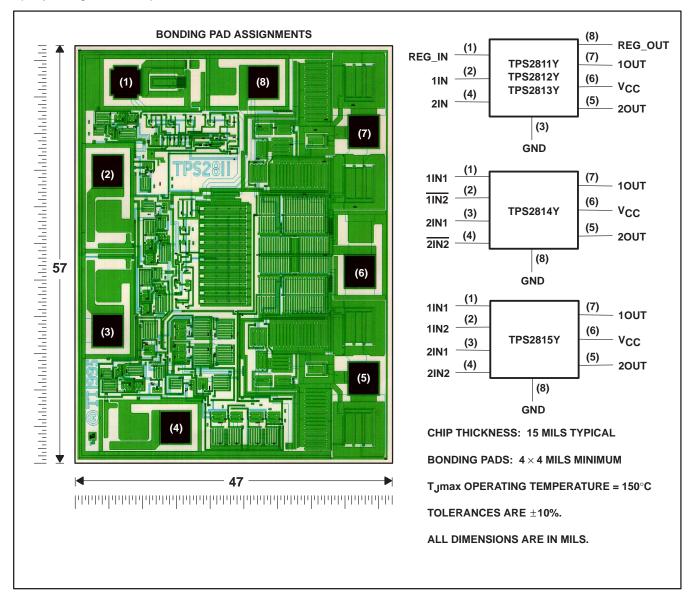






input stage diagram

output stage diagram


Vcc

SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

TPS28xxY chip information

This chip, when properly assembled, displays characteristics similar to those of the TPS28xx. Thermal compression or ultrasonic bonding may be used on the doped aluminum bonding pads. The chip may be mounted with conductive epoxy or a gold-silicon preform.

SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

Terminal Functions

TPS2811, TPS2812, TPS2813

		TERMINAL NUMBERS		
TERMINAL NAME	TPS2811 Dual Inverting Drivers	TPS2812 Dual Noninverting Drivers	TPS2813 Complimentary Drivers	DESCRIPTION
REG_IN	1	1	1	Regulator input
1IN	2	2	2	Input 1
GND	3	3	3	Ground
2IN	4	4	4	Input 2
20UT	$5 = \overline{2IN}$	5 = 2IN	5 = 2IN	Output 2
VCC	6	6	6	Supply voltage
10UT	7 = 11N	7 = 1IN	7 = 11N	Output 1
REG_OUT	8	8	8	Regulator output

TPS2814, TPS2815

	TERMINAL	NUMBERS	
TERMINAL NAME	TPS2814 Dual AND Drivers with Single Inverting Input	TPS2815 Dual NAND Drivers	DESCRIPTION
1IN1	1	1	Noninverting input 1 of driver 1
1IN2	2	-	Inverting input 2 of driver 1
1IN2	-	2	Noninverting input 2 of driver 1
2IN1	3	3	Noninverting input 1 of driver 2
2IN2	4	-	Inverting input 2 of driver 2
2IN2	-	4	Noninverting input 2 of driver 2
20UT	$5 = 2IN1 \bullet \overline{2IN2}$	$5 = 2IN1 \bullet 2IN2$	Output 2
VCC	6	6	Supply voltage
10UT	7 = 1IN1 • 1IN2	7 = 11N1 • 11N2	Output 1
GND	8	8	Ground

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
Р	1090 mW	8.74 mW/°C	697 mW	566 mW
D	730 mW	5.84 mW/°C	467 mW	380 mW
PW	520 mW	4.17 mW/°C	332 mW	270 mW

SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

	•	•	0	•	•	
Supply voltage, V _{CC}						–0.3 V to 15 V
Regulator input voltage	range, REG_	IN				. V_{CC} –0.3 V to 42 V
Input voltage range, 1IN	I, 2IŇ, 1IN1, 1	IN2, 11N2,	2IN1, 2IN2	2, <mark>2IN2</mark>		-0.3 V to V _{CC} +0.5 V
Output voltage range, 1	OUT, 2OUT .					$0.5 < V < V_{CC} + 0.5 V$
Continuous regulator ou	Itput current, I	REG_OUT				25 mA
Continuous output curre	ent, 10UT, 20	UT				±100 mA
Continuous total power	dissipation .				See Dis	ssipation Rating Table
Operating ambient temp	perature range	е, Тд				–40°C to 125°C
Storage temperature ra						
Lead temperature 1,6 m						

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTE 1: All voltages are with respect to device GND pin.

recommended operating conditions

	MIN	MAX	UNIT
Regulator input voltage range	8	40	V
Supply voltage, V _{CC}	4	14	V
Input voltage, 1IN1, 1IN2, 1IN2, 2IN1, 2IN2, 2IN2, 1IN, 2IN	-0.3	VCC	V
Continuous regulator output current, REG_OUT	0	20	mA
Ambient temperature operating range	-40	125	°C

TPS28xx electrical characteristics over recommended operating ambient temperature range, V_{CC} = 10 V, REG_IN open for TPS2811/12/13, C_L = 1 nF (unless otherwise noted)

inputs

PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
	$V_{CC} = 5 V$		3.3	MAX 4 9 13 13 13 13	V
Positive-going input threshold voltage	$V_{CC} = 10 V$		5.8	9	V
	$V_{CC} = 14 V$		8.3	3.3 4 5.8 9 8.3 13 1.6 4.2 6.2 1.6 0.2 1	V
	$V_{CC} = 5 V$	1	1.6		V
Negative-going input threshold voltage	V _{CC} = 10 V	1	4.2	5.8 9 8.3 13 1.6 4.2 6.2 1.6 0.2 1	V
Negative-going input threshold voltage Input hysteresis Input current	$V_{CC} = 14 V$	1	6.2		V
Input hysteresis	$V_{CC} = 5 V$		1.6		V
Input current	Inputs = 0 V or V_{CC}	-1	0.2	1	μΑ
Input capacitance			5	10	pF

[†] Typicals are for $T_A = 25^{\circ}C$ unless otherwise noted.

outputs

PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
	$I_{O} = -1 \text{ mA}$	9.75	9.9		V
High-level output voltage	I _O = -100 mA	8	9.1		V
	I _O = 1 mA		0.18	0.25	V
High-level output voltage Low-level output voltage Peak output current	I _O = 100 mA		1	2	V
Peak output current	V _{CC} = 10 V		2		А

[†] Typicals are for $T_A = 25^{\circ}C$ unless otherwise noted.

SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

regulator (TPS2811/2812/2813 only)

PARAMETER	TEST CONI	DITIONS	MIN	TYP†	MAX	UNIT
Output voltage	$14 \le \text{REG}_{IN} \le 40 \text{ V},$	$0 \le I_O \le 20 \text{ mA}$	10	11.5	13	V
Output voltage in dropout	I _O = 10 mA,	REG_IN = 10 V	9	9.6		V

 \dagger Typicals are for T_A = 25°C unless otherwise noted.

supply current

PARAMETER	TEST CONDITIONS		TYP†	MAX	UNIT
Supply current into V _{CC}	Inputs high or low		0.2	5	μΑ
Supply current into REG_IN	REG_IN = 20 V, REG_OUT open		40	100	μΑ

[†] Typicals are for $T_A = 25^{\circ}C$ unless otherwise noted.

TPS28xxY electrical characteristics at T_A = 25°C, V_{CC} = 10 V, REG_IN open for TPS2811/12/13, C_L = 1 nF (unless otherwise noted)

inputs

PARAMETER	TEST CONDITIONS	MIN TYP	MAX	UNIT
	$V_{CC} = 5 V$	3.3		V
Positive-going input threshold voltage	V _{CC} = 10 V	5.8		V
	$V_{CC} = 14 V$	8.2		V
	$V_{CC} = 5 V$	3.3 5.8 8.2 1.6 3.3 4.2 1.2 0.2	V	
egative-going input threshold voltage put hysteresis put current	V _{CC} = 10 V	3.3		V
	$V_{CC} = 14 V$	4.2		V
Input hysteresis	$V_{CC} = 5 V$	1.2		V
Input current	Inputs = $0 \vee \text{or} \vee_{CC}$	0.2		μA
Input capacitance		5		pF

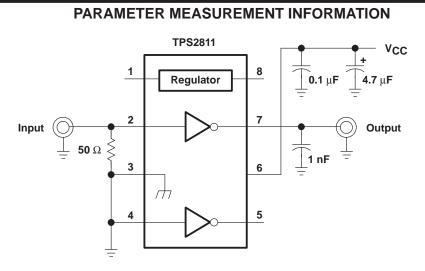
outputs

PARAMETER	TEST CONDITIONS	MIN TYP MAX	UNIT
	$I_{O} = -1 \text{ mA}$	9.9	V
High-level output voltage	I _O = -100 mA	9.1	V
Level evel evel and the set	I _O = 1 mA	0.18	V
Low-level output voltage	I _O = 100 mA	1	V
Peak output current	V _{CC} = 10.5 V	2	А

regulator (TPS2811, 2812, 2813)

PARAMETER	TEST COND	MIN	TYP	MAX	UNIT	
Output voltage	$14 \le \text{REG}_{IN} \le 40 \text{ V},$	$0 \le I_O \le 20 \text{ mA}$		11.5		V
Output voltage in dropout	I _O = 10 mA,	REG_IN = 10 V		9.6		V

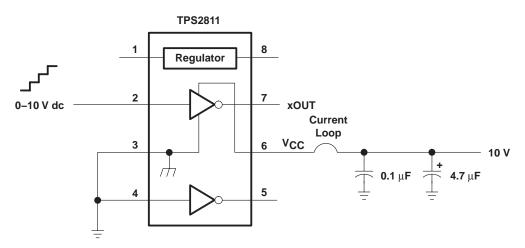
power supply current

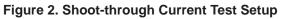

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply current into V _{CC}	Inputs high or low		0.2		μA
Supply current into REG_IN	REG_IN = 20 V, REG_OUT open		40		μΑ

SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

switching characteristics for all devices over recommended operating ambient temperature range, REG_IN open for TPS2811/12/13, $C_L = 1$ nF (unless otherwise specified)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		V _{CC} = 14 V		14	25	UNIT ns ns ns
tr	Rise time	V _{CC} = 10 V		15	30	ns
		$V_{CC} = 5 V$		20	35	
		V _{CC} = 14 V		15	25	
t _f	Fall time	V _{CC} = 10 V		15	30	ns
		$V_{CC} = 5 V$		18	35	
		V _{CC} = 14 V		25	40	ns
^t PHL	Prop delay time high-to-low-level output	V _{CC} = 10 V		25	45	
		$V_{CC} = 5 V$		34	50	
		V _{CC} = 14 V		24	40	ns
^t PLH	Prop delay time low-to-high-level output	V _{CC} = 10 V		26	45	
		$V_{CC} = 5 V$		36	50	


NOTE A: Input rise and fall times should be ≤ 10 ns for accurate measurement of ac parameters.


Figure 1. Test Circuit For Measurement of Switching Characteristics

SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

PARAMETER MEASUREMENT INFORMATION

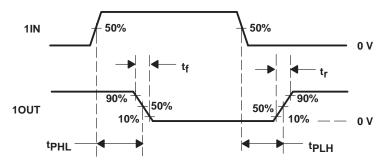


Figure 3. Typical Timing Diagram (TPS2811)

TYPICAL CHARACTERISTICS

Tables of Characteristics Graphs and Application Information

typical characteristics

PARAMETER	vs PARAMETER 2	FIGURE	PAGE
Rise time	Supply voltage	4	10
Fall time	Supply voltage	5	10
Propagation delay time	Supply voltage	6, 7	10
	Supply voltage	8	11
Supply current	Load capacitance	9	11
	Ambient temperature	10	11
Input threshold voltage	Supply voltage	11	11
Regulator output voltage	Regulator input voltage	12, 13	12
Regulator quiescent current	Regulator input voltage	14	12
Peak source current	Supply voltage	15	12
Peak sink current	Supply voltage	16	13
Sheet through current	Input voltage, high-to-low	17	13
Shoot-through current	Input voltage, low-to-high	18	13

SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

TYPICAL CHARACTERISTICS

Tables of Characteristics Graphs and Application Information (Continued)

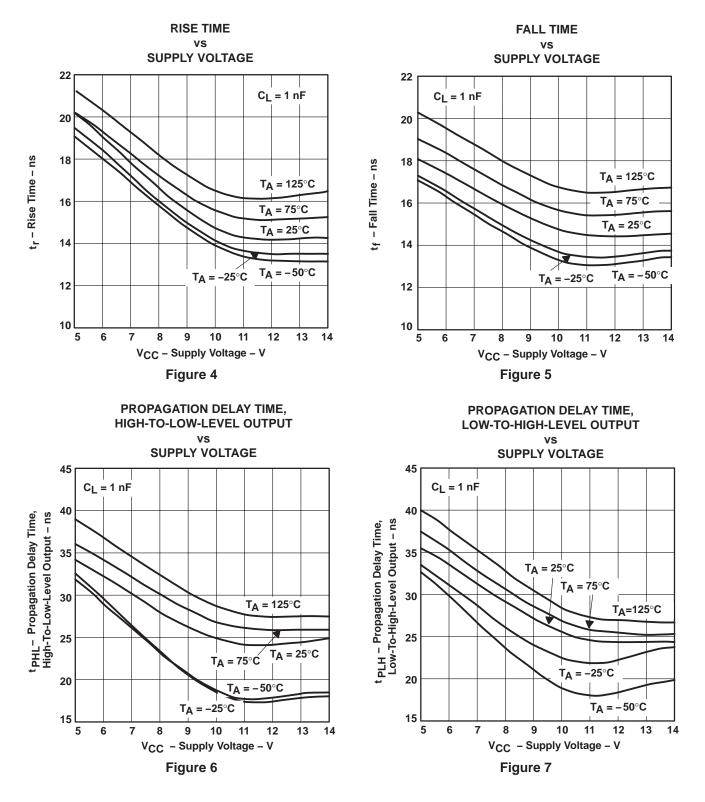
general applications

PARAMETER		vs PARAMETER 2	FIGURE	PAGE
Switching test circuits and application information			19, 20	15
	T	Low-to-high	21, 23, 25	16, 17
Voltage of 10UT vs 20UT	Time	High-to-low	22, 24, 26	16, 17

circuit for measuring paralleled switching characteristics

PARAMETER		vs PARAMETER 2	FIGURE	PAGE
Switching test circuits and application information			27	17
Level with a second sector device as	T	Low-to-high	28, 30	18
Input voltage vs output voltage	Time	High-to-low	29, 31	18

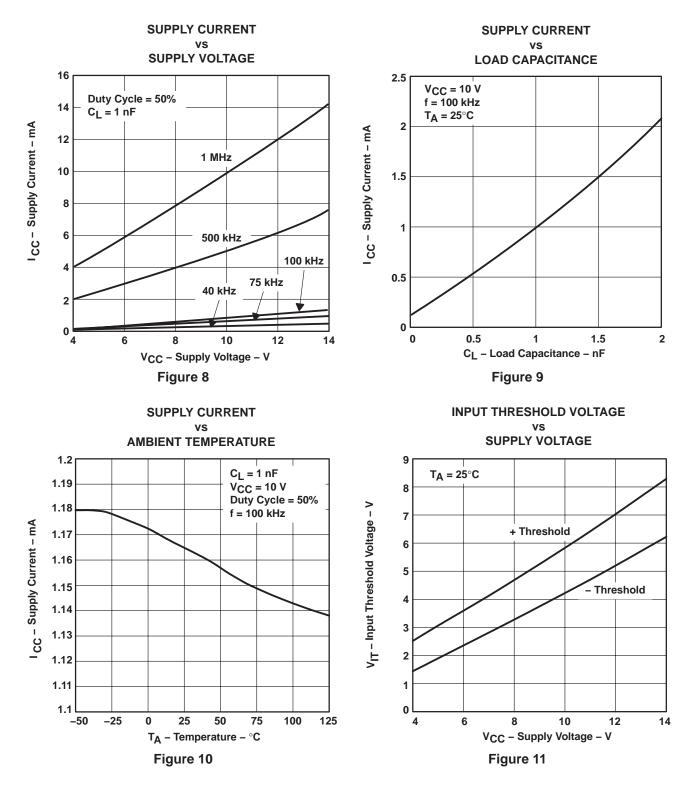
Hex-1 to Hex-4 application information


PARAMETER		vs PARAMETER 2	FIGURE	PAGE
Driving test circuit and application information			32	19
		Hex-1 size	33	20
		Hex-2 size	36	20
Drain-source voltage vs drain current	Time	Hex-3 size	39	21
		Hex-4 size	41	22
		Hex-4 size parallel drive	45	23
		Hex-1 size	34	20
		Hex-2 size	37	21
Drain-source voltage vs gate-source voltage at turn-on	Time	Hex-3 size	40	21
		Hex-4 size	43	22
		Hex-4 size parallel drive	46	23
		Hex-1 size	35	20
		Hex-2 size	38	21
Drain-source voltage vs gate-source voltage at turn-off	Time	Hex-3 size	42	22
		Hex-4 size	44	22
		Hex-4 size parallel drive	47	23

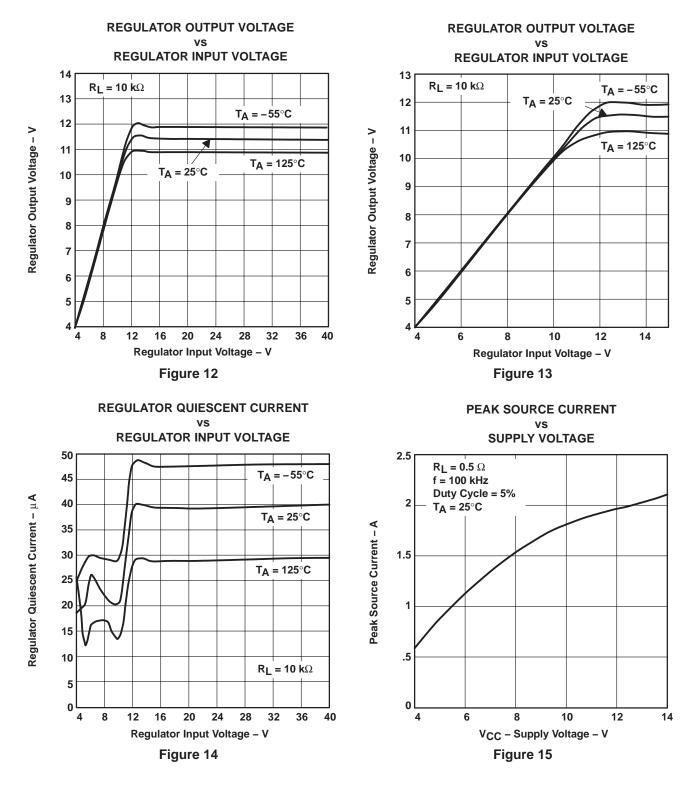
synchronous buck regulator application

PARAMETER		vs PARAMETER 2	FIGURE	PAGE
3.3-V 3-A Synchronous-Rectified Buck Regulator Circuit			48	24
Q1 drain voltage vs gate voltage at turn-on			49	26
Q1 drain voltage vs gate voltage at turn-off			50	26
Q1 drain voltage vs Q2 gate-source voltage	Time		51, 52, 53	26, 27
		3 A	54	27
Output ripple voltage vs inductor current		5 A	55	27

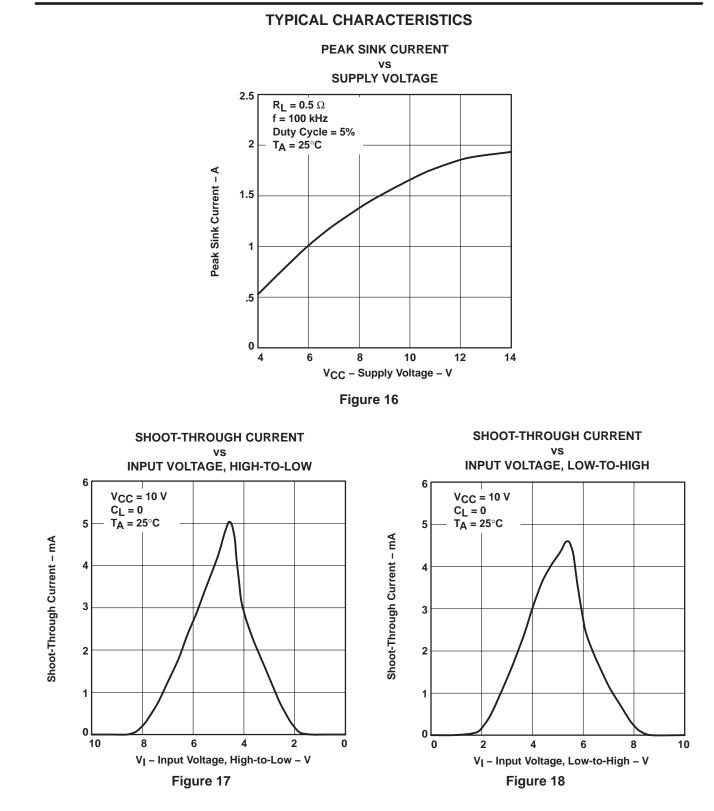
SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004



TYPICAL CHARACTERISTICS


SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

TYPICAL CHARACTERISTICS


SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

TYPICAL CHARACTERISTICS

SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

APPLICATION INFORMATION

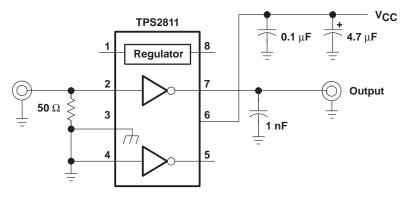
The TPS2811, TPS2812 and TPS2813 circuits each contain one regulator and two MOSFET drivers. The regulator can be used to limit V_{CC} to between 10 V and 13 V for a range of input voltages from 14 V to 40 V, while providing up to 20 mA of dc drive. The TPS2814 and TPS2815 both contain two drivers, each of which has two inputs. The TPS2811 has inverting drivers, the TPS2812 has noninverting drivers, and the TPS2813 has one inverting and one noninverting driver. The TPS2814 is a dual 2-input AND driver with one inverting input on each driver, and the TPS2815 is a dual 2-input NAND driver. These MOSFET drivers are capable of supplying up to 2.1 A or sinking up to 1.9 A (see Figures 15 and 16) of instantaneous current to n-channel or p-channel MOSFETs. The TPS2811 family of MOSFET drivers have very fast switching times combined with very short propagation delays. These features enhance the operation of today's high-frequency circuits.

The CMOS input circuit has a positive threshold of approximately 2/3 of V_{CC} , with a negative threshold of 1/3 of V_{CC} , and a very high input impedance in the range of $10^9 \Omega$. Noise immunity is also very high because of the Schmidt trigger switching. In addition, the design is such that the normal shoot-through current in CMOS (when the input is biased halfway between V_{CC} and ground) is limited to less than 6 mA. The limited shoot-through is evident in the graphs in Figures 17 and 18. The input stage shown in the functional block diagram better illustrates the way the front end works. The circuitry of the device is such that regardless of the rise and/or fall time of the input signal, the output signal will always have a fast transition speed; this basically isolates the waveforms at the input from the output. Therefore, the specified switching times are not affected by the slopes of the input waveforms.

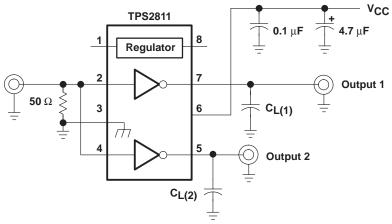
The basic driver portion of the circuits operate over a supply voltage range of 4 V to 14 V with a maximum bias current of 5 μ A. Each driver consists of a CMOS input and a buffered output with a 2-A instantaneous drive capability. They have propagation delays of less than 30 ns and rise and fall times of less than 20 ns each. Placing a 0.1- μ F ceramic capacitor between V_{CC} and ground is recommended; this will supply the instantaneous current needed by the fast switching and high current surges of the driver when it is driving a MOSFET.

The output circuit is also shown in the functional block diagram. This driver uses a unique combination of a bipolar transistor in parallel with a MOSFET for the ability to swing from V_{CC} to ground while providing 2 A of instantaneous driver current. This unique parallel combination of bipolar and MOSFET output transistors provides the drive required at V_{CC} and ground to guarantee turn-off of even low-threshold MOSFETs. Typical bipolar-only output devices don't easily approach V_{CC} or ground.

The regulator, included in the TPS2811, TPS2812 and TPS2813, has an input voltage range of 14 V to 40 V. It produces an output voltage of 10 V to 13 V and is capable of supplying from 0 to 20 mA of output current. In grounded source applications, this extends the overall circuit operation to 40 V by clamping the driver supply voltage (V_{CC}) to a safe level for both the driver and the MOSFET gate. The bias current for full operation is a maximum of 150 μ A. A 0.1- μ F capacitor connected between the regulator output and ground is required to ensure stability. For transient response, an additional 4.7- μ F electrolytic capacitor on the output and a 0.1- μ F ceramic capacitor on the input will optimize the performance of this circuit. When the regulator is not in use, it can be left open at both the input and the output, or the input can be shorted to the output and tied to either the V_{CC} or the ground pin of the chip.

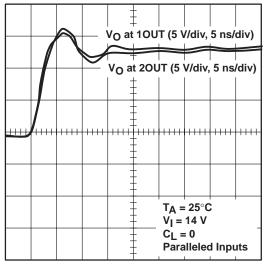


SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004


APPLICATION INFORMATION

matching and paralleling connections

Figures 21 and 22 show the delays for the rise and fall time of each channel. As can be seen on a 5-ns scale, there is very little difference between the two channels at no load. Figures 23 and 24 show the difference between the two channels for a 1-nF load on each output. There is a slight delay on the rising edge, but little or no delay on the falling edge. As an example of extreme overload, Figures 25 and 26 show the difference between the two channels, or two drivers in the package, each driving a 10-nF load. As would be expected, the rise and fall times are significantly slowed down. Figures 28 and 29 show the effect of paralleling the two channels and driving a 1-nF load. A noticeable improvement is evident in the rise and fall times of the output waveforms. Finally, Figures 30 and 31 show the two drivers being paralleled to drive the 10-nF load and as could be expected the waveforms are improved. In summary, the paralleling of the two drivers in a package enhances the capability of the drivers to handle a larger load. Because of manufacturing tolerances, it is not recommended to parallel drivers that are not in the same package.

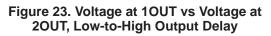


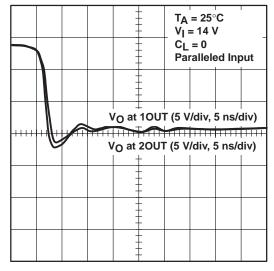
NOTE A: Input rise and fall times should be ≤10 ns for accurate measurement of ac parameters.

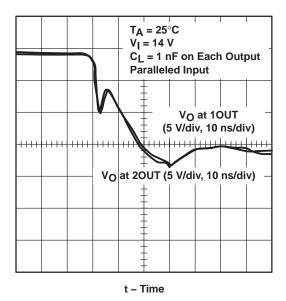

Figure 20. Test Circuit for Measuring Switching Characteristics with the Inputs Connected in Parallel

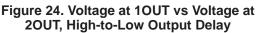


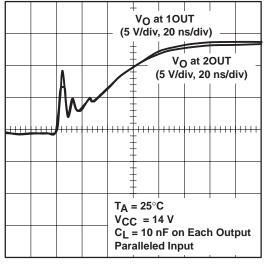
SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

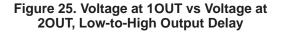


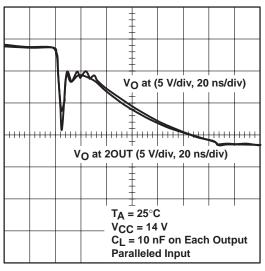




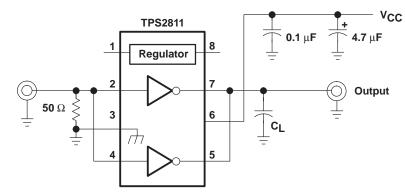

t – Time





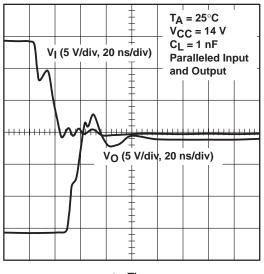


SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004


t – Time

t – Time

Figure 26. Voltage at 10UT vs Voltage at 20UT, High-to-Low Output Delay

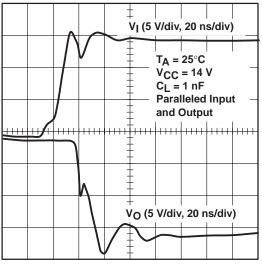
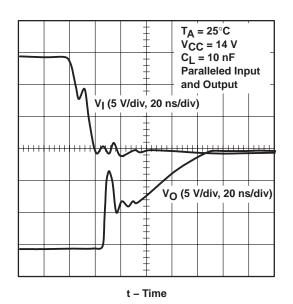

APPLICATION INFORMATION

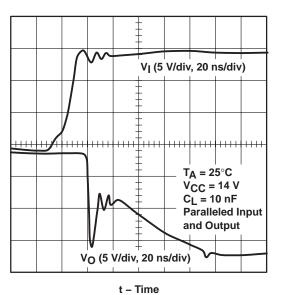
NOTE A: Input rise and fall times should be ≤10 ns for accurate measurement of ac parameters.

Figure 27. Test Circuit for Measuring Paralleled Switching Characteristics

SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

APPLICATION INFORMATION


Figure 28. Input Voltage vs Output Voltage, Low-to-High Propagation Delay of Paralleled Drivers

SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

APPLICATION INFORMATION

Figures 33 through 47 illustrate the performance of the TPS2811 driving MOSFETs with clamped inductive loads, similar to what is encountered in discontinuous-mode flyback converters. The MOSFETs that were tested range in size from Hex-1 to Hex-4, although the TPS28xx family is only recommended for Hex-3 or below.

The test circuit is shown in Figure 32. The layout rules observed in building the test circuit also apply to real applications. Decoupling capacitor C1 is a 0.1-µF ceramic device, connected between V_{CC} and GND of the TPS2811, with short lead lengths. The connection between the driver output and the MOSFET gate, and between GND and the MOSFET source, are as short as possible to minimize inductance. Ideally, GND of the driver is connected directly to the MOSFET source. The tests were conducted with the pulse generator frequency set very low to eliminate the need for heat sinking, and the duty cycle was set to turn off the MOSFET when the drain current reached 50% of its rated value. The input voltage was adjusted to clamp the drain voltage at 80% of its rating.

As shown, the driver is capable of driving each of the Hex-1 through Hex-3 MOSFETs to switch in 20 ns or less. Even the Hex-4 is turned on in less than 20 ns. Figures 45, 46 and 47 show that paralleling the two drivers in a package enhances the gate waveforms and improves the switching speed of the MOSFET. Generally, one driver is capable of driving up to a Hex-4 size. The TPS2811 family is even capable of driving large MOSFETs that have a low gate charge.

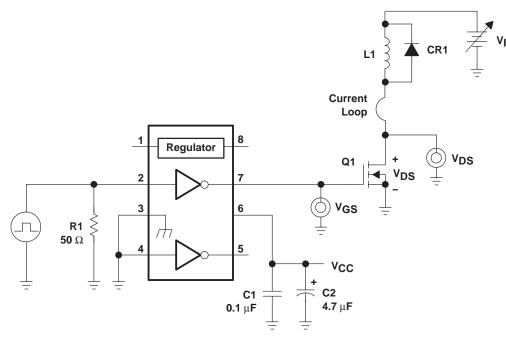
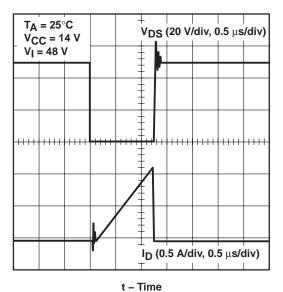
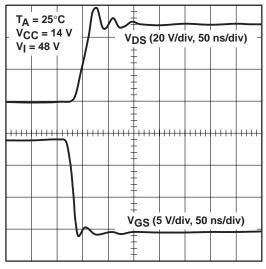



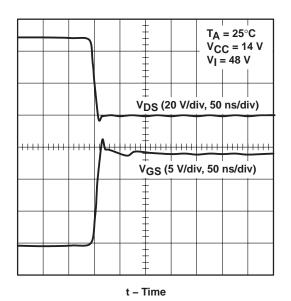
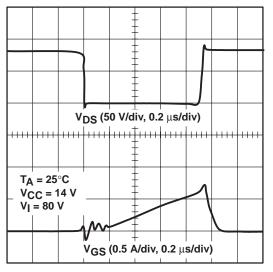
Figure 32. TPS2811 Driving Hex-1 through Hex-4 Devices

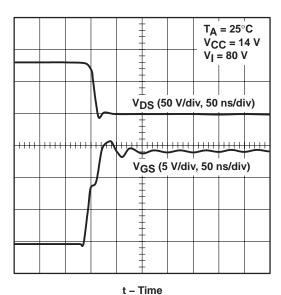

SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

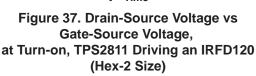
APPLICATION INFORMATION

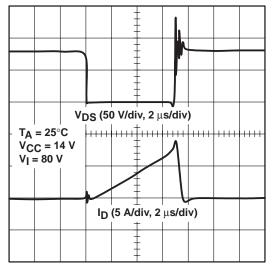
t – Time

Figure 35. Drain-Source Voltage vs Gate-Source Voltage, at Turn-off, TPS2811 Driving an IRFD014 (Hex-1 Size)

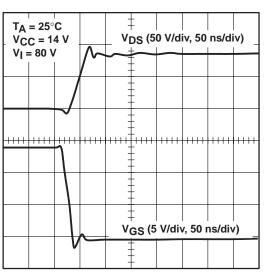



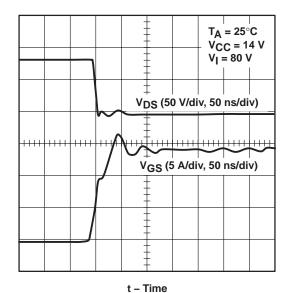

Figure 34. Drain-Source Voltage vs Gate-Source Voltage, at Turn-on, TPS2811 Driving an IRFD014 (Hex-1 Size)

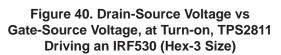




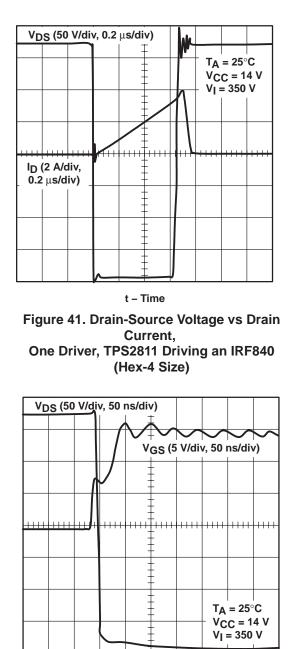
SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

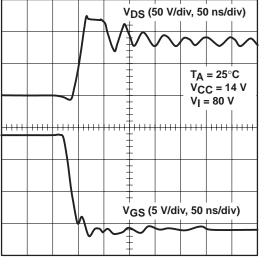

APPLICATION INFORMATION

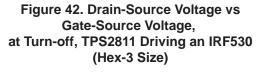

t – Time



t – Time


Figure 38. Drain-Source Voltage vs Gate-Source Voltage, at Turn-off, TPS2811 Driving an IRFD120 (Hex-2 Size)




SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

APPLICATION INFORMATION

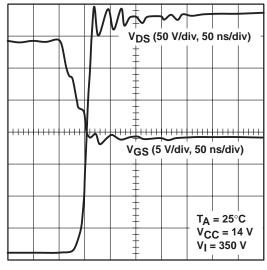


Figure 44. Drain-Source Voltage vs Gate-Source Voltage, at Turn-off, One Driver, TPS2811 Driving an IRF840 (Hex-4 Size)

Figure 43. Drain-Source Voltage vs Gate-Source Voltage, at Turn-on, One Driver, TPS2811 Driving an IRF840 (Hex-4 Size)

SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

V_{DS} (50 V/div, 0.2 μs/div)

t – Time

Figure 45. Drain-Source Voltage vs Drain Current, Parallel Drivers, TPS2811 Driving an IRF840 (Hex-4 Size)

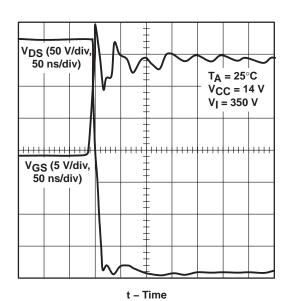
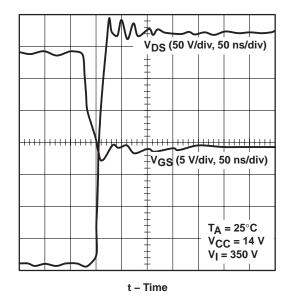



Figure 46. Drain-Source Voltage vs Gate-Source Voltage, at Turn-on, Parallel Drivers, TPS2811 Driving an IRF840 (Hex-4 Size)

APPLICATION INFORMATION

SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

APPLICATION INFORMATION

synchronous buck regulator

Figure 48 is the schematic for a 100-kHz synchronous-rectified buck converter implemented with a TL5001 pulse-width-modulation (PWM) controller and a TPS2812 driver. The bill of materials is provided in Table 1. The converter operates over an input range from 5.5 V to 12 V and has a 3.3-V output capable of supplying 3 A continuously and 5 A during load surges. The converter achieves an efficiency of 90.6% at 3 A and 87.6% at 5 A. Figures 49 and 50 show the power switch switching performance. The output ripple voltage waveforms are documented in Figures 54 and 55.

The TPS2812 drives both the power switch, Q2, and the synchronous rectifier, Q1. Large shoot-through currents, caused by power switch and synchronous rectifier remaining on simultaneously during the transitions, are prevented by small delays built into the drive signals, using CR2, CR3, R11, R12, and the input capacitance of the TPS2812. These delays allow the power switch to turn off before the synchronous rectifier turns on and vice versa. Figure 51 shows the delay between the drain of Q2 and the gate of Q1; expanded views are provided in Figures 52 and 53.

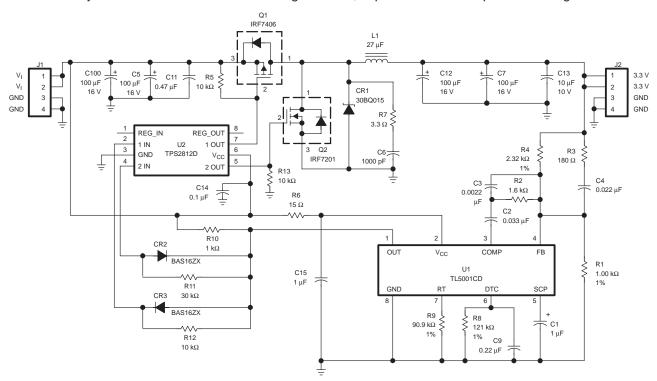


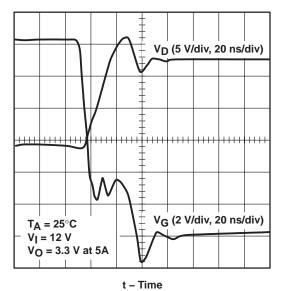
Figure 48. 3.3-V 3-A Synchronous-Rectified Buck Regulator Circuit

NOTE: If the parasitics of the external circuit cause the voltage to violate the Absolute Maximum Rating for the Output pins, Schottky diodes should be added from ground to output and from output to Vcc.

SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

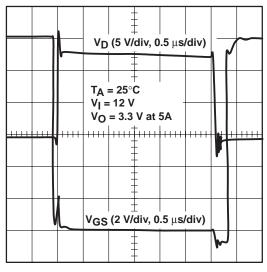
APPLICATION INFORMATION

REFERENCE	DESCRIPTION	VENDO	R								
U1	TL5001CD, PWM	Texas Instruments,	972-644-5580								
U2	TPS2812D, N.I. MOSFET Driver	Texas Instruments,	972-644-5580								
CR1	3 A, 15 V, Schottky, 30BQ015	International Rectifier,	310-322-3331								
CR2,CR3	Signal Diode, BAS16ZX	Zetex,	516-543-7100								
C1	1 µF, 16 V, Tantalum										
C2	0.033 μF, 50 V										
C3	0.0022 μF, 50 V										
C4	0.022 μF, 50 V										
C5,C7,C10,C12	100 μF, 16 V, Tantalum, TPSE107M016R0100	AVX,	800-448-9411								
C6	1000 pF, 50 V										
C9	0.22 μF, 50 V										
C11	0.47 μF, 50 V, Z5U										
C13	10 μF, 10 V, Ceramic, CC1210CY5V106Z	TDK,	708-803-6100								
C14	0.1 μF, 50 V										
C15	1.0 μF, 50 V										
J1,J2	4-Pin Header										
L1	27 μH, 3 A/5 A, SML5040	Nova Magnetics, Inc.,	972-272-8287								
Q1	IRF7406, P-FET	International Rectifier,	310-322-3331								
Q2	IRF7201, N-FET	International Rectifier,	310-322-3331								
R1	1.00 kΩ, 1%										
R2	1.6 kΩ										
R3	180 Ω										
R4	2.32 kΩ, 1 %										
R5,R12,R13	10 kΩ										
R6	15 Ω										
R7	3.3 Ω										
R8	121 kΩ, 1%										
R9	90.9 kΩ, 1%										
R10	1 kΩ										
R11	30 kΩ										

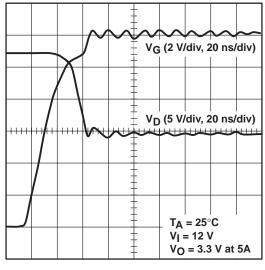

Table 1. Bill of Materials, 3.3-V, 3-A Synchronous-Rectified Buck Converter

NOTES: 2. Unless otherwise specified, capacitors are X7R ceramics.

3. Unless otherwise specified, resistors are 5%, 1/10 W.



SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004


APPLICATION INFORMATION

t – Time

Figure 51. Q1 Drain Voltage vs Q2 Gate-Source Voltage

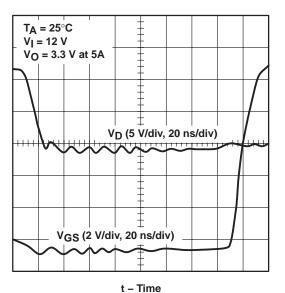
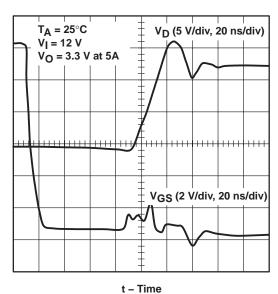
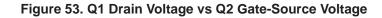
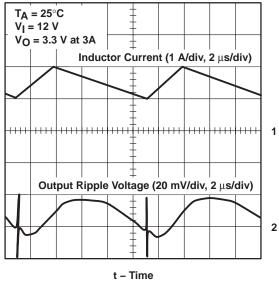



Figure 52. Q1 Drain Voltage vs Q2


Gate-Source Voltage



SLVS132F - NOVEMBER 1995 - REVISED OCTOBER 2004

APPLICATION INFORMATION

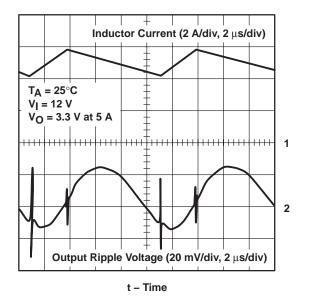


Figure 55. Output Ripple Voltage vs Inductor Current, at 5 A

24-Aug-2018

PACKAGING INFORMATION

Orderable Device	Status	Package Type	•	Pins	•	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPS2811D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		2811	Samples
TPS2811DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2811	Samples
TPS2811P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type		TPS2811P	Samples
TPS2811PW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PS2811	Samples
TPS2811PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PS2811	Samples
TPS2812D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2812	Samples
TPS2812DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		2812	Samples
TPS2812DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		2812	Samples
TPS2812P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type		TPS2812P	Samples
TPS2812PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PS2812	Samples
TPS2813D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2813	Samples
TPS2813DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2813	Samples
TPS2813P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type	-40 to 125	TPS2813P	Samples
TPS2813PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PS2813	Samples
TPS2814D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		2814	Samples
TPS2814DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2814	Samples
TPS2814DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2814	Samples

24-Aug-2018

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS2814P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type		TPS2814P	Samples
TPS2814PE4	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type		TPS2814P	Samples
TPS2814PW	ACTIVE	TSSOP	PW	8	150	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PS2814	Samples
TPS2814PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	PS2814	Samples
TPS2815D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		2815	Samples
TPS2815DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		2815	Samples
TPS2815DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 125	2815	Samples
TPS2815P	ACTIVE	PDIP	Р	8	50	Green (RoHS & no Sb/Br)	CU NIPDAU	N / A for Pkg Type		TPS2815P	Samples
TPS2815PWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM		PS2815	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

PACKAGE OPTION ADDENDUM

24-Aug-2018

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

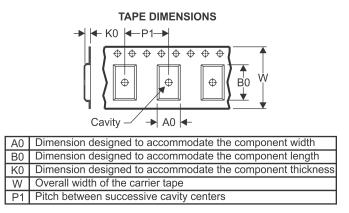
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS2811 :

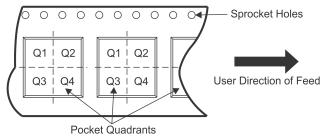
Automotive: TPS2811-Q1

NOTE: Qualified Version Definitions:

• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

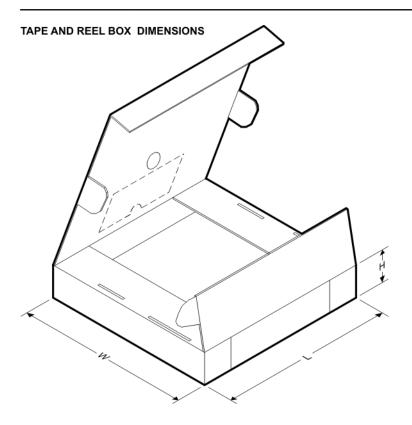

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

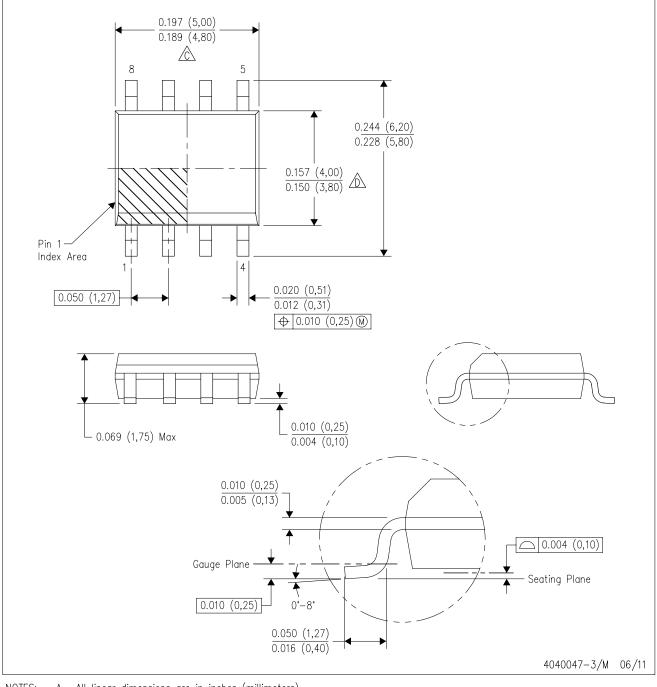
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter	Reel Width	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
		-			(mm)	W1 (mm)				. ,	. ,	
TPS2811DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS2811DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS2811PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TPS2812DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS2812DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS2812PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TPS2813DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS2813DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS2813PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TPS2814DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS2814DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS2814PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TPS2815DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS2815PWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

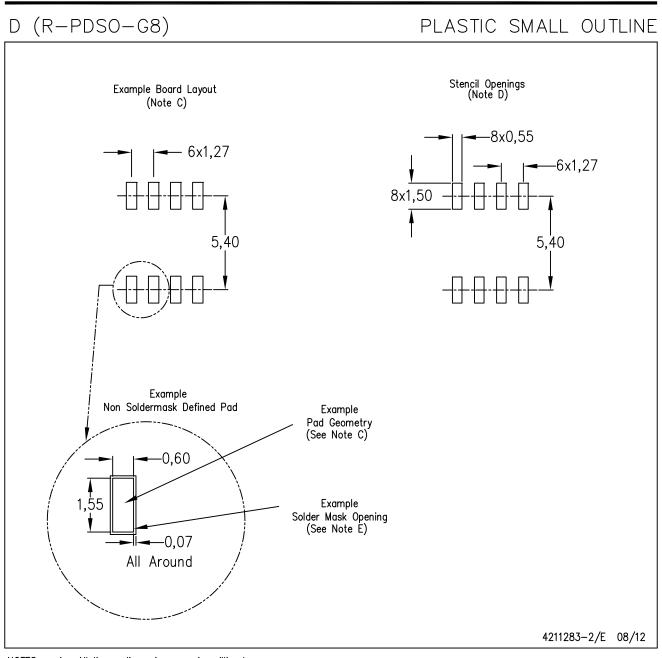
www.ti.com

PACKAGE MATERIALS INFORMATION


24-Aug-2016

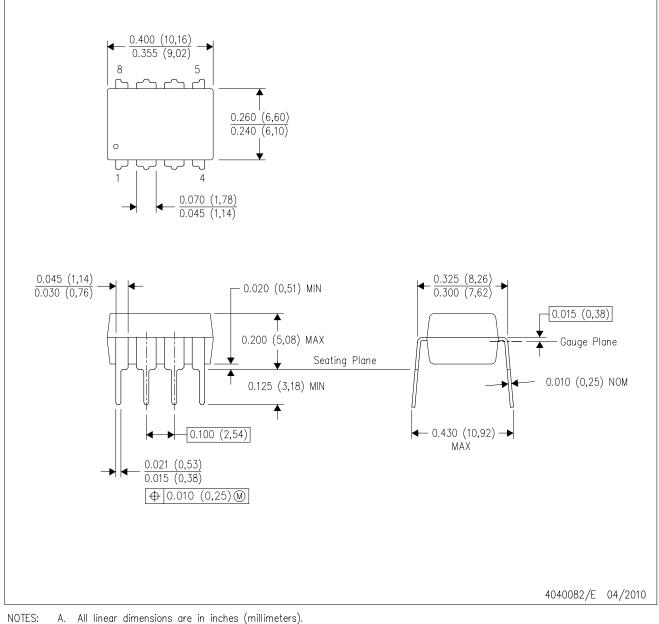
*All dimensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS2811DR	SOIC	D	8	2500	340.5	338.1	20.6
TPS2811DR	SOIC	D	8	2500	367.0	367.0	38.0
TPS2811PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TPS2812DR	SOIC	D	8	2500	340.5	338.1	20.6
TPS2812DR	SOIC	D	8	2500	367.0	367.0	35.0
TPS2812PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TPS2813DR	SOIC	D	8	2500	340.5	338.1	20.6
TPS2813DR	SOIC	D	8	2500	367.0	367.0	38.0
TPS2813PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TPS2814DR	SOIC	D	8	2500	367.0	367.0	35.0
TPS2814DR	SOIC	D	8	2500	340.5	338.1	20.6
TPS2814PWR	TSSOP	PW	8	2000	367.0	367.0	35.0
TPS2815DR	SOIC	D	8	2500	340.5	338.1	20.6
TPS2815PWR	TSSOP	PW	8	2000	367.0	367.0	35.0

D (R-PDSO-G8)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

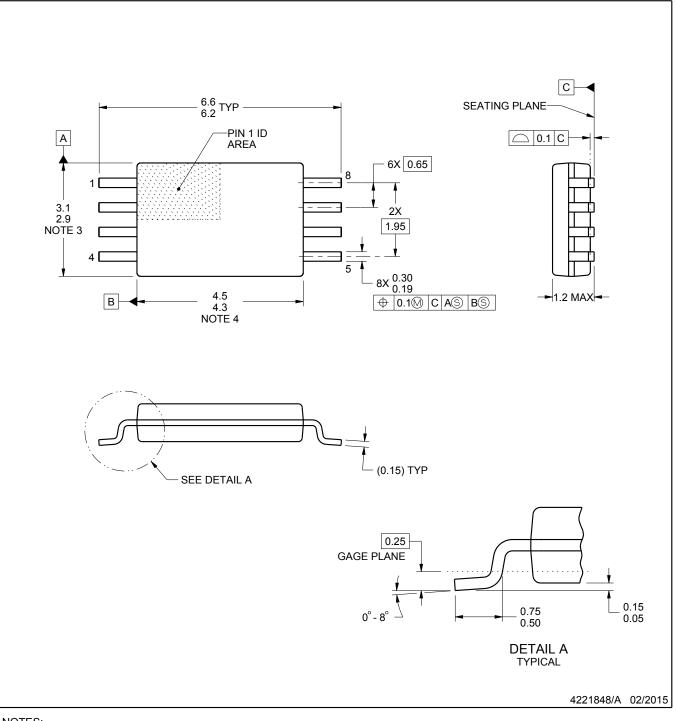

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

P(R-PDIP-T8)

PLASTIC DUAL-IN-LINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.


PW0008A

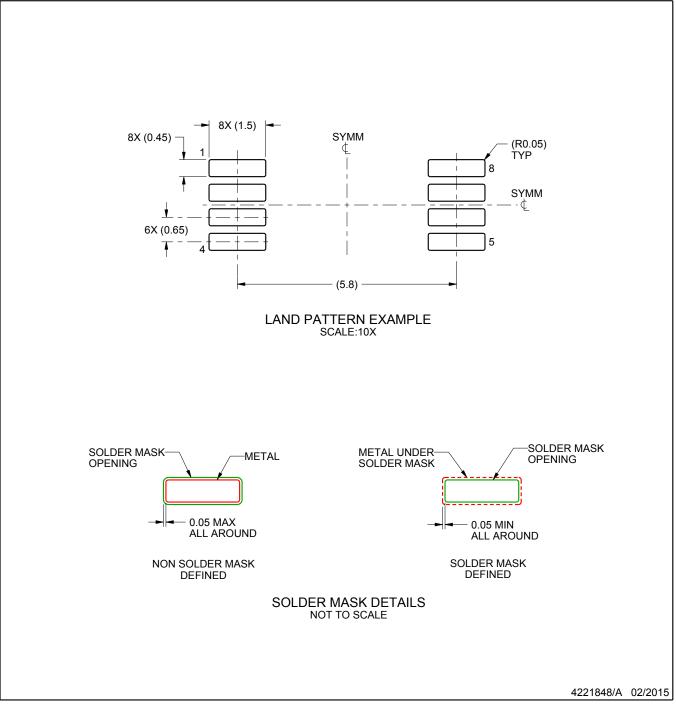
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153, variation AA.



PW0008A

EXAMPLE BOARD LAYOUT

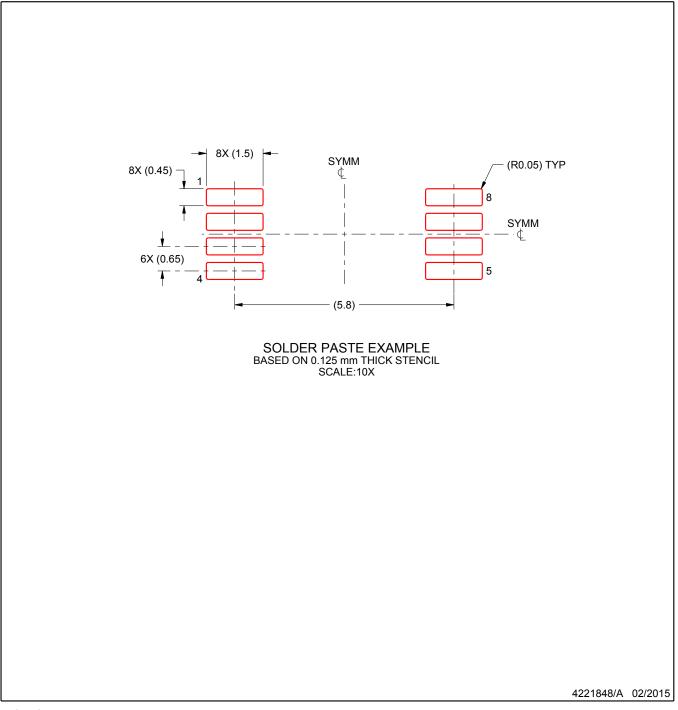
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0008A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated