
DSP Implementation using the TMS320C62x
Processors

(Code Composer)

By Dr. Naim Dahnoun

Email: Naim_Dahnoun@hotmail.com

This is a list of DSP codes for Code Composer accompanying the Book.

Chapter1 Introduction

Chapter2 The TMS320C62x/C67x Architecture

Chapter3 Software development tools and TMS320C6201
EVM overview

Chapter4 Software optimisation

Chapter5 Finite Impulse Response (FIR) filter implementation

DSP Implementation using the TMS320C62x
Processors

(Code Composer)

By Dr. Naim Dahnoun

Naim_Dahnoun@hotmail.com

This is a list of DSP codes for Code Composer accompanying the Book.

Introduction

The TMS320C62x/C67x Architecture

Software development tools and TMS320C6201
EVM overview

Software optimisation

Finite Impulse Response (FIR) filter implementation

DSP Implementation using the TMS320C62x

This is a list of DSP codes for Code Composer accompanying the Book.

Software development tools and TMS320C6201

Finite Impulse Response (FIR) filter implementation

Chapter6 Infinite Impulse Response (IIR) filter implementation

Chapter7 Adaptive filter implementation

Chapter8 Goertzel algorithm implementation

Chapter9 Implementation of the Discrete Cosine Transform

Chapter 1 Introduction:

This introductory chapter provides the reader with general knowledge on
general-purpose DSP processors and also provides an up-to-date TMS320 roadmap
showing the evolution of Texas Instruments' DSP chips in terms of processing
power.

Return to Index

Chapter 2 The TMS320C62x/C67x Architecture:

The objective of this chapter is to provide a comprehensive description of the
'C6x architecture. This includes a detailed description of the Central
Processing Unit (CPU) and program control along with an overview of the memory
organisation, serial ports, boot function and internal timer.

Return to Index

Chapter 3 Software development tools and
TMS320C6201 EVM overview:

This chapter is divided into three main parts. The first part describes the
software development tools, the second part describes the Evaluation Module
(EVM) and finally the third part describes the codec, and use of interrupts
along with some useful programs for testing the TMS320C6201 EVM.

Source Code Directory: Inout (Chap3)

Source Files:

 Inout (Chap3)\INOUT.C

 Inout (Chap3)\INICODEC.C

Return to Index

Chapter 4 Software optimisation:

To introduce the need for code optimisation, this chapter starts by developing
the concept of pipelining. Since the TMS320C62xx and the TMS320C67xx each have
eight units, which are dedicated to different operations, and since different
instructions can have different latencies, the programmer or the tools are left
with the burden of scheduling the code. Backed by examples, this chapter
explains the different techniques used to optimise DSP code on these
processors.

Return to Index

Chapter 5 Finite Impulse Response (FIR) filter
implementation:

The purpose of this chapter is twofold. Primarily, it shows how to design an
FIR filter and implement it on the TMS320C62xx processor, and secondly, it
shows how to optimise the code as discussed in Chapter 4. This chapter
discusses the interface between C and assembly, how to use intrinsics, and how
to put into practice material that has been covered in the previous chapters.

Codes Directory 1: Fir (Chap5)\C\

Source Files:

 Fir (Chap5)\C\Fir.c

Codes Directory 2: Fir (Chap5)\ASM\

Source Files:

 Fir (Chap5)\ASM\Fir_asm.c

 Fir (Chap5)\ASM\Firasm.asm

Return to Index

Chapter 6 Infinite Impulse Response (IIR) filter
implementation

This chapter introduces the IIR filters and describes two popular design
methods, that is the bilinear and the impulse invariant methods. Step by step,
this chapter shows the procedures necessary to implement typical IIR filters
specified by their transfer functions. Finally, this chapter provides complete
implementation of an IIR filter in C language, assembly and linear assembly,
and shows how to interface C with linear assembly. implementation of an IIR
filter in C language, assembly and linear assembly, and shows how to interface
C with linear assembly.

Codes Directory 1: Iir (Chap6)\C\

Source Files:

 Iir (Chap6)\C\Iir.c

Codes Directory 2: Iir (Chap6)\SA\

Source Files:

 Iir (Chap6)\SA\Iir_sa.c

 Iir (Chap6)\SA\Iirsa.sa

Return to Index

Chapter 7 Adaptive filter implementation:

This chapter starts by introducing the need for an adaptive filter in
com„munications. It then shows how to calculate the filter coefficients using
the Mean Square Error (MSE) criterion, exposes the Least Mean Square (LMS)
algorithm and, finally, shows how the LMS algorithm is implemented in both C
and assembly.

Codes Directory 1: Adaptive (Chap7)\LMS_C\

Source Files:

 Adaptive (Chap7)\LMS_C\Lms_c.c

Codes Directory 2: Adaptive (Chap7)\LMS_ASM\

Source Files:

 Adaptive (Chap7)\LMS_ASM\Lmsasm.asm

Return to Index

Chapter 8 Goertzel algorithm implementation:

This chapter deals with Dual Tone Multi-Frequency (DTMF) detection and provides
a practical example of the Goertzel algorithm. This chapter also shows how to
produce optimised code by the pen and paper method, describes linear assembly
and demonstrates how to program the Direct Memory Access (DMA).

Codes Directory 1: Goertzel (Chap8)\BASIC\

Source Files:

 Goertzel (Chap8)\BASIC\Goertzel.c

Codes Directory 2: Goertzel (Chap8)\GTZSA\

Source Files:

 Goertzel (Chap8)\GTZSA\Gtzsa.c

 Goertzel (Chap8)\GTZSA\Gtz_sa.sa

Codes Directory 3: Goertzel (Chap8)\GTZDMA

Source Files:

 Goertzel (Chap8)\GTZDMA\Gtzdma.c

Return to Index

Chapter 9 Implementation of the Discrete Cosine
Transform

This chapter starts by introducing the need for video compression to reduce the
channel bandwidth requirement, then explains the Joint Photographic Experts
Group (JPEG) image codec. This includes a detailed discussion and the
implementation of the Discrete Cosine Transform (DCT) and Inverse Discrete
Cosine Transform (IDCT) and concentrates on their optimisation. An explanation
of the PC-DSP communication via the PCI bus is also provided.

Codes Directory 1: Dct (Chap9)\SLOWDCT\

Source Files:

 Dct(Chap9)\SLOWDCT\Dct_Main.c

 Dct(Chap9)\SLOWDCT\Dct.c

 Dct(Chap9)\SLOWDCT\Dct_Main.h

Codes Directory 2: Dct(Chap9)\FASTDCT\

Source Files:

 Dct (Chap9)\FASTDCT\Dct_Main.c

 Dct (Chap9)\SLOWDCT\Dct.c

 Dct (Chap9)\FASTDCT\Dct_Main.h

Codes Directory 3: Dct (Chap9)\DctDma\

Source Files:

 Dct (Chap9)\DCTDMA\DctDma.c

 Dct (Chap9)\DctDma\DCTHOST.C

Return to Index

Author's Contact:

Bristol University

Queen's building

University walk

Bristol BS8 1TR, UK.

Return to Index

_

