
TIME SLOT ASSIGNMENT CIRCUIT (TSAC)

The KT8555 is a per channel Time Slot Assignment Circuit (TSAC) that produces 8-bit receive and transmit time slots for four 1 CHIP CODEC/Filters.

Each frame synchronization pulse may be independently assigned to a time slot in a frame of up to 64 time slots.

FEATURES

- · Single, 5V operation
- Low power consumption: 5mW
- Controls four 1 CHIP CODEC/Filters
- · Independent transmit and receive frame syncs and enables
- · 8 channel unidirectional mode
- Up to 64 time slots per frame
- Compatible with KT8554/7 CODECs
- TTL and CMOS compatible

ORDERING INFORMATION

Device Package		Operating Temperature		
KT8555J	20 Ceramic DIP	-20~ + 125°C		

PIN CONFIGURATION

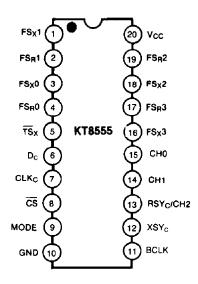
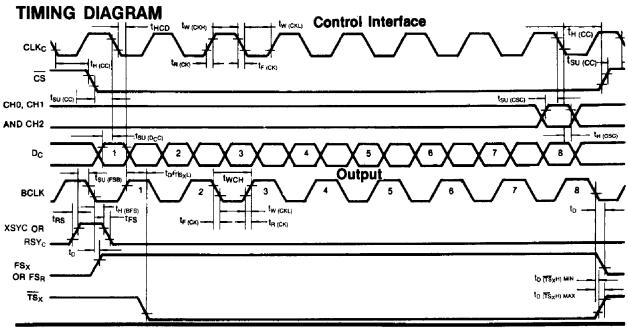


Fig. 1

PIN DESCRIPTION

Pin No	Symbol	Description
3 1 18 16	FS _x 0 FS _x 1 FS _x 2 FS _x 3	A frame sync output which is normally low, and goes active-high for 8 cycles of BCLK when a valid transmit time slot assignment is made.
4 2 19 17	FS _R 0 FS _R 1 FS _R 2 FS _B 3	A frame sync output which is normally low, and goes active-high for 8 cycles of BCLK when a valid receive time slot assignment is made.
5	TS _x	This pin pulls low during any active transmit time slot. (N-channel open drain)
6	Dc	The input for an 8 bit serial control word. \overline{X} is the first bit clocked in.
7	CLKc	The clock input for the control Interface.
8	CS	The active-low chip select for the control interface.
9	MODE	Mode 1 = Open or V _{CC} Mode 2 = Gnd
10	GND	Ground
11	BCLK	The bit clock input
12	XSYc	The transmit TSO sync pulse input. Must be synchronous with BCLK.
13	RSY _C /CH2	The transmit time slot 0 sync pulse input. Must be synchronous with BCLK. In mode 1 this input is the receive time slot 0 sync pulse, RSY _c , which must be synchronous with BCLK. In mode 2 this is the CH2 input for the MSB of the channel select word.
14	CH1	The input for the NSB (next significant bit) of the channel select word.
15	CH0	The input for the LSB (last significant bit) of the channel select word, which defines the frame sync output affected by the following control word.
20	V _{cc}	Power supply pin. 5V ± 5%


ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Positive Supply Voltage	V _{cc}	7.0	<u> </u>
Input Voltage	V _I	$V_{cc} + 0.3 \sim -0.3$	v
Output Voltage	v_{o}	$V_{CC} + 0.3 \sim -0.3$	V
Operating Temperature Range	T _{OPR}	− 25 ~ 125	°C
Storage Temperature Range	T _{STG}	- 65 ~ 150	°C
Lead Temperature (Soldering, 10 secs)	TLEAD	300	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted; $V_{cc} = 5.0V \pm 5\%$, $Ta = 0^{\circ}C \sim 70^{\circ}C$)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Operating Current	Icc	BCLK = 2.048MHz, all outputs open		1	1.5	mA
Input Voltage High	V _{IH}		2.0			٧
Input Voltage Low	VIL				0.7	٧
Input Current 1	l _{l1}	All Inputs Except Mode, VIL < VIN < VIH	– 1		1	μΑ
Input Current 2	112	Mode, V _{IN} = 0V	- 100			μА
Output Voltage High	VoH	FS _x and FS _R Ouputs, I _{OH} = 3mA	2.4	-	 	V
Output Voltage Low	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	FS _x and FS _R Outputs, I _{OL} = 3mA			0.4	٧
Cutput voltage Low	Vol	TS _x output, I _{OL} = 3mA			0.4	٧
Rise and Fall Time of Clock	t _{F (CK)} t _{F (CK)}	BCLK, CLK _C			50	nS
Delay to TS _x Low	to (TS _X L)	C _L = 50pF			140	nS
Delay to TS _x High	t _{D (TS_x H)}	$R_L = 1K\Omega$ to V_{CC}	30		100	nS
Hold Time from BCLK to Frame Sync	t _{H (BFS)}		50			nS
Set-Up Time from Frame Sync to BLCK	t _{SU (FSB)}		30			nS
Delay Time from BLCK Low to FX _{XR} 0-3 High or Low	t _D	C _L = 50pF			50	nS
Hold Time from Channel Select to CLKC	t _{H (CSC)}		50			nS
Set-Up Time from Channel Select to CLKC	t _{SU (CSC)}		30			n\$
Period of Clock	t _{CK}	BCLK, CLK _C	240			nS
Width of Clock High	tw (CKH)	BCLK, CLK _C	50			nS
Width of Clock Low	tw (CKL)	BCLK, CLK _C	50			nS
Set-Up Time from D _C to CLKC	t _{SU (Dc C)}		30			nS
Hold Time from CLKC to Dc	t _{H (CDc)}		50			nS
Set-Up Time from CS to CLKC	t _{su (CC)}		30			nS
Hold Time from CLKC to CS	t _{H (CC)}		100		+	nS

APPLICATION INFORMATION OPERATING CONTROL MODE 1

The KT8555 is a control interface which requires an 8 bit serial control word. Either one of the frame sync output group, FS_x0 to FS_x0 t

X	Ŕ	T5	T4	ТЗ	T2	T1	T0

X is the first bit clocked into Dc input

CONTROL DATA FORMAT

T5	T4	Т3	T2	T1	T0	Time Slot
0	0	0	0	0	Q	0
0	0	0	0	0	1	1
0	0	0	0	1	0	2
						•
0	1	1	1	1	0	30
0	1	1	1	1	1	31
1	0	0	0	0	0	32
1	0	0	0	0	01	33
						•
						•
1	1	1	1	1	1	63

CH1	CH0	Channel Selected
0	0	Assign to FS _x 0 and/or FS _R 0
0	1	Assign to FS _x 1 and/or FS _B 1
1	0	Assign to FS _x 2 and/or FS _B 2
1	1	Assign to FS _x 3 and/or FS _B 3

X	R	Action				
0	0	Assign time slot to both selected FS _x and FS _R				
0	1	Assign time slot to selected FS _x only				
1	0	Assign time slot to selected FS _R only				
1	1	Disable both selected FS _x and FS _B				

TABLE 1. OPERATING CONTROL MODE 1

OPERATING CONTROL MODE 2

In mode 2, all 8 frame sync outputs can be assigned with respect to XSYC input. The mode 2, selected by connecting pin 9 (MODE) to GND, enables the KT8555 TSAC suitable for an 8-channel undirectional controller and for a system where both transmit and receive direction of each channel have same time slot assigned. For instance, FS_x and FS_B input of 1 CHIP CODEC are hard wired together. The channel assigned has its channel selected by CH0, CH1 and CH2 (refer to table 2).

CH2	CH1	CH0	Channel Selected
0	0	0	Assign to FS _x 0
0	0	1	Assign to FS _x 1
0	1	0	Assign to FS _x 2
0	1	1	Assign to FS _x 3
1	0	0	Assign to FS _R 0
1	0	1	Assign to FS _R 1
1	1	0	Assign to FS _R 2
1	1	1	Assign to FS _R 3

X	R	Action			
0	0	Assign time slot to selected output			
0	1	Assign time slot to selected output			
1	0	Assign time slot to selected output			
1	1	Disable both selected output			

TABLE 2. OPERATING CONTROL MODE 2

APPLICATION CIRCUIT

The KT8555 TSAC combined with any kind of 1 CHIP CODEC from KT8554/7 series can obtain data timing as illustrated in Fig. 3. Even though FS_X output goes high before BCLK gets high, the D_X output of the 1 CHIP CODEC remains in the TRI-STATE mode will until both outputs are high. The eight bit period is shortened to avoid PCM data clash at PCM pre-highway.

Alternatively, full 8 bits can be obtained by inverting the BCLK to the 1 CHIP CODEC devices, thereby rising edges of BCLK and $FS_{X/R}$ are aligned.

Fig. 4 is typical timing of the control data interface.

Fig. 5 is the typical application circuit at operating control mode 2.

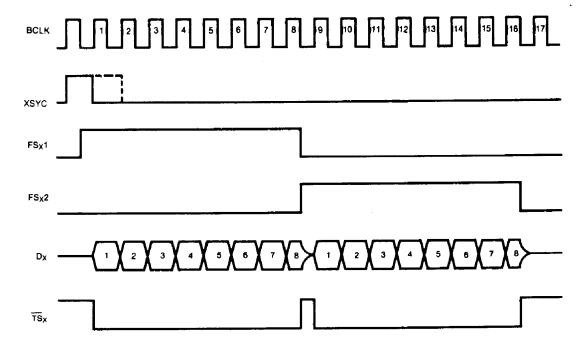


Fig. 3 Transmit Data Timing

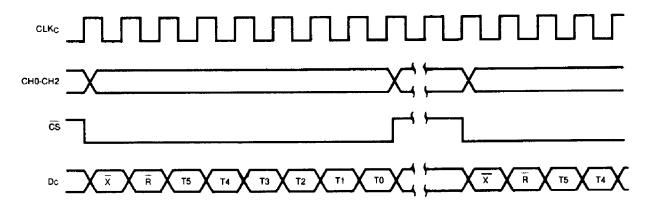
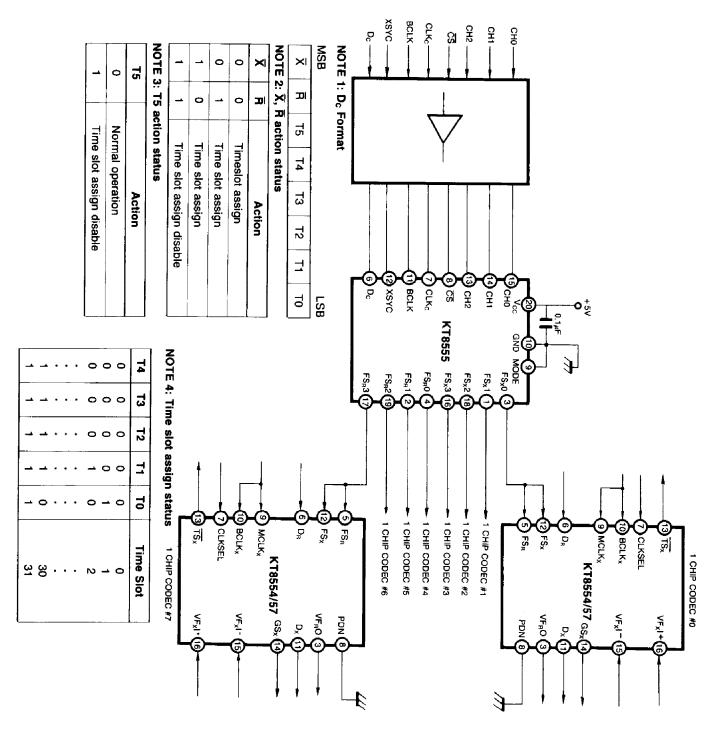



Fig. 4 Control Data Timing

NOTE 5: Different time slot assign for RX and TX respectely also available.

Fig. 5 Digital interface on a typical subscriber linecard

