
Modbus

Modbus is a serial communications protocol originally published by Modicon (now Schneider
Electric) in 1979 for use with its programmable logic controllers (PLCs). Modbus has become a
de facto standard communication protocol and is now a commonly available means of
connecting industrial electronic devices.[1] Modbus is popular in industrial environments because
it is openly published and royalty-free. It was developed for industrial applications, is relatively
easy to deploy and maintain compared to other standards, and places few restrictions other than
the size on the format of the data to be transmitted. The Modbus uses the RS485 as its physical
layer. It is possible to use the DC-BUS as power line communication physical layer to save
wires.

Modbus enables communication among many devices connected to the same network, for
example, a system that measures temperature and humidity and communicates the results to a
computer. Modbus is often used to connect a supervisory computer with a remote terminal unit
(RTU) in supervisory control and data acquisition (SCADA) systems. Many of the data types are
named from industry usage of Ladder logic and its use in driving relays: a single-bit physical
output is called a coil, and a single-bit physical input is called a discrete input or a contact.

The development and update of Modbus protocols have been managed by the Modbus
Organization[2] since April 2004, when Schneider Electric transferred rights to that
organization.[3] The Modbus Organization is an association of users and suppliers of Modbus-
compliant devices that advocates for the continued use of the technology.[4]

Contents

 1 Limitations
 2 Modbus object types
 3 Protocol versions
 4 Communications and devices
 5 Commands
 6 Frame formats

o 6.1 Modbus RTU frame format (primarily used on asynchronous serial data lines
like RS-485/EIA-485)

o 6.2 Modbus ASCII frame format (primarily used on 7- or 8-bit asynchronous
serial lines)

o 6.3 Modbus TCP frame format (primarily used on Ethernet networks)
o 6.4 Available function/command codes

 7 Format of data of requests and responses for main function codes
o 7.1 Function code 1 (read coils) and function code 2 (read discrete inputs)
o 7.2 Function code 5 (force/write single coil)
o 7.3 Function code 15 (force/write multiple coils)

o 7.4 Function code 4 (read input registers) and function code 3 (read holding
registers)

o 7.5 Function code 6 (preset/write single holding register)
o 7.6 Function code 16 (preset/write multiple holding registers)

 8 Exception responses
o 8.1 Main Modbus exception codes

 9 Coil, discrete input, input register, holding register numbers and addresses
o 9.1 JBUS mapping

 10 Implementations
 11 Trade group
 12 Modbus Plus
 13 See also
 14 References
 15 External links

Limitations

 Since Modbus was designed in the late 1970s to communicate to programmable logic
controllers, the number of data types is limited to those understood by PLCs at the time.
Large binary objects are not supported.

 No standard way exists for a node to find the description of a data object, for example, to
determine whether a register value represents a temperature between 30 and 175 degrees.

 Since Modbus is a master/slave protocol, there is no way for a field device to "report an
exception" (except over Ethernet TCP/IP, called open-mbus) – the master node must
routinely poll each field device and look for changes in the data. This consumes
bandwidth and network time in applications where bandwidth may be expensive, such as
over a low-bit-rate radio link.

 Modbus is restricted to addressing 254 devices on one data link, which limits the number
of field devices that may be connected to a master station (once again, Ethernet TCP/IP is
an exception).

 Modbus transmissions must be contiguous, which limits the types of remote
communications devices to those that can buffer data to avoid gaps in the transmission.

 Modbus protocol itself provides no security against unauthorized commands or
interception of data.[5]

Modbus object types

The following is a table of object types provided by a Modbus slave device to a Modbus master
device:

Object type Access Size Address Space

Coil Read-write 1 bit 00001 - 09999

Discrete input Read-only 1 bit 10001 - 19999

Input register Read-only 16 bits 30001 - 39999

Holding register Read-write 16 bits 40001 - 49999

Protocol versions

Versions of the Modbus protocol exist for serial port and for Ethernet and other protocols that
support the Internet protocol suite. There are many variants of Modbus protocols:

 Modbus RTU — This is used in serial communication and makes use of a compact,
binary representation of the data for protocol communication. The RTU format follows
the commands/data with a cyclic redundancy check checksum as an error check
mechanism to ensure the reliability of data. Modbus RTU is the most common
implementation available for Modbus. A Modbus RTU message must be transmitted
continuously without inter-character hesitations. Modbus messages are framed
(separated) by idle (silent) periods.

 Modbus ASCII — This is used in serial communication and makes use of ASCII
characters for protocol communication. The ASCII format uses a longitudinal
redundancy check checksum. Modbus ASCII messages are framed by leading colon (":")
and trailing newline (CR/LF).

 Modbus TCP/IP or Modbus TCP — This is a Modbus variant used for communications
over TCP/IP networks, connecting over port 502.[6] It does not require a checksum
calculation, as lower layers already provide checksum protection.

 Modbus over TCP/IP or Modbus over TCP or Modbus RTU/IP — This is a Modbus
variant that differs from Modbus TCP in that a checksum is included in the payload as
with Modbus RTU.

 Modbus over UDP — Some have experimented with using Modbus over UDP on IP
networks, which removes the overheads required for TCP.[7]

 Modbus Plus (Modbus+, MB+ or MBP) — Modbus Plus is proprietary to Schneider
Electric and unlike the other variants, it supports peer-to-peer communications between
multiple masters.[8] It requires a dedicated co-processor to handle fast HDLC-like token
rotation. It uses twisted pair at 1 Mbit/s and includes transformer isolation at each node,
which makes it transition/edge-triggered instead of voltage/level-triggered. Special
hardware is required to connect Modbus Plus to a computer, typically a card made for the
ISA, PCI or PCMCIA bus.

 Pemex Modbus — This is an extension of standard Modbus with support for historical
and flow data. It was designed for the Pemex oil and gas company for use in process
control and never gained widespread adoption.

 Enron Modbus — This is another extension of standard Modbus developed by Enron
Corporation with support for 32-bit integer and floating-point variables and historical and
flow data. Data types are mapped using standard addresses.[9] The historical data serves
to meet an American Petroleum Institute (API) industry standard for how data should be
stored.[citation needed]

Data model and function calls are identical for the first 4 variants of protocols; only the
encapsulation is different. However the variants are not interoperable, nor are the frame formats.

Communications and devices

Each device communicating (transferring data) on a Modbus is given a unique address.

On Modbus RTU, Mobus ASCII and Modbus Plus which are all Rs-485 single cable multi-drop
networks, only the node assigned as the Master may initiate a command. All other devices are
slaves and respond to requests and commands.

For the protocols using Ethernet such as Modbus TCP, any device can send out a Modbus
command thus all can act as a Masters, although normally, only one device acts as a Master.

There are many modems and gateways that support Modbus, as it is a very simple and often
copied protocol. Some of them were specifically designed for this protocol. Different
implementations use wireline, wireless communication, such as in the ISM band, and even Short
Message Service (SMS) or General Packet Radio Service (GPRS). One of the more common
designs of wireless networks makes use of mesh networking. Typical problems that designers
have to overcome include high latency and timing issues.

Commands

Modbus commands can instruct a Modbus Device to:

 change the value in one of its registers, that is written to Coil and Holding registers.
 read an I/O port: Read data from a Discrete and Coil ports,
 command the device to send back one or more values contained in its Coil and Holding

registers.

A Modbus command contains the Modbus address of the device it is intended for (1 to 247).
Only the addressed device will respond and act on the command, even though other devices
might receive it (an exception is specific broadcastable commands sent to node 0, which are
acted on but not acknowledged).

All Modbus commands contain checksum information to allow the recipient to detect
transmission errors.

Frame formats

A Modbus "frame" consists of an Application Data Unit (ADU)Cite error: There are <ref> tags
on this page without content in them (see the help page). , which encapsulates a Protocol Data
Unit (PDU):[10]

 ADU = Address + PDU + Error check,
 PDU = Function code + Data.

The byte order for values in Modbus data frames is most significant byte of a multi-byte value is
sent before the others. All Modbus variants use one of the following frame formats.[1]

Modbus RTU frame format (primarily used on asynchronous serial data lines like RS-
485/EIA-485)

Name Length (bits) Function

Start 28 At least 3½ character times of silence (mark condition)

Address 8 Station address

Function 8 Indicates the function code; e.g., read coils/holding registers

Data n × 8 Data + length will be filled depending on the message type

CRC 16 Cyclic redundancy check

End 28 At least 3½ character times of silence between frames

Note about the CRC:

 Polynomial: x16 + x15 + x2 + 1 (CRC-16-ANSI also known as CRC-16-IBM, normal
hexadecimal algebraic polynomial being 8005 and reversed A001).

 Initial value: 65,535.
 Example of frame in hexadecimal: 01 04 02 FF FF B8 80 (CRC-16-ANSI calculation

from 01 to FF gives 80B8, which is transmitted least significant byte first).

Modbus ASCII frame format (primarily used on 7- or 8-bit asynchronous serial lines)

Name Length (bytes) Function

Start 1 Starts with colon : (ASCII hex value is 3A)

Address 2 Station address

Function 2 Indicates the function codes like read coils / inputs

Data n × 2 Data + length will be filled depending on the message type

LRC 2 Checksum (Longitudinal redundancy check)

End 2 Carriage return – line feed (CR/LF) pair (ASCII values of 0D, 0A)

Address, function, data, and LRC are all capital hexadecimal readable pairs of characters
representing 8-bit values (0–255). For example, 122 (7 × 16 + 10) will be represented as 7A.

LRC is calculated as the sum of 8-bit values, negated (two's complement) and encoded as an 8-
bit value. Example: if address, function, and data encode as 247, 3, 19, 137, 0, and 10, their sum
is 416. Two's complement (−416) trimmed to 8 bits is 96 (e.g. 256 × 2 − 416), which will be
represented as 60 in hexadecimal. Hence the following frame: :F7031389000A60<CR><LF>.

Modbus TCP frame format (primarily used on Ethernet networks)

Name
Length
(bytes)

Function

Transaction
identifier

2
For synchronization between messages of server and
client

Protocol identifier 2 0 for Modbus/TCP

Length field 2 Number of remaining bytes in this frame

Unit identifier 1 Slave address (255 if not used)

Function code 1 Function codes as in other variants

Data bytes n Data as response or commands

Unit identifier is used with Modbus/TCP devices that are composites of several Modbus devices,
e.g. on Modbus/TCP to Modbus RTU gateways. In such case, the unit identifier tells the Slave
Address of the device behind the gateway. Natively Modbus/TCP-capable devices usually ignore
the Unit Identifier.

Available function/command codes

The various reading, writing and other operations are categorized as follows.[11] The most
primitive reads and writes are shown in bold. A number of sources use alternative terminology,
for example Force Single Coil where the standard uses Write Single Coil.[12]
Prominent entities within a Modbus slave are:

 Coils: readable and writable, 1 bit (off/on)
 Discrete Inputs: readable, 1 bit (off/on)
 Input Registers: readable, 16 bits (0 to 65,535), essentially measurements and statuses
 Holding Registers: readable and writable, 16 bits (0 to 65,535), essentially configuration

values

Modbus function codes

Function type Function name
Function

code
Comment

Data
Access

Bit
access

Physical Discrete Inputs Read Discrete Inputs 2

Internal Bits or Physical
Coils

Read Coils 1

Write Single Coil 5

Write Multiple Coils 15

16-bit
access

Physical Input Registers Read Input Registers 4

Internal Registers or
Physical Output Registers

Read Multiple
Holding Registers

3

Write Single Holding
Register

6

Write Multiple
Holding Registers

16

Read/Write Multiple
Registers

23

Mask Write Register 22

Read FIFO Queue 24

File Record Access
Read File Record 20

Write File Record 21

Diagnostics

Read Exception Status 7 serial only

Diagnostic 8 serial only

Get Com Event Counter 11 serial only

Get Com Event Log 12 serial only

Report Slave ID 17 serial only

Read Device
Identification

43

Other
Encapsulated Interface
Transport

43

Format of data of requests and responses for main function
codes

Requests and responses follow frame formats described above. This section gives details of data
formats of most used function codes.

Function code 1 (read coils) and function code 2 (read discrete inputs)

Request:

 Address of first coil/discrete input to read (16-bit)
 Number of coils/discrete inputs to read (16-bit)

Normal response:

 Number of bytes of coil/discrete input values to follow (8-bit)
 Coil/discrete input values (8 coils/discrete inputs per byte)

Value of each coil/discrete input is binary (0 for off, 1 for on). First requested coil/discrete input
is stored as least significant bit of first byte in reply.
If number of coils/discrete inputs is not a multiple of 8, most significant bit(s) of last byte will be
stuffed with zeros.
For example, if eleven coils are requested, two bytes of values are needed. Suppose states of
those successive coils are on, off, on, off, off, on, on, on, off, on, on, then the response will be 02
E5 06 in hexadecimal.

Because the byte count returned in the reply message is only 8 bits wide and the protocol
overhead is 5 bytes, a maximum of 2008 (251 x 8) discrete inputs or coils can be read at once.

Function code 5 (force/write single coil)

Request:

 Address of coil (16-bit)
 Value to force/write: 0 for off and 65,280 (FF00 in hexadecimal) for on

Normal response: same as request.

Function code 15 (force/write multiple coils)

Request:

 Address of first coil to force/write (16-bit)
 Number of coils to force/write (16-bit)
 Number of bytes of coil values to follow (8-bit)
 Coil values (8 coil values per byte)

Value of each coil is binary (0 for off, 1 for on). First requested coil is stored as least significant
bit of first byte in request.
If number of coils is not a multiple of 8, most significant bit(s) of last byte should be stuffed with
zeros. See example for function codes 1 and 2.

Normal response:

 Address of first coil (16-bit)
 number of coils (16-bit)

Function code 4 (read input registers) and function code 3 (read holding
registers)

Request:

 Address of first register to read (16-bit)
 Number of registers to read (16-bit)

Normal response:

 Number of bytes of register values to follow (8-bit)
 Register values (16 bits per register)

Because the number of bytes for register values is 8-bit wide and maximum modbus message
size is 256 bytes, only 125 registers for Modbus RTU and 123 registers for Modbus TCP can be
read at once.[13]

Function code 6 (preset/write single holding register)

Request:

 Address of holding register to preset/write (16-bit)
 New value of the holding register (16-bit)

Normal response: same as request.

Function code 16 (preset/write multiple holding registers)

Request:

 Address of first holding register to preset/write (16-bit)
 Number of holding registers to preset/write (16-bit)
 Number of bytes of register values to follow (8-bit)
 New values of holding registers (16 bits per register)

Because register values are 2-bytes wide and only 127 bytes worth of values can be sent, only 63
holding registers can be preset/written at once.

Normal response:

 Address of first preset/written holding register (16-bit)
 Number of preset/written holding registers (16-bit)

Exception responses

For a normal response, slave repeats the function code. Should a slave want to report an error, it
will reply with the requested function code plus 128 (hex 0x80) (3 becomes 131 = hex 0x83),
and will only include one byte of data, known as the exception code.

Main Modbus exception codes

Code Text Details

1 Illegal Function
Function code received in the query is not recognized or allowed by
slave

2
Illegal Data
Address

Data address of some or all the required entities are not allowed or do
not exist in slave

3 Illegal Data Value Value is not accepted by slave

4
Slave Device
Failure

Unrecoverable error occurred while slave was attempting to perform
requested action

5 Acknowledge

Slave has accepted request and is processing it, but a long duration of
time is required. This response is returned to prevent a timeout error
from occurring in the master. Master can next issue a Poll Program
Complete message to determine whether processing is completed

6 Slave Device Busy
Slave is engaged in processing a long-duration command. Master
should retry later

7
Negative
Acknowledge

Slave cannot perform the programming functions. Master should
request diagnostic or error information from slave

8
Memory Parity
Error

Slave detected a parity error in memory. Master can retry the request,
but service may be required on the slave device

10
Gateway Path
Unavailable

Specialized for Modbus gateways. Indicates a misconfigured gateway

11
Gateway Target
Device Failed to
Respond

Specialized for Modbus gateways. Sent when slave fails to respond

Coil, discrete input, input register, holding register numbers
and addresses

Some conventions govern how access to Modbus entities (coils, discrete inputs, input registers,
holding registers) are referenced.

It is important to make a distinction between entity number and entity address:

 Entity numbers combine entity type and entity location within their description table.
 Entity address is the starting address, a 16-bit value in the data part of the Modbus frame.

As such its range goes from 0 to 65,535

In the traditional standard, numbers for those entities start with a digit, followed by a number of
4 digits in the range 1–9,999:

 coils numbers start with 0 and span from 00001 to 09999,
 discrete input numbers start with 1 and span from 10001 to 19999,
 input register numbers start with 3 and span from 30001 to 39999,
 holding register numbers start with 4 and span from 40001 to 49999.

This translates into addresses between 0 and 9,998 in data frames. For example, in order to read
holding registers starting at number 40001, corresponding address in the data frame will be 0
with a function code of 3 (as seen above). For holding registers starting at number 40100,
address will be 99. Etc.

This limits the number of addresses to 9,999 for each entity. A de facto referencing extends this
to the maximum of 65,536.[14] It simply consists of adding one digit to the previous list:

 coil numbers span from 000001 to 065536,
 discrete input numbers span from 100001 to 165536,
 input register numbers span from 300001 to 365536,
 holding register numbers span from 400001 to 465536.

When using the extended referencing, all number references must have exactly 6 digits. This
avoids confusion between coils and other entities. For example, to know the difference between
holding register #40001 and coil #40001, if coil #40001 is the target, it must appear as #040001.

JBUS mapping

Another de facto protocol closely related to Modbus appeared after it, and was defined by PLC
brand April Automates, the result of a collaborative effort between French companies Renault
Automation and Merlin Gerin et Cie in 1985: JBUS. Differences between Modbus and JBUS at
that time (number of entities, slave stations) are now irrelevant as this protocol almost
disappeared with the April PLC series which AEG Schneider Automation bought in 1994 and
then made obsolete. However the name JBUS has survived to some extent.

JBUS supports function codes 1, 2, 3, 4, 5, 6, 15, and 16 and thus all the entities described above.
However numbering is different with JBUS:

 Number and address coincide: entity #x has address x in the data frame.
 Consequently, entity number does not include the entity type. For example, holding

register #40010 in Modbus will be holding register #9, located at address 9 in JBUS.
 Number 0 (and thus address 0) is not supported. Slave should not implement any real data

at this number and address and it can return a null value or throw an error when
requested.

Implementations

Almost all implementations have variations from the official standard. Different varieties might
not communicate correctly between equipment of different suppliers. Some of the most common
variations are:

 Data types
o IEEE floating-point number
o 32-bit integer
o 8-bit data
o Mixed data types
o Bit fields in integers
o Multipliers to change data to/from integer. 10, 100, 1000, 256 ...

 Protocol extensions
o 16-bit slave addresses
o 32-bit data size (1 address = 32 bits of data returned)
o Word-swapped data

Trade group

Modbus Organization, Inc. is a trade association for the promotion and development of Modbus
protocol.[2]

Modbus Plus

Despite the name, Modbus Plus[15] is not a variant of Modbus. It is a different protocol, involving
token passing.

It is a proprietary specification of Schneider Electric, though it is unpublished rather than
patented. It is normally implemented using a custom chipset available only to partners of
Schneider.

See also

 CAN Bus

