

Qualcomm Technologies, Inc.

AR3002 Single Chip Bluetooth v4.0 UART HCI Data Sheet

September 2016

© 2015-2016 Qualcomm Technologies, Inc. All rights reserved.

Qualcomm Snapdragon is a product of Qualcomm Technologies, Inc. Other Qualcomm products referenced herein are products of Qualcomm Technologies, Inc. or its other subsidiaries.

DragonBoard, Qualcomm, and Snapdragon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Use of this document is subject to the license set forth in Exhibit 1.

Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 U.S.A.

LM80-P0598-9 Rev B

Revision history

Revision	Date	Description
В	September 2016	Removed references to Qualcomm Atheros Section 1.1: changed the term 'mobile applications' to 'embedding computing' Section 1.1: Added two notes Table A-1: Added acronyms and definitions
A	June 1, 2015	Initial release

Contents

1 Introduction	5
1.1 General description	
1.2 AR3002 features	
2 Pin Descriptions	7
3 Functional Description	12
3 1 HCI-UART interface	12
3.2 PCM interface	
3.3 CPU and memory	
3.4 Standard WLAN coexistence	
3.5 Reference clock	
3.6 BT low energy	
3.7 Power management	
3.8 Reset	13
3.9 Radio	
3.10 GPIO	
3.11 OTP	14
4 Electrical Characteristics	15
4.1 Absolute maximum ratings	
4.2 Recommended operating conditions	
4.3 Radio receiver characteristics	16
5 Package Dimensions	
5.1 Package dimensions	
6 Ordering Information	27
A Terms and Acronyms	28
B EXHIBIT 1	

Figures

Figure 1-1 AR3002 block diagram	6
Figure 2-1 AR3002 pinouts	7
Figure 2-2 AR3002 schematic	11
Figure 5-1 Package drawing – QFN	23
Figure 5-2 Package drawing – SPD	25

Tables

Table 2-1 Pin types	7
Table 2-2 Signal-to-pin relationships and descriptions	8
Table 2-3 GPIO status of AR3002 (v2.2.1)	10
Table 3-1 Power management pins	13
Table 4-1 Absolute maximum ratings	15
Table 4-2 Recommended operating conditions	15
Table 4-3 Basic rate transmitter performance temperature at 25°C (1.8 V)	16
Table 4-4 Enhanced rate transmitter performance temperature at 25°C (1.8 V)	17
Table 4-5 Low energy transmitter performance	17
Table 4-6 Basic rate receiver performance at 1.8 V	18
Table 4-7 Enhanced data rate receiver performance 1.8 V	18
Table 4-8 Low-energy receiver performance	19
Table 4-9 Power consumption	20
Table 5-1 Package dimensions - QFN	24
Table 5-2 Package dimensions - SPD	
Table A-1 Acronyms, abbreviations, and terms	

1.1 General description

The AR3002 from Qualcomm[®] Technologies, Inc. (QTI) is a highly integrated, all-CMOS, single chip BluetoothTM 4.0+HS solution for mobile, embedded computing, and all other low power applications. It includes a Bluetooth EDR radio, a 32-bit CPU, HCI-UART interface, 1.2 V voltage regulator, and SRAM and ROM. It also has a standard WLAN coexistence and support for QTI proprietary next generation WLAN coexistence interface to ensure coexistence with WLAN devices co-located in the same system. The proprietary coexistence interface. The AR3002 supports the standard HCI-UART interface so it is compatible with HCI upper layer Bluetooth stacks. It is also specially optimized for low-power applications. In some applications it is possible to use an on-chip one-time programmable (OTP) memory to eliminate the need for an external flash and to further reduce the external component count and BOM cost. The AR3002 provides mobile, embedded computing, and low-power devices ODM/OEMs with a cost effective Bluetooth solution available. The AR3002 comes in a 5x5 mm QFN package. A Bluetooth reference design is available for quick bring-up and validation.

A Bluetooth upper-layer stack is available through QTI, which supports Blue-Z profiles.

- **NOTE:** This document provides a description of chipset capabilities. Not all features are available, nor are all features supported in the software.
- NOTE: Enabling some features may require additional licensing fees.

1.2 AR3002 features

- Single-chip Bluetooth v4.0 solution
- Bluetooth low energy dual mode radio
- Supports both Class-2 (up to +4 dBm) and Class-1 (up to +10 dBm) operation
- Standard HS-UART HCI interface
- 1.2 V linear voltage regulator (LDO)
- Integrated 32-bit CPU with 128 Kb data RAM and 512 Kb program ROM
- On-chip low power oscillator (LPO)
- On-chip one-time programmable (OTP) memory
- WLAN coexistence interface
- Audio CODEC using PCM interface

- Compatible with standard reference external clock of 19.2 MHz, 26 MHz, and 40 MHz
- 5x5 mm 40-pin QFN package

Figure 1-1 AR3002 block diagram

This section contains both a package pinout and tabular listings of the signal descriptions. The nomenclature listed in Table 2-1 is used for signal types described in Table 2-2:

Table	2-1	Pin	ty	pes
-------	-----	-----	----	-----

Туре	Description		
IA	Analog input signal		
Ι	Digital input signal		
I/O	Digital bidirectional signal		
OA	Analog output signal		
0	Digital output signal		
Р	Power or ground signal		

Figure 2-1 shows the pinout for the AR3002.

Figure 2-1 AR3002 pinouts

Table 2-2 lists and describes the signal-to-pin relationship information for the AR3002.

Symbol	Pin	Туре	Description	
Radio Interface			·	
PABIASP	34	Р	Power amplifier bias for RF output power.	
PWD_L	4	IA	Chip power-down control; driving this pin low powers down the chip. Belongs to VDDIO_XTAL power domain.	
RFIOP	33	IA/OA	RF In/Out.	
Clock				
CLK_REQ	12	0	When a reference clock is connected to XTAL_OUT, this pin asserts when the AR3002 requires the reference clock. This clock must be stable within 2 ms after the assertion of CLK_REQ.	
Crystal			•	
XTAL_IN	2	I	Reference clock; can be 19.2 MHz, 26 MHz and 40 MHz.	
XTAL_OUT	3	I/O	clock and XTAL_IN should be grounded.	
РСМ				
PCM_BCLK	17	I/O	CODEC interface bit clock, input for slave, output for master. Leave as NC if PCM is not used.	
PCM_IN	19	I	CODEC interface input data. Tie to VDDIO directly on board or pull-up internally if PCM is not used.	
PCM_OUT	20	0	CODEC interface output data. Leave as NC if PCM is not used.	
PCM_SYNC	18	I/O	CODEC interface synchronization control, input for slave, output for master. Leave as NC if PCM is not used.	
UART			•	
UART_RXD	11	I	UART receive data.	
UART_TXD	10	0	UART transmit data.	
UART_CTS	16	1	UART clear_to_send.	
UART_RTS	15	0	UART request_to_send.	

Table 2-2 Signal-to-pin relationships and descriptions

Symbol	Pin	Туре	Description		
WLAN Coexistence					
BT_ACTIVE	6	0	If asserted, this signal indicates that BT requests access to the wireless medium to transmit or receive.		
BT_PRIORITY	7	0	When asserted along with BT_ACTIVE, this signal indicates the device is transmitting or receiving with high priority.		
WLAN_ACTIVE	5	1	Indicates medium busy from an external source; can be asserted (by a WLAN device) to prevent the AR3002 from transmitting a new frame.		
GPIO					
HOST_WAKE	24	0	Wake up host. Leave as NC if not used.		
BT_WAKE	25	I	Wake up BT. Leave as NC if not used.		
GPIO_3	8	I/O	General purpose I/O pin. Leave as NC if not used.		
LED	13	0	Status indication. Leave as NC if not used.		
RES	21	-	Reserved. Tie to GND when not in use.		
Power					
LDO_IN	39	Р	LDO input.		
LDO_OUT	40	Р	LDO output.		
VDD12	9, 22	Р	Digital supply, should be connected to LDO_OUT pin on the board; all VDD12 pins should be connected on the board.		
VDD12_ABB	29	Р	Analog supply; all VDD12 pins should be connected on the board.		
VDD12_RF	36	Р	RF supply; all VDD12 pins should be connected on the board.		
VDD12_SYN	37	Р	SYN supply; all VDD12 pins should be connected on the board.		
VDDIO	14, 23	Р	Digital I/O voltage; all VDDIO pins should be connected on the board.		
VDDIO_RF	35	Р	RF voltage; all VDDIO pins should be connected on the board.		
VDDIO_SYN	38	Р	Synthesizer voltage; all VDDIO pins should be connected on the board.		
VDDIO_XTAL	1	Р	Crystal voltage; all VDDIO pins should be connected on the board.		
GND_SLUG		_	Ground pad under chip.		

Symbol	Pin	Туре	Description
Reserved			
NC	26, 27, 28, 31, 32	_	No connection.
RES	30	_	Reserved as LNA2, which is Rx port separated from pin 33 RFIOP. Tie to GND when not in use.

Table 2-3 lists the GPIO status of the AR3002 (v2.2.1).

Table 2-3 GPIO status of AR3002 (v2.2.1)

Pin	Function	Power-on Default (no external pst/rampatch download)	Chip_PWD
17	PCM_BCLK	output low	input (pull up) ⁴
18	PCM_SYNC	output low	input (pull up)
19	PCM_IN	input (no pull)	input (pull up)
20	PCM_OUT	output low	input (pull up)
10	UART_TXD	output high	input (pull up)
11	UART_RXD	input (no pull)	input (pull up)
16	UART_CTS	input (pull up)	input (pull up)
15	UART_RTS	output low	input (pull up)
5	WLAN_ACTIVE	input (pull down) ¹	input (pull down)
6	BT_ACTIVE	output low	input (pull down)
7	BT_PRIORITY	output low	input (pull down)
8	GPIO 3	output low	input (pull down)
24	HOST_WAKE	input (pull up) ²	input (pull up)
25	BT_WAKE	input (pull up)	input (pull up)
13	LED	output high ³	input (pull up)
12	CLK_REQ	output high	input (pull down)

1. For AR3002 2.2, Coex is disabled by default, and status for PIN5, PIN6, PIN7, and PIN8 when power is on, are input PINs (pull down). There is no other status difference between AR3002 2.2 and AR3002 2.2.1.

2. By default this function is disabled. When HOST_WAKE is enabled, it is configured as output.

- 3. LED function is enabled by default.
- 4. Pull-up, pull-down, and no-pull in this table all refer to status in AR3002, not on board.

Figure 2-2 shows the AR3002 schematic.

Figure 2-2 AR3002 schematic

3.1 HCI-UART interface

The UART interface is a standard high-speed UART interface, able to operate up to 4 Mbps, supporting Bluetooth HCI-UART interface.

3.2 PCM interface

A PCM interface to an external mono-audio CODEC is supported. The AR3002 supports CODECs such as: Winbond W681360, Wolfson WM8974, and Realtek ALC5620. The PCM supports the 8 KHz sample rate.

AR3002 can operate as the PCM interface master generating an output clock or configured as a PCM interface slave. It supports 13-bit, 16-bit, 8-bit, or 14-bit μ -law, A-law, or linear mono-sample formats.

3.3 CPU and memory

The AR3002 uses a 32-bit RISC core with five-stage pipelining and 16-bit and 24-bit instruction encoding. On startup, the AR3002 boots from the boot ROM. Software checks OTP first for configuration information. It then gets configuration from the host and proceeds to execute from on-chip ROM.

3.4 Standard WLAN coexistence

The AR3002 supports standard WLAN coexistence interfaces through the WLAN_ACTIVE, BT_PRIORITY, and BT_ACTIVE pins.

3.5 Reference clock

The AR3002 includes a fractional *N* PLL and supports an external crystal connected between the XTAL_IN and XTAL_OUT pins.

The crystal can use the 19.2 MHz, 26 MHz, and 40 MHz frequencies. The default is 26 MHz. A \pm 20 ppm total accuracy across process, temperature, and aging is required for the external crystal.

When an external clock source is used, it should be connected to the XTAL_OUT pin, and the XTAL_IN pin should be grounded.

3.6 BT low energy

The AR3002 supports Low Energy (LE) specification, which allows for connection to devices with single mode LE function, for example, Watch, Sensor, and HID. The implementation is optimized for coexistence with WLAN.

3.7 Power management

These power interfaces exist in the AR3002: LDO_IN, LDO_OUT, VDD12, and VDDIO. Table 3-1 lists and describes the power management pins.

Pins	Description
LDO_IN	The input to the internal LDO. The LDO_IN pin can be connected to a supply voltage between 1.6 V and 3.6 V.
LDO_OUT	The 1.2 V output from the internal LDO and should be connected to a 1.0 uF bypass capacitor.
VDD12	The core voltage which should be connected to the LDO_OUT pin. (Applies to all VDD12 pins)
VDDIO	The regulated I/O voltage. It can be 1.8 V or 3.3 V. All VDDIO pins should be connected on the board.

Table 3-1 Power management pins

3.8 Reset

The pin PWD_L resets and powers down the AR3002.

Holding the PWD_L pin at GND turns off the entire chip and all state information is lost. All core supply voltages are internally gated off in this condition to minimize leakage.

The power-on-reset (POR) circuit detects a low-to-high transition on this pin and executes a reset after VDDIO and VDD12 are stabilized.

3.9 Radio

RFIOP is the RF port used both for Tx output and Rx input. For optimum RF performance, a matching network is required between the RF port and the antenna.

PABIASP is the bias pin for the internal PA and should be connected to the IO supply voltage (either 1.8 V or 3.3 V). A 10 pF bypass capacitor should be placed near PABIASP to provide an AC ground.

3.10 GPIO

A single output pin is provided to drive an indicator LED. This pin indicates Bluetooth activity and status.

3.11 OTP

Using One Time Programmable (OTP) memory can eliminate the need for an external EEPROM.

OTP programming needs 3.3 V (+5%) supply on VDDIO. Cannot program OTP using 1.8 V. OTP reading can be done with 3.3 V or 1.8 V supply on VDDIO.

4.1 Absolute maximum ratings

Table 4-1 summarizes the absolute maximum ratings and Table 4-2 lists the recommended operating conditions for the AR3002 solution. Absolute maximum ratings are those values beyond which damage to the device can occur. Functional operation under these conditions, or at any other condition beyond those indicated in the operational sections of this document, is not recommended.

Symbol	Parameter	Max. Rating	Unit
LDO_IN	Input for LDO	3.6	V
VDD12	Core voltage	1.32	V
VDDIO	I/O supply voltage	3.6	V
PA _{bias}	Input for PA bias voltage	3.6	V
T _{store}	Storage temperature	125	°C
Tjunction	Junction temperature	125	°C
ESD	Electrostatic discharge tolerance	±2k	V

Table 4-1 Absolute maximum ratings

4.2 Recommended operating conditions

Table 4-2 Recommended	operating	conditions
-----------------------	-----------	------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
PABIASP	PA bias V\voltage	_	1.6	1.8/3.3	3.6	V
LDO_IN	LDO Input	_	1.6	1.8/3.3	3.6	V
LDO_OUT ¹	LDO output	—	_	1.2	_	V
VDDIO	I/O supply voltage	_	1.6	1.8/3.3	3.6	V
T _{case}	Standard case temperature	_	-20	25	100	°C

1. VDD12 is the core voltage that should be connected to the LDO_OUT pin.

4.3 Radio receiver characteristics

Table 4-3 through Table 4-9 describe the basic rate transmitter performance, enhanced data transmitter performance, basic rate receiver performance, enhanced rate receiver performance, and current consumption conditions at 25°C.

Table 4-3 Basic rate transmitter performance temperature at 25°C (1.8 V)

Test Parameter	Min	Тур	Мах	Bluetooth Specification	Unit
Maximum RF output power	0	3	10	0 to +20	dBm
RF power control range	32	34	36	≥ 16	dB
RF power control step size	3	4	5	2 ≤ Step Size ≤ 8	dB
Frequency range	2.4	—	2.4835	2.4 < f < 2.4835	GHz
20 dB bandwidth	—	950	—	≤ 1000	KHz
Adjacent channel TX power $F = F_0 \pm 2 MHz$	_	-49	_	≤ -20	dBm
Adjacent channel TX power F = F ₀ ±3 MHz	_	-50	_	≤ -40	dBm
∆f1avg maximum modulation	_	164	_	140 < ∆f1avg < 175	KHz
∆f2max minimum modulation	_	144	_	≥ 115	KHz
∆f2avg/∆f1avg	_	0.88	_	≥ 0.80	—
Initial carrier frequency	_	0	_	≤ ±75	KHz
Drift rate	_	0	—	≤ 20	KHz/50 μs
Drift (DH1 packet)	—	1	—	≤ 25	KHz
Drift (DH5 packet)	—	-1	_	≤ 40	KHz

Test Parameter	Min	Тур	Мах	Bluetooth Specification	Unit
Relative transmit	power	-2	0	0.5	-4 to +1
Max carrier frequency	π/4 DQPSK	—	0		≤ ±10
	8 DPSK	—	0	—	
Max carrier frequency stability lwil	π/4 DQPSK	—	0	—	≤ ±75
	8 DPSK	—	0	_	
Max carrier frequency	π/4 DQPSK	—	0	_	≤ ±75
	8 DPSK	—	0	—	
RMS DEVM	π/4 DQPSK	—	6	—	≤ 20
	8 DPSK	—	6	—	≤ 13
Peak DEVM	π/4 DQPSK	—	16	_	≤ 35
	8 DPSK	—	17	—	≤ 25
99% DEVM	π/4 DQPSK	—	99.9	_	99% ≤ 30
	8 DPSK	—	99.9	—	99% ≤ 20
EDR differential phase	e encoding	_	100	_	≥ 99
Adjacent channel power	F≥ ±3MHz	—	-42.5	—	< -40
	$F = \pm 2MHz$	—	-39	—	≤ -20
	$F = \pm 1MHz$	_	-40	_	≤ –26

Table 4-4 Enhanced rate tr	ransmitter performance	e temperature a	t 25°C ((1.8 V)
		, tomporataro a		

Table 4-5 Low energy transmitter performance

Test Parameter	Min	Тур	Мах	Bluetooth Specification	Unit
Maximum RF output power	0	3	10	-20 to +10	dBm
Adjacent channel TX power F = $F_0 \pm 2 \text{ MHz}$	_	-45	—	≤ -20	dBm
Adjacent channel TX power F = $F_0 \pm 3 \text{ MHz}$	—	-55	—	≤ -30	dBm
∆f1avg maximum modulation	_	248	_	225 < ∆f1avg < 275	KHz

Test Parameter	Min	Тур	Мах	Bluetooth Specification	Unit
∆f2max minimum modulation	—	250	—	≥ 185	KHz
∆f2avg/∆f1avg	—	0.96	—	≥ 0.8	—
Initial carrier frequency offset	—	0	—	-150 to +150	KHz
Drift rate	—	0	—	≤ 20	KHz/50 μs
Drift (f ₀ -f _n)	—	0	—	≤ 50	KHz
Drift (f1-f0 & fn-fn-5)	_	0		≤ 20	KHz

Table 4-6 Basic rate receiver performance at 1.8 V

Test parameter	Min	Тур	Мах	Bluetooth specification	Unit
Sensitivity	BER ≤ 0.1%	_	-91	—	≤ -70
Maximum input	BER ≤ 0.1%	-20	—	—	≥ –20
Carrier-to-interferer ratio	Co-channel	_	—	11	11
(C/I)	Adjacent channel (±1 MHz)	—	_	0	0
	Second adjacent channel (± 2 MHz)	—	—	-30	-30
	Third adjacent channel (± 3 MHz)	_	_	-40	-40
Maximum level of intermodulation interferers		_	_	-39	< -39

Table 4-7 Enhanced data rate receiver performance 1.8 V

Test parameter	Min	Тур	Мах	Bluetooth specification	Unit
Sensitivity (BER ≤ 0.01%)	π/4 DQPSK	_	-92		≤ -70
	8 DPSK	—	-87	_	≤ -70
Maximum input (BER ≤ 0.1%)	π/4 DQPSK	-20	—	_	≥ –20
	8 DPSK	-20	_	_	≥ –20
	π/4 DQPSK	_	_	13	≤ ±13

Test parameter	Min	Тур	Max	Bluetooth specification	Unit
Co-channel C/I (BER ≤ 0.1%)	8 DPSK	—	-	20	≤ ± 20
Adjacent channel C/I (BER ≤ 0.1%)	π/4 DQPSK	—	_	0	≤ 0
	8 DPSK	_	—	5	≤ 5
Second adjacent channel C/I (BER ≤ 0.1%)	π/4 DQPSK	—	—	-30	≤ -30
	8 DPSK	—	—	-25	≤ –25
Third adjacent channel C/I	π/4 DQPSK	—	_	-40	≤ -40
	8 DPSK	_	_	-33	≤ –33

Table 4-8 Low-energy receiver performance

Test parameter	Min	Тур	Max	Bluetooth specification	Unit
Sensitivity	PER ≤ 30.8%		-95	_	≤ -70
Maximum input	PER ≤ 30.8%	-10			≥-10
Carrier-to-interferer ratio	Co-channel			21	21
	Adjacent channel (±1 MHz)	—	_	15	15
	Second adjacent channel (± 2 MHz)	_	_	-17	-17
	Third adjacent channel (± 3 MHz)	-	—	-27	-27
Maximum level of inter	modulation interferers	-	-	-50	-50
Maximum level of blocker	30 – 2000 MHz	-	-	-30	-30
	2003 – 2399 MHz	-	-	-35	-35
	2484 – 2997 MHz	_	_	-35	-35
	3000 MHz – 12.75 GHz	—	_	-30	-30

Mode for current consumption	Average value (mA)
Idle mode	0.093
Inquiry scan (1.28 sec)	0.498
Page scan (1.28 sec)	0.498
Page and Inq scan (1.28 sec)	0.903
ACL Sniff without scan (1.28 sec Interval, 2 Attempts)	0.119
ACL slave ¹	12.2
Inquiry	22.7
DH1 master	24.5
DH1 slave	23.5
DH5 master	33.0
DH5 slave	29.0
3DH1 master	25.8
3DH1 slave	26.5
3DH5 master ²	34.5
3DH5 slave ³	29.1
HV3 master	16.9
HV3 slave	18.6
2EV3 master	14.1
2EV3 slave	17.1
Tx-continuous (100% Duty cycle) ⁴	49.0
Rx-continuous (100% Duty cycle) ⁵	37.0
LE advertising (2048 slot interval)	0.28
LE scanning (continuous)	38.1
LE master (6 frame interval, 0 byte payload)	8.93

Table 4-9 Power consumption

Mode for current consumption	Average value (mA)			
LE master (12 frame interval, 0 byte payload)	6.45			
LE master (228 frame interval, 0 byte payload)	0.62			
LE master (6 frame interval, 27 byte payload)	12.19			

1. ACL as slave means AR3002 is in a link (as slave) with another device, only minimum traffic to maintain link.

- 2. 3DH5 master: the AR3002 sends a 3DH5 packet to the slave, and the slave returns a null packet.
- 3. 3DH5 slave: the AR3002 receives a 3DH5 packet from the master and returns a null packet.
- 4. Average power during Tx burst.
- 5. Average power during Rx burst.

NOTE: Measurement conditions are 25 °C

Vin = 1.8 V, +0 dBm RF output power at the chip, UART baud rate is 3 Mbps for EDR and 1.5 Mbps for BDR.

5.1 Package dimensions

The AR3002 is packaged in a QFN package. The body size is 5 mm by 5 mm.

The package drawings, dimensions, and pinouts for QFN packages are provided in Figure 5-1 and Table 5-1. The package drawings, dimensions, and pinouts for SPD packages are provided in Figure 5-2 and Table 5-2.

Figure 5-1 Package drawing – QFN

Dimension Label	Min	Nom	Мах	Unit	Min	Nom	Мах	Unit
А	0.80	0.85	0.90	mm	0.031	0.033	0.035	inches
A1	0.00	0.02	0.05	mm	0.000	0.001	0.002	inches
A3	0.20 REF				0.008 REF			
b	0.15	0.20	0.25	mm	0.006	0.008	0.010	inches
D/E	4.90	5.00	5.10	mm	0.193	0.197	0.201	inches
D2/E2	3.45	3.60	3.75	mm	0.136	0.142	0.148	inches
е	0.40 BSC				0.016 BSC			
L	0.25	0.35	0.45	mm	0.010	0.014	0.018	inches
к	0.20	—	—	mm	0.008	—	—	inches
R	0.075	—	—	mm	0.003	—	—	inches
aaa	0.10			mm	0.004			inches
bbb	0.07			mm	0.003			inches
ссс	0.10			mm	0.004			inches
ddd	0.05			mm	0.002			inches
eee	0.08			mm	0.003			inches
fff	0.10			mm	0.004			inches

Table 5-1 Package dimensions - QFN

1. Controlling dimension: millimeters

2. Reference document: JEDEC MO-220

Dimension Label	Min	Nom	Мах	Unit	Min	Nom	Мах	Unit
А	0.80	0.85	0.90	mm	0.031	0.033	0.035	inches
A1	0.00	0.01	0.05	mm	0.000	0.000	0.002	inches
A2	0.60	0.65	0.70	mm	0.025	0.026	0.028	inches
A3	0.20 REF				0.008 REF			
D	5.00 BSC							
D1	4.75 BSC							
D2	3.50	3.60	3.70	mm	0.137	0.141	0.145	inches
E	5.00 BSC							
E1	4.75 BSC							
E2	3.50	3.60	3.70	mm	0.137	0.141	0.145	inches
θ	0	—	14	o	0	—	14	o
Р	0.24	0.42	0.62	mm				

Table 5-2 Package dimensions - SPD

1. Controlling dimension: millimeters

2. Reference document: JEDEC MO-220

The AR3002 can be ordered by using the following part numbers:

- AR3002-AL3D specifies a halogen-free version of AR3002 QFN (v2.2)
- AR3002-BL3D specifies a halogen-free version of AR3002 QFN (v2.2.1)

Term	Definition
AES	Advanced encryption standard
AHB	Advanced high-performance bus
APB	Advanced peripheral bus
AR	Area ratio
BB	Baseband module
BGA	Ball grid arrays
BIAS	Associated bias/control
BOM	Bill of materials
BT	Bluetooth
CMOS	Complementary metal oxide semiconductor
CODEC	Coder-Decoder
DPSK	Differential Phase Shift Keying
DQPSK	Differential quadrature phase shift keying
EEPROM	Electrically erasable programmable read-only memory
GND	Ground
GPIO	General-purpose input/output
HCI	Host controller interface
LE	Low energy
LDO	Linear voltage regulator
LNA2	Low-noise amplifier
LPO	On-chip low power oscillator
ODM	Original design manufacturer
OEM	Original equipment manufacturer
OTP	One-time programmable
PABIASP	Bias pin for the internal PA
PCM	Pulse-coded modulation
POR	Power-on-reset
QFN	Quad flat no-lead
QTI	Qualcomm Technologies, Inc.
RF	Radio frequency
RFIOP	Radio Frequency Input and Output
RISC	Reduced instruction set computing

Table A-1 Acronyms, abbreviations, and terms

Term	Definition
ROM	Read-only database
Rx	Receive, receiver
SRAM	Static random access memory
Тх	Transmit, transmitter
UART	Universal asynchronous receiver/transmitter
VDD	Supply voltage
WLAN	Wireless local area network

PLEASE READ THIS LICENSE AGREEMENT ("AGREEMENT") CAREFULLY. THIS AGREEMENT IS A BINDING LEGAL AGREEMENT ENTERED INTO BY AND BETWEEN YOU (OR IF YOU ARE ENTERING INTO THIS AGREEMENT ON BEHALF OF AN ENTITY, THEN THE ENTITY THAT YOU REPRESENT) AND QUALCOMM TECHNOLOGIES, INC. ("QTI" "WE" "OUR" OR "US"). THIS IS THE AGREEMENT THAT APPLIES TO YOUR USE OF THE DESIGNATED AND/OR ATTACHED DOCUMENTATION AND ANY UPDATES OR IMPROVEMENTS THEREOF (COLLECTIVELY, "MATERIALS"). BY USING OR COMPLETING THE INSTALLATION OF THE MATERIALS, YOU ARE ACCEPTING THIS AGREEMENT AND YOU AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. IF YOU DO NOT AGREE TO THESE TERMS, QTI IS UNWILLING TO AND DOES NOT LICENSE THE MATERIALS TO YOU. IF YOU DO NOT AGREE TO THESE TERMS YOU MUST DISCONTINUE AND YOU MAY NOT USE THE MATERIALS OR RETAIN ANY COPIES OF THE MATERIALS. ANY USE OR POSSESSION OF THE MATERIALS BY YOU IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH IN THIS AGREEMENT.

1.1 License. Subject to the terms and conditions of this Agreement, including, without limitation, the restrictions, conditions, limitations and exclusions set forth in this Agreement, Qualcomm Technologies, Inc. ("QTI") hereby grants to you a nonexclusive, limited license under QTI's copyrights to use the attached Materials; and to reproduce and redistribute a reasonable number of copies of the Materials. You may not use Qualcomm Technologies or its affiliates or subsidiaries name, logo or trademarks; and copyright, trademark, patent and any other notices that appear on the Materials may not be removed or obscured. QTI shall be free to use suggestions, feedback or other information received from You, without obligation of any kind to You. QTI may immediately terminate this Agreement upon your breach. Upon termination of this Agreement, Sections 1.2-4 shall survive.

1.2 **Indemnification.** You agree to indemnify and hold harmless QTI and its officers, directors, employees and successors and assigns against any and all third party claims, demands, causes of action, losses, liabilities, damages, costs and expenses, incurred by QTI (including but not limited to costs of defense, investigation and reasonable attorney's fees) arising out of, resulting from or related to: (i) any breach of this Agreement by You; and (ii) your acts, omissions, products and services. If requested by QTI, You agree to defend QTI in connection with any third party claims, demands, or causes of action resulting from, arising out of or in connection with any of the foregoing.

1.3 <u>Ownership.</u> QTI (or its licensors) shall retain title and all ownership rights in and to the Materials and all copies thereof, and nothing herein shall be deemed to grant any right to You under any of QTI's or its affiliates' patents. You shall not subject the Materials to any third party license terms (e.g., open source license terms). You shall not use the Materials for the purpose of identifying or providing evidence to support any potential patent infringement claim against QTI, its affiliates, or any of QTI's or QTI's affiliates' suppliers and/or direct or indirect customers. QTI hereby reserves all rights not expressly granted herein.

1.4 WARRANTY DISCLAIMER. YOU EXPRESSLY ACKNOWLEDGE AND AGREE THAT THE USE OF THE MATERIALS IS AT YOUR SOLE RISK. THE MATERIALS AND TECHNICAL SUPPORT, IF ANY, ARE PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED. QTI ITS LICENSORS AND AFFILIATES MAKE NO WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THE MATERIALS OR ANY OTHER INFORMATION OR DOCUMENTATION PROVIDED UNDER THIS AGREEMENT, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR AGAINST INFRINGEMENT, OR ANY EXPRESS OR IMPLIED WARRANTY ARISING OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE. NOTHING CONTAINED IN THIS AGREEMENT SHALL BE CONSTRUED AS (I) A WARRANTY OR REPRESENTATION BY QTI, ITS LICENSORS OR AFFILIATES AS TO THE VALIDITY OR SCOPE OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT OR (II) A WARRANTY OR REPRESENTATION BY QTI THAT ANY MANUFACTURE OR USE WILL BE FREE FROM INFRINGEMENT OF PATENTS, COPYRIGHTS OR OTHER INTELLECTUAL PROPERTY RIGHTS OF OTHERS, AND IT SHALL BE THE SOLE RESPONSIBILITY OF YOU TO MAKE SUCH DETERMINATION AS IS NECESSARY WITH RESPECT TO THE ACQUISITION OF LICENSES UNDER PATENTS AND OTHER INTELLECTUAL PROPERTY OF THIRD PARTIES.

1.5 **LIMITATION OF LIABILITY.** IN NO EVENT SHALL QTI, QTI'S AFFILIATES OR ITS LICENSORS BE LIABLE TO YOU FOR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES, INCLUDING BUT NOT LIMITED TO ANY LOST PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL DAMAGES, ARISING OUT OF THE USE OR INABILITY TO USE, OR THE DELIVERY OR FAILURE TO DELIVER, ANY OF THE MATERIALS, OR ANY BREACH OF ANY OBLIGATION UNDER THIS AGREEMENT, EVEN IF QTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE FOREGOING LIMITATION OF LIABILITY SHALL REMAIN IN FULL FORCE AND EFFECT REGARDLESS OF WHETHER YOUR REMEDIES HEREUNDER ARE DETERMINED TO HAVE FAILED OF THEIR ESSENTIAL PURPOSE. THE ENTIRE LIABILITY OF QTI, QTI'S AFFILIATES AND ITS LICENSORS, AND THE SOLE AND EXCLUSIVE REMEDY OF YOU, FOR ANY CLAIM OR CAUSE OF ACTION ARISING HEREUNDER (WHETHER IN CONTRACT, TORT, OR OTHERWISE) SHALL NOT EXCEED US\$10.

2. **COMPLIANCE WITH LAWS; APPLICABLE LAW.** You agree to comply with all applicable local, international and national laws and regulations and with U.S. Export Administration Regulations, as they apply to the subject matter of this Agreement. This Agreement is governed by the laws of the State of California, excluding California's choice of law rules.

3. **CONTRACTING PARTIES.** If the Materials are downloaded on any computer owned by a corporation or other legal entity, then this Agreement is formed by and between QTI and such entity. The individual accepting the terms of this Agreement represents and warrants to QTI that they have the authority to bind such entity to the terms and conditions of this Agreement.

4. **MISCELLANEOUS PROVISIONS.** This Agreement, together with all exhibits attached hereto, which are incorporated herein by this reference, constitutes the entire agreement between QTI and You and supersedes all prior negotiations, representations and agreements between the parties with respect to the subject matter hereof. No addition or modification of this Agreement shall be effective unless made in writing and signed by the respective representatives of QTI and You. The restrictions, limitations, exclusions and conditions set forth in this Agreement shall

apply even if QTI or any of its affiliates becomes aware of or fails to act in a manner to address any violation or failure to comply therewith. You hereby acknowledge and agree that the restrictions, limitations, conditions and exclusions imposed in this Agreement on the rights granted in this Agreement are not a derogation of the benefits of such rights. You further acknowledges that, in the absence of such restrictions, limitations, conditions and exclusions imposed in this Agreement on the rights granted in this Agreement are not a derogation of the benefits of such rights. You further acknowledges that, in the absence of such restrictions, limitations, conditions and exclusions, QTI would not have entered into this Agreement with You. Each party shall be responsible for and shall bear its own expenses in connection with this Agreement. If any of the provisions of this Agreement are determined to be invalid, illegal, or otherwise unenforceable, the remaining provisions shall remain in full force and effect. This Agreement is entered into solely in the English language, and if for any reason any other language version is prepared by any party, it shall be solely for convenience and the English version shall govern and control all aspects. If You are located in the province of Quebec, Canada, the following applies: The Parties hereby confirm they have requested this Agreement and all related documents be prepared in English.