MAX987/MAX988/MAX991/ MAX992/MAX995/MAX996

High-Speed, Micropower, Low-Voltage, Rail-to-Rail I/O Comparators

General Description

The MAX987/MAX988/MAX991/MAX992/MAX995/ MAX996 single/dual/quad micropower comparators feature low-voltage operation and rail-to-rail inputs and outputs. Their operating voltage ranges from +2.5 V to +5.5 V , making them ideal for both 3 V and 5 V systems. These comparators also operate with $\pm 1.25 \mathrm{~V}$ to $\pm 2.75 \mathrm{~V}$ dual supplies. They consume only $48 \mu \mathrm{~A}$ per comparator while achieving a 120 ns propagation delay.
Input bias current is typically 1.0 pA , and input offset voltage is typically 0.5 mV . Internal hysteresis ensures clean output switching, even with slow-moving input signals.
The output stage's unique design limits supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX987/ MAX991/MAX995 have a push-pull output stage that sinks as well as sources current. Large internal output drivers allow rail-to-rail output swing with loads up to 8mA. The MAX988/MAX992/MAX996 have an open-drain output stage that can be pulled beyond V_{CC} to 6 V (max) above V_{EE}. These open-drain versions are ideal for level translators and bipolar to single-ended converters.
The single MAX987/MAX988 are available in tiny 5-pin SC70 packages, while the dual MAX991/MAX992 are available in ultra-small $\mu \mathrm{MAX}{ }^{\circledR}$ package.

Selector Guide

PART	COMPARATORS PER PACKAGE	OUTPUT STAGE
MAX987	1	Push-Pull
MAX988	1	Open-Drain
MAX991	2	Push-Pull
MAX992	2	Open-Drain
MAX995	4	Push-Pull
MAX996	4	Open-Drain

Applications

- Portable/BatteryPowered Systems
- Threshold Detectors/ Discriminators
- Mobile Communications - Ground/Supply Sensing
- Zero-Crossing Detectors
- IR Receivers
- Window Comparators
- Digital Line Receivers
- Level Translators
$\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

Benefits and Features

- 120ns Propagation Delay
- $48 \mu \mathrm{~A}$ Quiescent Supply Current
- +2.5 V to +5.5 V Single-Supply Operation
- Common-Mode Input Voltage Range Extends 250 mV Beyond the Rails
- Push-Pull Output Stage Sinks and Sources 8mA Current (MAX987/MAX991/MAX995)
- Open-Drain Output Voltage Extends Beyond V_{CC} (MAX988/MAX992/MAX996)
- Unique Output Stage Reduces Output Switching Current, Minimizing Overall Power Consumption
- $100 \mu \mathrm{~A}$ Supply Current at 1 MHz Switching Frequency
- No Phase Reversal for Overdriven Inputs
- Available in Space-Saving Packages:
- 5-Pin SC70 (MAX987/MAX988)
- 8-Pin μ MAX (MAX991/MAX992)

Ordering Information

PART	PIN-PACKAGE	PKG CODE	TOP MARK
MAX987EXK-T	5 SC70-5	X5-1	ABM
MAX987ESA	8 SO	S8-2	-

Ordering Information continued at end of data sheet.
Note: All devices specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.
Typical Application Circuit appears at end of data sheet.

Pin Configurations

Pin Configurations continued at end of data sheet.

MAX987/MAX988/MAX991/ MAX992/MAX995/MAX996

High-Speed, Micropower, Low-Voltage, Rail-to-Rail I/O Comparators

Absolute Maximum Ratings

\qquad

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics (Note 1)

$\left(\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

Electrical Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)$

PARAMETER	SYMBOL	CONDITIONS			MIN TYP	MAX	UNITS
OUT Rise Time (MAX987/MAX991/ MAX995 Only)	$\mathrm{t}_{\text {RISE }}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	15		ns
				$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	20		
				$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	40		
OUT Fall Time	$t_{\text {FALL }}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	15		ns
				$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	20		
				$\mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}$	40		
Propagation Delay	tPD-	$\begin{aligned} & C_{L}=15 \mathrm{pF}, \\ & V_{C C}=5 \mathrm{~V} \end{aligned}$	MAX987/MAX991/ MAX995 only	10 mV overdrive	210		ns
				100 mV overdrive	120		
			MAX988/MAX992/ MAX996 only, RPULLUP $=5.1 \mathrm{k} \Omega$	10mV overdrive	210		
				100 mV overdrive	120		
	tpD+	MAX987/MAX991/MAX995 only, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$		10 mV overdrive	210		
				100 mV overdrive	120		
Power-Up Time	tpu				25		$\mu \mathrm{s}$

Note 1: All device specifications are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Limits over the extended temperature range are guaranteed by design, not production tested.
Note 2: Inferred from the V_{OS} test. Either or both inputs can be driven 0.3 V beyond either supply rail without output phase reversal.
Note 3: V_{OS} is defined as the center of the hysteresis band at the input.
Note 4: I_{B} is defined as the average of the two input bias currents ($\mathrm{l}_{\mathrm{B}-}, \mathrm{I}_{\mathrm{B}+}$).

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Typical Operating Characteristics (continued)
 $\left(\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Pin Description

PIN				NAME	FUNCTION
MAX987 MAX988		MAX991 MAX996	MAX995 MAX996		
SC70	SO	SO/uMAX/	$\begin{gathered} \text { SOI } \\ \text { TSSOP } \end{gathered}$		
1	6	-	-	OUT	Comparator Output
2	7	8	4	V_{CC}	Positive Supply Voltage
3	3	-	-	IN+	Comparator Noninverting Input
4	2	-	-	IN-	Comparator Inverting Input
5	4	4	11	$V_{\text {EE }}$	Negative Supply Voltage
-	-	1	1	OUTA	Comparator A Output
-	-	2	2	INA-	Comparator A Inverting Input
-	-	3	3	INA+	Comparator A Noninverting Input
-	-	5	5	INB+	Comparator B Noninverting Input
-	-	6	6	INB-	Comparator B Inverting Input
-	-	7	7	OUTB	Comparator B Output
-	-	-	8	OUTC	Comparator C Output
-	-	-	9	INC-	Comparator C Inverting Input
-	-	-	10	INC+	Comparator C Noninverting Input
-	-	-	12	IND+	Comparator D Noninverting Input
-	-	-	13	IND-	Comparator D Inverting Input
-	-	-	14	OUTD	Comparator D Output
-	1,5, 8	-	-	N.C.	No Connection. Not internally connected.

MAX987/MAX988/MAX991/ MAX992/MAX995/MAX996

Detailed Description

The MAX987/MAX988/MAX991/MAX992/MAX995/ MAX996 are single/dual/quad low-power, low-voltage comparators. They have an operating supply voltage range between +2.5 V and +5.5 V and consume only $48 \mu \mathrm{~A}$ per comparator, while achieving 120 ns propagation delay. Their common-mode input voltage range extends 0.25 V beyond each rail. Internal hysteresis ensures clean output switching, even with slow-moving input signals. Large internal output drivers allow rail-to-rail output swing with up to 8 mA loads.
The output stage employs a unique design that minimizes supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX987/MAX991/MAX995 have a push-pull output structure that sinks as well as sources current. The MAX988/MAX992/MAX996 have an open-drain output stage that can be pulled beyond V_{CC} to an absolute maximum of 6 V above V_{EE}.

Input Stage Circuitry

The devices' input common-mode range extends from -0.25 V to ($\mathrm{V}_{\mathrm{CC}}+0.25 \mathrm{~V}$). These comparators may operate at any differential input voltage within these limits. Input bias current is typically 1.0 pA if the input voltage is between the supply rails. Comparator inputs are protected from overvoltage by internal body diodes connected to the supply rails. As the input voltage exceeds the supply rails, these body diodes become forward biased and begin to conduct. Consequently, bias currents increase exponentially as the input voltage exceeds the supply rails.

Output Stage Circuitry

These comparators contain a unique output stage capable of rail-to-rail operation with up to 8 mA loads. Many comparators consume orders of magnitude more current during switching than during steady-state operation. However, with this family of comparators, the supplycurrent change during an output transition is extremely small. The Supply Current vs. Output Transition Frequency graph in the Typical Operating Characteristics section shows the minimal supply-current increase as the output switching frequency approaches 1 MHz . This characteristic eliminates the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. Battery life increases substantially in high-speed, batterypowered applications. Rail-to-Rail I/O Comparators

Applications Information

Additional Hysteresis

MAX987/MAX991/MAX995

The MAX987/MAX991/MAX995 have $\pm 2.5 \mathrm{mV}$ internal hysteresis. Additional hysteresis can be generated with three resistors using positive feedback (Figure 1). Unfortunately, this method also slows hysteresis response time. Use the following procedure to calculate resistor values for the MAX987/MAX991/MAX995.

1) Select $R 3$. Leakage current at $\mathbb{I N}$ is under $10 n A$; therefore, the current through $R 3$ should be at least $1 \mu \mathrm{~A}$ to minimize errors caused by leakage current. The current through R 3 at the trip point is $\left(\mathrm{V}_{\text {REF }}-\mathrm{V}_{\mathrm{OUT}}\right)$ / R3. Considering the two possible output states and solving for R 3 yields two formulas: $\mathrm{R} 3=\mathrm{V}_{\mathrm{REF}} / 1 \mu \mathrm{~A}$ or $R 3=\left(V_{R E F}-V_{C C}\right) / 1 \mu A$. Use the smaller of the two resulting resistor values. For example, if $\mathrm{V}_{\text {REF }}=1.2 \mathrm{~V}$ and $V_{C C}=5 \mathrm{~V}$, then the two $R 3$ resistor values are $1.2 \mathrm{M} \Omega$ and $3.8 \mathrm{M} \Omega$. Choose a $1.2 \mathrm{M} \Omega$ standard value for R3.
2) Choose the hysteresis band required $\left(\mathrm{V}_{\mathrm{HB}}\right)$. For this example, choose 50 mV .
3) Calculate R1 according to the following equation:

$$
\mathrm{R} 1=\mathrm{R} 3 \times\left(\mathrm{V}_{\mathrm{HB}} / \mathrm{V}_{\mathrm{CC}}\right)
$$

For this example, insert the values $\mathrm{R} 1=1.2 \mathrm{M} \Omega \mathrm{x}$ $(50 \mathrm{mV} / 5 \mathrm{~V})=12 \mathrm{k} \Omega$.
4) Choose the trip point for $\mathrm{V}_{\text {IN }}$ rising ($\mathrm{V}_{\mathrm{THR}}$; $\mathrm{V}_{\mathrm{THF}}$ is the trip point for V_{IN} falling). This is the threshold voltage at which the comparator switches its output from low to high as V_{IN} rises above the trip point. For this example, choose 3 V .

Figure 1. Additional Hysteresis (MAX987/MAX991/MAX995)

MAX987/MAX988/MAX991/

 MAX992/MAX995/MAX9965) Calculate R2 as shown. For this example, choose an $8.2 \mathrm{k} \Omega$ standard value:

$$
\begin{aligned}
& \mathrm{R} 2=\frac{1}{\left(\frac{\mathrm{~V}_{\mathrm{THR}}}{\mathrm{~V}_{\mathrm{REF}} \times \mathrm{R} 1}\right)-\frac{1}{\mathrm{R} 1}-\frac{1}{\mathrm{R} 3}} \\
& \mathrm{R} 2=\frac{1}{\left(\frac{3.0 \mathrm{~V}}{1.2 \times 12 \mathrm{k} \Omega}\right)-\frac{1}{12 \mathrm{k} \Omega}-\frac{1}{2.2 \mathrm{M} \Omega}}=8.03 \mathrm{k} \Omega
\end{aligned}
$$

6) Verify trip voltages and hysteresis as follows:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}} \text { rising: } \mathrm{V}_{\mathrm{THR}}=\mathrm{V}_{\mathrm{REF}} \times \mathrm{R} 1 \times\left(\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{R} 3}\right) \\
& \mathrm{V}_{\mathrm{IN}} \text { falling: } \mathrm{V}_{\mathrm{THF}}=\mathrm{V}_{\mathrm{THR}}-\left(\frac{\mathrm{R} 1 \times \mathrm{V}_{\mathrm{CC}}}{\mathrm{R} 3}\right) \\
& \text { Hysteresis }=\mathrm{V}_{\mathrm{THR}}-\mathrm{V}_{\mathrm{THF}}
\end{aligned}
$$

MAX988/MAX992/MAX996

The MAX988/MAX992/MAX996 have $\pm 2.5 \mathrm{mV}$ internal hysteresis. They have open-drain outputs and require an external pullup resistor (Figure 2). Additional hysteresis can be generated using positive feedback, but the formulas differ slightly from those of the MAX987/MAX991/MAX995.

Figure 2. Additional Hysteresis (MAX988/MAX992/MAX996)

High-Speed, Micropower, Low-Voltage, Rail-to-Rail I/O Comparators

Use the following procedure to calculate resistor values:

1) Select $R 3$ according to the formulas $R 3=V_{R E F} / 1 \mu A$ or $\mathrm{R} 3=\left(\mathrm{V}_{\mathrm{REF}}-\mathrm{V}_{\mathrm{C}}\right) / 1 \mu \mathrm{~A}-\mathrm{R} 4$. Use the smaller of the two resulting resistor values.
2) Choose the hysteresis band required $\left(\mathrm{V}_{\mathrm{HB}}\right)$. For this example, choose 50 mV .
3) Calculate R1 according to the following equation:

$$
\mathrm{R} 1=(\mathrm{R} 3+\mathrm{R} 4) \times\left(\mathrm{V}_{\mathrm{HB}} / \mathrm{V}_{\mathrm{CC}}\right)
$$

4) Choose the trip point for $V_{I N}$ rising $\left(V_{T H R} ; V_{T H F}\right.$ is the trip point for $\mathrm{V}_{\mathbb{I N}}$ falling). This is the threshold voltage at which the comparator switches its output from low to high as V_{IN} rises above the trip point.
5) Calculate R2 as follows:

$$
R 2=\frac{1}{\left(\frac{V_{T H R}}{V_{R E F} \times R 1}\right)-\frac{1}{R 1}-\frac{1}{R 3+R 4}}
$$

6) Verify trip voltages and hysteresis as follows:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}} \text { rising: } \mathrm{V}_{\mathrm{THR}}=\mathrm{V}_{\mathrm{REF}} \times \mathrm{R} 1 \times \\
& \left(\frac{1}{\mathrm{R} 1}+\frac{1}{\mathrm{R} 2}+\frac{1}{\mathrm{R} 3+\mathrm{R} 4}\right) \\
& \mathrm{V}_{\mathrm{IN}} \text { falling: } \mathrm{V}_{\mathrm{THF}}=\mathrm{V}_{\mathrm{THR}}-\left(\frac{\mathrm{R} 1 \times \mathrm{V}_{\mathrm{CC}}}{\mathrm{R} 3+\mathrm{R} 4}\right) \\
& \text { Hysteresis }=\mathrm{V}_{\mathrm{THR}}-\mathrm{V}_{\mathrm{THF}}
\end{aligned}
$$

Circuit Layout and Bypassing

These comparators' high-gain bandwidth requires design precautions to maximize their high-speed capability. The recommended precautions are:

1) Use a PCB with an unbroken, low-inductance ground plane.
2) Place a decoupling capacitor (a $0.1 \mu \mathrm{~F}$ ceramic capacitor is a good choice) as close to V_{CC} as possible.
3) On the inputs and outputs, keep lead lengths short to avoid unwanted parasitic feedback around the comparators.
4) Solder the devices directly to the PCB instead of using a socket.

MAX987/MAX988/MAX991/

 MAX992/MAX995/MAX996
Zero-Crossing Detector

Figure 3 shows a zero-crossing detector application. The MAX987's inverting input is connected to ground, and its noninverting input is connected to a $100 \mathrm{mVp}-\mathrm{p}$ signal source. As the signal at the noninverting input crosses 0 V , the comparator's output changes state.

Figure 3. Zero-Crossing Detector

High-Speed, Micropower, Low-Voltage, Rail-to-Rail I/O Comparators

Logic-Level Translator

Figure 4 shows an application that converts 5 V logic levels to 3 V logic levels. The MAX988 is powered by the +5 V supply voltage, and the pullup resistor for the MAX988's open-drain output is connected to the +3 V supply voltage. This configuration allows the full 5 V logic swing without creating overvoltage on the 3 V logic inputs. For 3 V to 5 V logic-level translation, simply connect the +3 V supply to V_{CC} and the +5 V supply to the pullup resistor.

Figure 4. Logic-Level Translator

Pin Configurations (continued)

```
TOP VIEW
```


MAX987/MAX988/MAX991/
MAX992/MAX995/MAX996

Typical Application Circuit

High-Speed, Micropower, Low-Voltage, Rail-to-Rail I/O Comparators

Ordering Information (continued)

PART	PIN-PACKAGE	PKG CODE	TOP MARK
MAX988EXK-T	5 SC70-5	X5-1	ABN
MAX988ESA	8 SO	S8-2	-
MAX991EUA-T	8μ MAX-8	$\mathrm{U} 8-1$	-
MAX991ESA	8 SO	$\mathrm{S} 8-2$	-
MAX992EUA-T	8μ MAX-8	$\mathrm{U8}-1$	-
MAX992ESA	8 SO	$\mathrm{S} 8-2$	-
MAX995EUD	14 TSSOP	$\mathrm{U} 14-1$	-
MAX995ESD	14 SO	$\mathrm{S} 14-4$	-
MAX996EUD	14 TSSOP	$\mathrm{U} 14-1$	-
MAX996ESD	14 SO	$\mathrm{S} 14-4$	-

Note: All devices specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.

Tape-and-Reel Information

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Revision History

REVISION NUMBER	DESCRIPTION	PAGES CHANGED
0	Initial Release	-
1	Final test limits added	-
2	Added input current ratings to Absolute Maximum Ratings table	-
3	Removed SOT23 package option	$1-6,8-13$

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
$\underline{M A X 991 E S A+}$ MAX991EKA + T MAX991ESA + T MAX991EUA + MAX991EUA + T

