## Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

## General Description

The MAX4450 single and MAX4451 dual op amps are unity-gain-stable devices that combine high-speed performance with rail-to-rail outputs. Both devices operate from $\mathrm{a}+4.5 \mathrm{~V}$ to +11 V single supply or from $\pm 2.25 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual supplies. The common-mode input voltage range extends beyond the negative power-supply rail (ground in single-supply applications).
The MAX4450/MAX4451 require only 6.5 mA of quiescent supply current per op amp while achieving a $210 \mathrm{MHz}-3 \mathrm{~dB}$ bandwidth and a $485 \mathrm{~V} / \mu$ s slew rate. Both devices are an excellent solution in low-power/lowvoltage systems that require wide bandwidth, such as video, communications, and instrumentation.
The MAX4450 is available in the ultra-small 5-pin SC70 package, while the MAX4451 is available in spacesaving 8-pin SOT23 and SO packages.

Applications
Set-Top Boxes
Surveillance Video Systems
Battery-Powered Instruments
Video Line Driver
Analog-to-Digital Converter Interface
CCD Imaging Systems
Video Routing and Switching Systems
Digital Cameras
Features
Low Cost
High Speed
210MHz -3dB Bandwidth
55MHz 0.1dB Gain Flatness
485V/ Hs Slew Rate
Single +4.5V to +11V Operation
Rail-to-Rail Outputs
Input Common-Mode Range Extends Beyond VEE
Low Differential Gain/Phase: 0.02\%/0.08
Low Distortion at 5MHz
-65dBc SFDR
-63dB Total Harmonic Distortion

Ordering Information

| PART | TEMP RANGE | PIN- <br> PACKAGE | TOP <br> MARK |
| :--- | :--- | :--- | :---: |
| MAX4450EXK-T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 5 SC70 | AAA |
| MAX4450EUK-T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 5 SOT 23 | ADKP |
| MAX4451EKA- T | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SOT23 | AAAA |
| MAX4451ESA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 8 SO | - |



## Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

## ABSOLUTE MAXIMUM RATINGS

Supply Voltage (VCC to VEE)................................................ 12 V<br>IN_-, IN_+, OUT_-.............................(VEE - 0.3 V ) to (VCC +0.3 V )<br>Output Short-Circuit Current to $\mathrm{V}_{C C}$ or $\mathrm{V}_{E E}$....................... 150 mA Continuous Power Dissipation ( $\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$ )<br>5-Pin SC70-5 (derate $2.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ )...<br>.200 mW<br>5-Pin SOT23-5 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ) ........ 571 mW

8-Pin SOT23-8 (derate $5.26 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ) $. \ldots . . .421 \mathrm{~mW}$ 8 -Pin SO (derate $5.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$ ) ................. 471 mW Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (soldering, 10s) $\qquad$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{E E}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~V}_{\text {OUT }}=\mathrm{V}_{C C} / 2, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. Typical values are at $\left.\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}.\right)$ (Note 1)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Common-Mode Voltage Range | Vсм | Guaranteed by CMRR test |  | $\begin{aligned} & \text { VEE - } \\ & 0.20 \end{aligned}$ |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & 2.25 \end{aligned}$ | V |
| Input Offset Voltage (Note 2) | Vos |  |  |  | 4 | 26 | mV |
| Input Offset Voltage Matching |  |  |  |  | 1.0 |  | mV |
| Input Offset Voltage Temperature Coefficient | TCvos |  |  |  | 8 |  | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| Input Bias Current | IB | (Note 2) |  |  | 6.5 | 20 | $\mu \mathrm{A}$ |
| Input Offset Current | Ios | (Note 2) |  |  | 0.5 | 4 | $\mu \mathrm{A}$ |
| Input Resistance | Rin | Differential mode (-1V $\leq \mathrm{V}_{\text {IN }} \leq+1 \mathrm{~V}$ ) |  | 70 |  |  | $\mathrm{k} \Omega$ |
|  |  | Common mode ( $-0.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+2.75 \mathrm{~V}$ ) |  | 3 |  |  | $\mathrm{M} \Omega$ |
| Common-Mode Rejection Ratio | CMRR | $\left(\mathrm{V}_{\mathrm{EE}}-0.2 \mathrm{~V}\right) \leq \mathrm{V}_{\mathrm{CM}} \leq\left(\mathrm{V}_{\mathrm{CC}}-2.25 \mathrm{~V}\right)$ |  | 70 | 95 |  | dB |
| Open-Loop Gain (Note 2) | Avol | $0.25 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 4.75 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ |  | 50 | 60 |  | dB |
|  |  | $0.5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ |  | 48 | 58 |  |  |
|  |  | $1 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 4 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ |  | 57 |  |  |  |
| Output Voltage Swing (Note 2) | Vout | $\mathrm{RL}=2 \mathrm{k} \Omega$ | $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{OH}}$ |  | 0.05 | 0.20 | V |
|  |  |  | VOL - VEE |  | 0.05 | 0.15 |  |
|  |  | $R L=150 \Omega$ | $\mathrm{V}_{\text {CC }}-\mathrm{V}_{\mathrm{OH}}$ |  | 0.30 | 0.50 |  |
|  |  |  | VOL - VeE |  | 0.25 | 0.80 |  |
|  |  | $R \mathrm{~L}=75 \Omega$ | VCC $-\mathrm{V}_{\text {OH }}$ |  | 0.5 | 0.80 |  |
|  |  |  | Vol - Vee |  | 0.5 | 1.75 |  |
| Output Current | Iout | $R \mathrm{~L}=50 \Omega$ | Sourcing | 45 | 70 |  | mA |
|  |  |  | Sinking | 25 | 50 |  |  |
| Output Short-Circuit Current | Isc | Sinking or sourcing |  | $\pm 120$ |  |  | mA |
| Open-Loop Output Resistance | Rout |    |  | 8 |  |  | $\Omega$ |
| Power-Supply Rejection Ratio (Note 3) | PSRR |  |  | 46 | 62 |  | dB |
|  |  | $V C C=5 V$ | $\mathrm{V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~V}_{\text {CM }}=0 \mathrm{~V}$ | 54 | 69 |  |  |
| Operating Supply-Voltage Range | Vs | VCC to VEE |  | 4.5 |  | 11.0 | V |
| Quiescent Supply Current (per amplifier) | Is |  |  |  | 6.5 | 9.0 | mA |

## Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

## AC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=+2.5 \mathrm{~V}, \mathrm{RF}_{\mathrm{F}}=24 \Omega\right.$, $\mathrm{RL}=100 \Omega$ to $\mathrm{VCC} / 2, \mathrm{VOUT}^{2}=\mathrm{VCC} / 2, \mathrm{AVCL}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

| PARAMETER | SYMBOL | CONDITIONS |  | MIN TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Small-Signal -3dB Bandwidth | BWSS | VOUT $=100 \mathrm{mV} \mathrm{P}_{\text {P-P }}$ |  | 210 |  | MHz |
| Large-Signal -3dB Bandwidth | BWLS | Vout $=2 \mathrm{VP-P}$ |  | 175 |  | MHz |
| Bandwidth for 0.1 dB Gain Flatness | BW0.1dB | VOUT $=100 \mathrm{mV} \mathrm{P}_{\text {- }}$ |  | 55 |  | MHz |
| Slew Rate | SR | Vout $=2 \mathrm{~V}$ step |  | 485 |  | V/us |
| Settling Time to 0.1\% | ts | Vout $=2 \mathrm{~V}$ step |  | 16 |  | ns |
| Rise/Fall Time | tr, tF | VOUT $=100 \mathrm{mVP}$-P |  | 4 |  | ns |
| Spurious-Free Dynamic Range | SFDR | $\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}$ |  | -65 |  | dBc |
| Harmonic Distortion | HD | $\begin{aligned} & \mathrm{fC}=5 \mathrm{MHz}, \\ & \text { Vout }=2 \mathrm{~V}_{\text {P-P }} \end{aligned}$ | 2nd harmonic | -65 |  | dBc |
|  |  |  | 3rd harmonic | -58 |  |  |
|  |  |  | Total harmonic distortion | -63 |  |  |
| Two-Tone, Third-Order Intermodulation Distortion | IP3 | $\mathrm{f} 1=4.7 \mathrm{MHz}, \mathrm{f} 2=4.8 \mathrm{MHz}, \mathrm{V}$ OUT $=1 \mathrm{VP-P}$ |  | 66 |  | dBc |
| Channel-to-Channel Isolation | CHiso | Specified at DC |  | 102 |  | dB |
| Input 1dB Compression Point |  | $\mathrm{fc}=10 \mathrm{MHz}, \mathrm{AvCL}=+2 \mathrm{~V} / \mathrm{V}$ |  | 14 |  | dBm |
| Differential Phase Error | DP | NTSC, RL = $150 \Omega$ |  | 0.08 |  | degrees |
| Differential Gain Error | DG | NTSC, RL = $150 \Omega$ |  | 0.02 |  | \% |
| Input Noise-Voltage Density | en | $\mathrm{f}=10 \mathrm{kHz}$ |  | 10 |  | $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ |
| Input Noise-Current Density | $\mathrm{in}_{n}$ | $\mathrm{f}=10 \mathrm{kHz}$ |  | 1.8 |  | $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ |
| Input Capacitance | CIN |  |  | 1 |  | pF |
| Output Impedance | ZOUT | $\mathrm{f}=10 \mathrm{MHz}$ |  | 1.5 |  | $\Omega$ |

Note 1: All devices are $100 \%$ production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over temperature limits are guaranteed by design.
Note 2: Tested with $\mathrm{V}_{\mathrm{CM}}=+2.5 \mathrm{~V}$.
Note 3: PSR for single +5 V supply tested with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V} C \mathrm{C}=+4.5 \mathrm{~V}$ to +5.5 V ; PSR for dual $\pm 5 \mathrm{~V}$ supply tested with $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$ to $-5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=+4.5 \mathrm{~V}$ to +5.5 V .

## Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

$\left(V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=+2.5 \mathrm{~V}, \mathrm{AVCL}^{2}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{F}}=24 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$










# Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs 

## Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0, \mathrm{~V}_{\mathrm{CM}}=+2.5 \mathrm{~V}, \mathrm{AVCL}^{2}=+1 \mathrm{~V} / \mathrm{V}, \mathrm{R}_{\mathrm{F}}=24 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega\right.$ to $\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. $)$






20ns/div



LARGE-SIGNAL PULSE RESPONSE


## Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs



# Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs 

| Pin Description |  |  |  |
| :---: | :---: | :---: | :--- |
| PIN  NAME <br> FUNCTION   <br> MAX4450 MAX4451 OUT <br> 1 - Amplifier Output <br> 2 4 VEENegative Power Supply <br> or Ground (in single- <br> supply operation) |  |  |  |
| 3 | - | IN+ | Noninverting Input |
| 4 | - | IN- | Inverting Input |
| 5 | 8 | VCC | Positive Power Supply |
| - | 1 | OUTA | Amplifier A Output |
| - | 2 | INA- | Amplifier A Inverting <br> Input |
| - | 3 | INA+ | Amplifier A Noninverting <br> Input |
| - | 7 | OUTB | Amplifier B Output |
| - | 6 | INB- | Amplifier B Inverting <br> Input |
| - | 5 | INB+ | Amplifier B Noninverting <br> Input |

## Detailed Description

The MAX4450/MAX4451 are single-supply, rail-to-rail, voltage-feedback amplifiers that employ current-feedback techniques to achieve $485 \mathrm{~V} / \mu$ s slew rates and 210 MHz bandwidths. Excellent harmonic distortion and differential gain/phase performance make these amplifiers an ideal choice for a wide variety of video and RF signal-processing applications.
The output voltage swings to within 55 mV of each supply rail. Local feedback around the output stage ensures low open-loop output impedance to reduce gain sensitivity to load variations. The input stage permits common-mode voltages beyond the negative supply and to within 2.25 V of the positive supply rail.

## Applications Information

## Choosing Resistor Values <br> Unity-Gain Configuration

The MAX4450/MAX4451 are internally compensated for unity gain. When configured for unity gain, the devices require a $24 \Omega$ resistor ( $\mathrm{RF}_{\mathrm{F}}$ ) in series with the feedback path. This resistor improves AC response by reducing the $Q$ of the parallel LC circuit formed by the parasitic feedback capacitance and inductance.

## Inverting and Noninverting Configurations

Select the gain-setting feedback ( $\mathrm{RF}_{\mathrm{F}}$ ) and input ( $\mathrm{R}_{\mathrm{G}}$ ) resistor values to fit your application. Large resistor values increase voltage noise and interact with the amplifier's input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration $\left(R_{F}=R_{G}\right)$ using $1 \mathrm{k} \Omega$ resistors, combined with 1 pF of amplifier input capacitance and 1 pF of PC board capacitance, causes a pole at 159 MHz . Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the $1 \mathrm{k} \Omega$ resistors to $100 \Omega$ extends the pole frequency to 1.59 GHz , but could limit output swing by adding $200 \Omega$ in parallel with the amplifier's load resistor. Table 1 lists suggested feedback and gain resistors, and bandwidths for several gain values in the configurations shown in Figures 1 a and 1b.

## Layout and Power-Supply Bypassing

These amplifiers operate from a single +4.5 V to +11 V power supply or from dual $\pm 2.25 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ supplies. For single-supply operation, bypass $\mathrm{V}_{C C}$ to ground with a


Figure 1a. Noninverting Gain Configuration


Figure 1b. Inverting Gain Configuration

## Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

## Table 1. Recommended Component Values

| COMPONENT | GAIN (V/V) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | +1 | -1 | +2 | -2 | +5 | -5 | +10 | -10 | +25 | -25 |
| RF ( $\Omega$ ) | 24 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 500 | 1200 |
| $\mathrm{RGG}^{(\Omega)}$ | $\infty$ | 500 | 500 | 250 | 124 | 100 | 56 | 50 | 20 | 50 |
| RS ( $\Omega$ ) | - | 0 | - | 0 | - | 0 | - | 0 | - | 0 |
| Rtin ( $\Omega$ ) | 49.9 | 56 | 49.9 | 62 | 49.9 | 100 | 49.9 | $\infty$ | 49.9 | $\infty$ |
| RTO ( $\Omega$ ) | 49.9 | 49.9 | 49.9 | 49.9 | 49.9 | 49.9 | 49.9 | 49.9 | 49.9 | 49.9 |
| Small-Signal -3dB Bandwidth (MHz) | 210 | 100 | 95 | 50 | 25 | 25 | 11 | 15 | 5 | 10 |

Note: $R_{L}=R_{O}+R_{T O} ; R_{\text {TIN }}$ and RTO are calculated for $50 \Omega$ applications. For $75 \Omega$ systems, RTO $=75 \Omega$; calculate RTIN from the following equation:

$$
\mathrm{R}_{\mathrm{TIN}}=\frac{75}{1-\frac{75}{\mathrm{R}_{\mathrm{G}}} \Omega}
$$

$0.1 \mu \mathrm{~F}$ capacitor as close to the pin as possible. If operating with dual supplies, bypass each supply with a $0.1 \mu \mathrm{~F}$ capacitor.
Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure that the PC board does not degrade the amplifier's performance, design it for a frequency greater than 1 GHz . Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constantimpedance board, observe the following design guidelines:

- Don't use wire-wrap boards; they are too inductive.
- Don't use IC sockets; they increase parasitic capacitance and inductance.
- Use surface-mount instead of through-hole components for better high-frequency performance.
- Use a PC board with at least two layers; it should be as free from voids as possible.
- Keep signal lines as short and as straight as possible. Do not make $90^{\circ}$ turns; round all corners.


## Rail-to-Rail Outputs, Ground-Sensing Input

The input common-mode range extends from (VEE - 200mV) to (VCC - 2.25V) with excellent commonmode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not undergo phase reversal or latchup.
The output swings to within 55 mV of either powersupply rail with a $2 \mathrm{k} \Omega$ load. The input ground sensing
and the rail-to-rail output substantially increase the dynamic range. With a symmetric input in a single +5 V application, the input can swing $2.95 \mathrm{VP}_{\mathrm{P}-\mathrm{P}}$ and the output can swing 4.9VP-P with minimal distortion.

## Output Capacitive Loading and Stability

 The MAX4450/MAX4451 are optimized for AC performance. They are not designed to drive highly reactive loads, which decrease phase margin and may produce excessive ringing and oscillation. Figure 2 shows a circuit that eliminates this problem. Figure 3 is a graph of the optimal isolation resistor (RS) vs. capacitive load. Figure 4 shows how a capacitive load causes excessive peaking of the amplifier's frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually $20 \Omega$ to $30 \Omega$ ) placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. Figure 5 shows the effect of a $27 \Omega$ isolation resistor on closed-loop response.Coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the line's capacitance.

## Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs



Figure 2. Driving a Capacitive Load Through an Isolation Resistor

Figure 4. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor


Figure 3. Capacitive Load vs. Isolation Resistance


Figure 5. Small-Signal Gain vs. Frequency with Load Capacitance and $27 \Omega$ Isolation Resistor

Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs


## Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

## Package Information

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", " $\#$ ", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

| PACKAGE TYPE | PACKAGE CODE | DOCUMENT NO. |
| :---: | :---: | :---: |
| 5 SC70 | X5-1 | $\underline{\mathbf{2 1 - 0 0 7 6}}$ |
| 5 SOT23 | U5-2 | $\underline{\mathbf{2 1 - 0 0 5 7}}$ |
| 8 SOT23 | K8-2 | $\underline{\mathbf{2 1 - 0 0 7 8}}$ |
| 8 SO | S8-5 | $\underline{\mathbf{2 1 - 0 0 4 1}}$ |



## Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.


| SYMBDL | MIN | NDM | MAX |
| :--- | :---: | :---: | :---: |
| $A$ | 0.90 | 1.25 | 1.45 |
| A1 | 0.00 | 0.05 | 0.15 |
| A2 | 0.90 | 1.10 | 1.30 |
| $b$ | 0.35 | 0.40 | 0.50 |
| C | 0.08 | 0.15 | 0.20 |
| $D$ | 2.80 | 2.90 | 3.00 |
| E | 2.60 | 2.80 | 3.00 |
| E1 | 1.50 | 1.625 | 1.75 |
| L | 0.35 | 0.45 | 0.60 |
| L1 | 0.60 REF |  |  |
| $e$ | 0.95 BSC. |  |  |
| e1 | 1.90 BSC. |  |  |
| $a$ | $0^{\circ}$ | $2.5^{\circ}$ |  |
| PKG CDDES: U5-1, U5-2 |  |  |  |
|  |  |  |  |

SIDE VIEW


NaTES:

1. aLL dimensians are in millimeters.
fogt length measured at intercept paint between
DATUM A \& LEAD SURFACE.
2. PACKAGE DUTLINE EXCLUSIVE DF MILD FLASH \& METAL BURR. MDLD FLASH, PROTRUSION OR METAL BURR SHDULD NDT EXCEED 0.25 MM.
3. PACKAGE IUTLINE INCLUSIVE $\quad$ GF SZLDER PLATING.
4. MEETS JEDEC MO178, VARIATIUN AA.
5. LEADS TO BE CIPLANAR WITHIN 0.10 mm .
6. SOLDER THICKNESS MEASURED AT FLAT SECTION DF LEAD beTWEEN 0.08 mm AND 0.15 mm FRDM LEAD TIP.


# Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs 

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

## NOTE:

1. ALL DIMENSIDNS ARE IN MILLIMETERS.
2. FIDT LENGTH MEASURED FRDM LEAD TIP to UPPER RADIUS af HEEL af the LEAD parallel to seating plane c.
3. PACKAGE DUTLINE EXCLUSIVE GF MILD FLASH \& METAL BURR
4. PACKAGE DUTLINE INCLUSIVE DF SQLDER PLATING.
5. CDPLANARITY 4 MILS. MAX
6. MARKING IS FIR PACKAGE DRIENTATIGN REFERENCE $\quad$ NLLY
7. SOLDER THICKNESS MEASURED AT FLAT SECTIDN DF LEAD BETWEEN 0.08 mm AND 0.15 mm FRDM LEAD TIP
8. MEETS JEDEC MDI78 VARIATIDN BA.
9. ALL DIMENSIONS APPLY TO BDTH LEADED ( - ) AND LEAD FREE ( + ) PACKAGE codes.

-DRAWING NOT TO SCALE-
PACKAGE OUTLINE, SOT-23, 8L BODY

|  |  |  |  |
| :--- | :--- | :--- | :--- |
| TITLE: |  |  |  |
| PACKAGE OUTLINE, SOT-23, 8L BODY |  |  |  |
| APPROVAL | OOCUMENT CONTROL NO. <br> $21-0078$ | I |  |

## Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a " + ", " "", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.


TOP VIEW
TOP


FRONT VIEW

|  | INCHES |  | MILLIMETERS |  |
| :--- | :---: | :---: | :---: | :---: |
| DIM | MIN | MAX | MIN | MAX |
| A | 0.053 | 0.069 | 1.35 | 1.75 |
| A1 | 0.004 | 0.010 | 0.10 | 0.25 |
| B | 0.014 | 0.019 | 0.35 | 0.49 |
| C | 0.007 | 0.010 | 0.19 | 0.25 |
| e | 0.050 BSC |  | 1.27 |  |
| BSC |  |  |  |  |
| E | 0.150 | 0.157 | 3.80 | 4.00 |
| H | 0.228 | 0.244 | 5.80 | 6.20 |
| L | 0.016 | 0.050 | 0.40 | 1.27 |

VARIATIONS:

|  | INCHES |  | MILLIMETERS |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIM | MIN | MAX | MIN | MAX | N | MS012 |  |
| D | 0.189 | 0.197 | 4.80 | 5.00 | 8 | AA |  |
| D | 0.337 | 0.344 | 8.55 | 8.75 | 14 | AB |  |
| D | 0.386 | 0.394 | 9.80 | 10.00 | 16 | AC |  |


SIDE VIEW

NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006").
3. LEADS TO BE COPLANAR WITHIN 0.10 mm (.004").
4. CONTROLLING DIMENSION: MILLIMETERS.
5. MEETS JEDEC MSO12.
6. $N=$ NUMBER OF PINS.

DALLAS /VI/XI/VI
CTOR
PROPR
PACKAGE OUTLINE, .150" SOIC

| APPROVAL | $21-0041$ | B | $1 / 1$ |
| :--- | ---: | ---: | ---: |

# Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs 

Revision History

| REVISION <br> NUMBER | REVISION <br> DATE | DESCRIPTION | PAGES <br> CHANGED |
| :---: | :---: | :--- | :---: |
| 4 | $11 / 09$ | Corrected TOC 20 | 6 |

