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Abstract

SuperNEC is a method of moments (MoM) electromagnetic field solver based on the Nu-
merical Electromagnetics Code (NEC). Much of the simulation time can be attributed to
the filling of the impedance matrix, which is performed at each frequency point of interest.
Impedance matrix interpolation methods have been implemented in SuperNEC to reduce
the computational time required to fill the impedance matrix [Z]. Elements in [Z] vary pre-
dictably over frequency and can be approximated by a second order polynomial. A second
improved method is implemented where the dominant frequency variation term is removed
prior to calculating the fitting function. A method of determining the optimum sample range
relative to simulation range and maximum interaction distance has been developed. Given
the correct choice of sample range the mean error in the MoM solution is less than 10% over
the frequency range and the input impedance can be reproduced with good agreement over
a wide bandwith. Improvement in the simulation efficiency of 1.7 times can be expected if
sufficient frequency points are of interest to account for the computational time required to
sample the matrix and determine fitting function coefficients. This method has been applied
to a dipole antenna, an LPDA and a horn antenna. To increase the simulation bandwidth
and retain an acceptable level of accuracy, the bandwidth is split into multiple sub-bands.
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Foreword

This dissertation is presented to the University of the Witwatersrand, Johannesburg for the
degree of Master of Science in Engineering.

The dissertation is entitled “A SuperNEC Implementation of Model Based Parameter Es-
timation by Interpolating the Method of Moments Impedance Matrix”. The method in-
creases the computational efficiency of the Method of Moments (MoM) by interpolation the
Impedance matrix. The method was implemented using C++ in SuperNEC, a commercial
electromagnetics simulation package. The code was extensively tested to find optimum sam-
ple range and solution error using Matlab. Radiation pattern interpolation methods were
also explored.

This document complies with the university’s paper model format. The paper contains the
main results of the research. The appendices present in detail the work conducted during
the research.

Appendix A presents theory and method used to apply the impedance matrix interpolation
to MoM and SuperNEC.

Appendix B presents the error analysis when the method is applied to a MoM structure.
The method for determining the optimum sample range is discussed and applied to antenna
structures.

Appendix C presents the analysis of the computational efficiency of the impedance matrix
interpolation methods as compared to the standard SuperNEC computation.

Appendix D presents the interpolation of the SuperNEC radiation patterns with the use of
rational functions.
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A SuperNEC Implementation of Model Based
Parameter Estimation by Interpolating the Method

of Moments Impedance Matrix
Neil Iain O’Leary

Abstract— SuperNEC is a method of moments (MoM) electro-
magnetic field solver based on the Numerical Electromagnetics
Code (NEC). Much of the simulation time can be attributed
to the filling of the impedance matrix, which is performed at
each frequency point of interest. Impedance matrix interpolation
methods have been implemented in SuperNECto reduce the
computational time required to fill the impedance matrix [Z].
Elements in [Z] vary predictably over frequency and can be
approximated by a second order polynomial. A second improved
method is implemented where the dominant frequency variation
term is removed prior to calculating the fitting function. A
method of determining the optimum sample range relative to
simulation range and maximum interaction distance has been
developed. Given the correct choice of sample range the mean
error in the MoM solution is less than 10% over the frequency
range and the input impedance can be reproduced with good
agreement over a wide bandwith. Improvement in the simulation
efficiency of 1.7 times can be expected if sufficient frequency
points are of interest to account for the computational time
required to sample the matrix and determine fitting function
coefficients. This method has been applied to a dipole antenna, an
LPDA and a horn antenna. To increase the simulation bandwidth
and retain an acceptable level of accuracy, the bandwidth is split
into multiple sub-bands.

Index Terms— MoM efficiency, Impedance matrix interpola-
tion, SuperNEC

I. INTRODUCTION

THE use of the Method of Moments (MoM) as a
frequency domain field solver is a well used technique

to accuracy predict the electromagnetic (EM) characteristics
of large structures [1]. When designing antennas, observable
parameters such as input impedance, VSWR and radiation
patterns are required over a wide frequency range [2].
Generation of wide bandwidth EM information using MoM
is a computationally expensive task as the MoM procedure is
performed at each frequency point of interest. Much of the
computational time used is in the filling and solving of the
N × N impedance matrix ([Z]), where N is the number of
unknowns in the problem.
Miller in [3] introduced Model-Based Parameter Estimation
(MBPE) as a form of “smart” curve fitting. Where a fitting
model (FM) is applied to a observable parameters itself
[4] or in the formulation field solver [5] thus reducing
the computational time in generating the wide bandwith
information with minimal loss in solution accuracy. MBPE
was applied in [6] to increase the computational efficiency of
determining EM transfer function with the use of a rational

function which is solved using the Padé procedure [7].

MBPE was applied to the efficient generation of radiation
patterns by Werner in [8] spatially and over the frequency.
This method uses the Padé rational function to approximate
the radiation pattern. The rational function coefficients are
determined by sampling far electric field values at various
spacial and frequency points. This method was implemented
by the author in SuperNEC in [9] with poor results. Correct
rational function order is critical in obtaining an accurate
fitting model, this requires apriori knowledge of the number
of poles in the transfer function.
Werner further improved this method in [10] to fixed order
rational function over smaller sub-bands. The method can
however be used to reduce the amount of storage required in
storing wideband three dimensional radiation patterns as the
FM can be stored instead of all the numerical values.

Each of the impedance matrix elements is determined
by evaluating a integral over the segment length [11].
While simple numerical integration techniques have been
developed [12] these integrals are evaluated for each source-
observation point in the structure at every observation
frequency. Computational efficiency can be improved if the
evaluation of the integral is replaced with a simple FM model.
Impedance matrix interpolation as a form of MBPE was
implemented by Newman [13] where the impedance matrix
elements where approximated by simpler quadratic fitting
functions thus reducing the time required to fill the impedance
matrix. Newman applied the method to dipole antenna cases
producing accurate approximations. The method was futher
applied to mobile communication antennas by Rahmat-Samii
[14], a method of interpolating the admittance matrix ([Y])
with rational functions was also implemented in this paper
thus removing the need to invert the impedance matrix.
A high order rational function was needed to accurately
approximate the unpredictable admittance matrix elements
and with improved matrix invertions methods such as LU
decomposition [15] make the efficiency improvement in this
method negligible. The method has been applied to planar
microstrip antennas in [16], [17] with accurate results and
good improvements in computational efficiency.

SuperNEC is an object-oriented (OO) C++ [18] implemen-
tation of the MoM Numerical Electromagnetics Code (NEC2)
originally developed by the Lawrence Livermore Laboratory
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[11]. The OO nature of the code makes it possible to easily
add functionality to the code, additions include a Uniform
Geometric Theory of Diffraction (UTD) MoM hybrid [19],
dielectric coated wires and a MoM parallel implementation
[20].

Impedance matrix interpolation methods have been im-
plemented in the SuperNEC code, this is achieved by ap-
proximating the elements in the impedance matrix with a
quadratic function. Two methods have been implemented: a
standard method where all the elements are approximated with
a quadratic function directly, and improved method where the
frequency variant component is removed prior to approxima-
tion and a windowed sub band method. A detailed explanation
of the theory and implementation of these methods can be
found in [21]. Section II outlines the MoM procedure and
impedance matrix interpolation method, Section III is on how
the method was implemented in SuperNEC and determining
correct sample range. Results applied to antenna cases and
computational efficiency of the methods are discussed in
Section IV and Section V respectively.

II. INTERPOLATION METHOD

The Electric Field Integral Equation (EFIE) is solved in
MoM by splitting the structure into N short thin pieces or
segments such that the thin wire approximation [11] can be
applied. The currents on each of the segments are solved by a
linear system in Eq. (1) where [Z] is the generalised impedance
matrix, [I ] is the unknown structure current vector and [V ] is
the known excitation.

[Z][I ] = [V ] (1)

The impedance matrix is can be referred to the as matrix of
mutual impedance between source segments m and observa-
tion segment n, notation used to refer to a single entry in the
matrix is Zm,n. Each element in [Z] is determined by:

Zm,n =

∫

L

f(s)

[

δ2

δsδs
g(rm, rn) + k2g(rm, rn)

]

ds′ (2)

Where g(rm, rn) =
e−jk|−→rm−−→rn|

|−→rm −−→rn|
is the free space Green’s function and f(s) is a set of sine,
cosine and constant basis functions used the MoM procedure
[11].
Much of the computational time in MoM is in the filling of
the N ×N impedance matrix [Z] which is performed at every
frequency point of interest. If the matrix filling function in
Eq. (2) can be replaced with a simple FM the computational
time used to fill [Z] can be greatly reduced. Approximating
the MoM solution [I ] is difficult due to the unpredictability
of the frequency variation, a high order rational function is
needed to for an accurate FM.

The elements in the impedance matrix vary predictably over
frequency, hence it is possible to approximate the elements
in the matrix with a low order polynomial function or Taylor
series. Consider a 1 Metre long dipole antenna segmented in 30
equal pieces, the input impedance of the antenna over a wide
frequency range, 100MHz to 800MHz, is shown in Fig. 1. By
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Fig. 1. Input impedance of 1m dipole antenna over wide frequency band

contrast consider three element of the impedance matrix in
Fig. 2: Z1,1 represents the self impedance of the first segment,
Z1,10 is the mutual impedance between the first and tenth
segment (0.34m appart) and Z1,20 is the mutual impedance
between the first and twentieth segment (0.7m appart). While
the frequency variation increases with the interaction distance
it is still significantly less than is the case of the input
impedance. The input impedance could be easily approximated
with the use of a rational function given the correct order
for this case, however for an antenna with a greater level
of variation in the observable the FM order would not hold.
Variation in impedance matrix elements is constant for any
given antenna characteristics, this factor makes it possible
to apply MBPE to accurately approximate the observables
for a generalised structure. Interpolation the elements in the
impedance matrix directly over frequency is known as the
standard interpolation method.

From Eq. (2) it is clear that frequency variation term
e−j2πλ

−→
R , where

−→
R is the interaction distance between the

source and observations segments, begins to dominate as the
interaction distance increases. For interaction distances greater
than 0.5λ removing this terms results in the impedance matrix
elements becoming more predictable over frequency. Thus a
new matrix is [Z]′ generated by:

[Z]′ =
[Z]

e−j2πλ
−→
R

(3)

Fig. 3 shows the same impedance matrix elements as Fig. 2
with the variant component removed. It is clear that the
frequency variation is significantly less and a simple approx-
imation model could be used to accurately approximate the
elements over a wide frequency bandwidth. Fitting a second
order polynomial function to the [Z]′ matrix is referred to
as the improved interpolation method. The improvement in
simulation efficiency is not as great as the standard method
explained above as computational effort is required to remove
the variant componets after sampling and reintroducing it when
filling the matrix by evaluating the quadratic functions.

Coefficients of the fitting function are determined by sam-
pling the matrix at specified frequency points, this is achieved
by filling the matrix in the standard fashion for the standard
interpolation method. Samples for the improved method have
the variant component removed before the coefficients are
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Fig. 2. Three [Z] elements over frequency

solved. As the elements in the impedance matrix are complex
two fitting functions are required to approximate each of the
elements. Newman used a quadratic function to approximate
the real components and a logarithmic expression to account
for the logarithmic singularity with frequency of element
self impedance [13]. However it was found that a quadratic
function could approximate the imaginary component was well
without the need for introducing logarithmic functions. The
method of least squares was used to determine the coefficients
of the polynomial fitting functions as the method is flexible as
to polynomial order and number of samples used to determine
the coefficients [23]. A better approximation was expected
when using a higher order polynomial approximation or when
sampling a higher number of sample points. In testing with
various polynomial orders and sample frequencies it was found
that the sample range (∆f ) of the sample points had the
greatest effect on the accuracy in the solution [21]. The error
level converges when the optimum sample range is used, the
method of determing this range is covered in Section III.
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Fig. 3. Three [Z]′ elements over frequency

Fig. 4 shows a second order polynomial function approxi-
mating Z1,17 for a wire structure, the separation distance of the
two elements is 0.5m. The standard interpolation method holds
over a small frequency range but becomes highly inaccurate
toward the upper end of the range. By contrast the improved
interpolation method shows and accurate approximation of the
element over the entire frequency range. While these figures
show that the standard method is highly inaccurate the method
should not be discounted for electrically small structures and
small frequency bandwidths due to the superior efficiency
increase compared with the improved method.

III. IMPLEMENTATION FOR WIRE STRUCTURES

Wire structures in SuperNEC are modelled by intercon-
nected segments and plates as mesh segments grids [24]. It is
of utmost importance that the structure is segmented correctly.
Restrictions in the segments length, radius and interconnection
are due to the assumptions in reducing the EFIE from a vector
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Fig. 4. Z1,17 with polynomial approximation over wide frequency range

to a scalar equation, the restrictions themselves can be found
in [25]. An incorrectly segmented structure will result in errors
in [Z] and ultimately the MoM solution. When approximating
[Z] elements the error is compounded as they no longer follow
a non-pole relationship over frequency. Neither the standard
nor improved methods of approximating the elements can be
used. When using impedance matrix interpolation the structure
should be segmented at the highest frequency of interest.
A higher segmentation frequency will result in a shorter
segments and hence more unknowns in the solution. A trade
off between accuracy in the MBPE solution and simulation
efficiency results as segmentation at a lower frequency may
produce less accurate results but a greater simulation speedup
will be achieved. Where possible frequency scaling should be
used to reduce the problem size and the minimum possible
upper frequency should be used for segmentation. Another
method to counteract the segmentation paradox is to use
multiple sub-bands, where the simulation frequency range is
split into smaller bands with impedance matrix interpolation
performed on each of the smaller bands. Each sub-band

upper frequency should be used for the segmentation of the
structure thus reducing the problem size for the all but the
upper most frequency band. Discontinuities will result between
band junctions, a trade off which may be acceptable given a
sufficient speedup in simulation time. Discontinuities can be
minimised by using overlapping bands with a window function
to smooth the junction, as was implemented by the Author
with impedance matrix elements in [21].

A. Determing sample range

Interaction distance between source and observations seg-
ments has the greatest effect on the variation of the elements
in the impedance matrix, while the elements in the reduce
variation matrix are as dependent on interaction distance the
effect is still apparent.

MoM solution accuracy depends on choice of correct sam-
ple and simulation range. The method used by Newman in
[13] was to apply the Nyquist sampling criteria such that
wavenumber step (∆k) size is less than π. Maximum sample
range can thus determined by:

∆fs =
f

2Rmax

λ

(4)

This specifies the upper step size for the standard interpolation
method and as a result a smaller step size should be used
when applying standard interpolation and a greater one
for the improved method. This method does not however
specify the bandwidth over which the interpolation function
can be accurately extrapolated. Eq. (4) also only relates the
sample range to the maximum interaction distance of the
structure and not the simulation range. If a narrow frequency
band is required it would be advantageous to sample over
a narrower band than specified by Eq. 4. Yeo and Mittra in
[16] related the sample range to the upper frequency value by
specifying f in Eq. (4) to be the upper most frequency value
of interest (fmax). Given an upper frequency value too high
this method would produce inaccurate results as the fitting
functions would be poorly conditioned. For structures with
a maximum interaction distance of less than 1λ a too wide
sample range would be achieved, again resulting in poorly
conditioned fitting functions. Segmentation must be done at
the highest frequency of interest whether it be a sample or
simulation frequency, thus there is no point in sampling at
higher frequencies than are of interest.

The sample range from Eq. (4)is reduced by the addition
sample range coefficient (ks):

∆fs = ks ×
fcentre

2Rmax

λ

(5)

(ks) is determined by the total simulation range (fM ) in
order to minimise the error for specified simulation range
and maximum interaction distance. The simulation range is
specified as an input parameter and related to the maximum
interaction distance distance by a simulation range coefficient
(kf ):

fM = kf ×
fcentre

Rmax

λ

(6)
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In general it was found that if the required simulation range
coefficient (kf ) was greater than one the simulation band is
too large and should be split into sub-bands. As mentioned
before if the maximum interaction distance is less than 1λ

unity should be used for the maximum interaction distance.
The curves in Fig. 5 are used to obtain (kf ) from the simulation
range coefficient calculated in Eq. (6). These curves where
produced by simulation an arbitrary wire structure over the
simulation ranges varying the sample range, the point where
minmum error was achieved was noted. This process was
repeated for increasing interaction distance case, the number
of unknowns in the structure where kept constant as increasing
the problem size would change the level of error achieved. Fig.
5 is for the improved interpolation case, the curve for the stan-
dard interpolation allthough similar can be found in [26].Mean
square structure current error over the entire simulation range
was used to calculate the error in the simulation, the method
will be discussed in greater depth in Section IV.
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Fig. 6 shows the mean root square error over simulation
range coefficient (kf ) for increasing maximum interaction
distance. The error in the solution steadily increases with
increasing simulation range and given a too large simulation

range the error in the solution becomes unacceptable. Note that
the above curves must only be used as a guide as to the error
in the solution. Other factors such as the number of segments
in the structure, position of all the segments and segment
connection will effect the final accuracy of the solution.

B. Required storage

The amount of additional memory used in the MBPE
scheme is worth noting. Since three impedance matrices must
be filled and stored in order to calculate fitting function coeffi-
cients the amount of additional memory increases rapidly with
problem size. Another source of additional memory required
is in the storing of the fitting function coefficients them-
selves, three coefficients are required for the fitting function.
Impedance matrix elements and fitting function coefficients are
complex values each expressed by two float value, the amount
of additional memory in bytes is:

MEMmax = (8 × 7.5)N2 (7)

This is for the improved interpolation case, where three
samples are taken for second order polynomial fitting function.
As the problem size exceeds 800 unknowns 1GB of additional
memory is required.

IV. RESULTS

The usefullness of any optimisation method is determined
by how accurately it can be used and the improvement in
efficiency. When using approximation functions as is the
case with impedance matrix interpolation a certain level of
accuracy will be lost, in general this error will increase with
extrapolation past the centre frequency. One of impedance
matrix interpolation’s best attributes is it’s the ability to apply
the technique to any structure. The method has been applied
to various wire and grid structures, these are a Dipole antenna,
Log periodic dipole array and a horn antenna. Each of these
introduce different elements in the simulation, being size,make
up of structure and addition of transmission lines. In order to
specify error it is important to have an error norm, which
must be applied to a element of the simulation being either in
the simulation domain or the solution domain. Looking at the
error of the impedance matrix approximation functions is not
useful as error in the impedance matrix will be increased when
the matrix is inverted and solution found. On the other hand
looking at an observable parameter such as input impedance
will also not give a realistic error norm as input impedance
is only calculated on a single segment (as is the case when a
single excitation is used). Error in segments far away from the
excitation would not have a great effect the input impedance
however would have a significant effect on the radiation
pattern. Error in radiation pattern is a good method as it
incorporates all the effect of all the segments, radiation pattern
specified in dB gives a intuitive value for error. Calculation of
wideband three dimensional radiation patterns however is not
only computationally expensive a large amount of storage is
needed is needed to post process the results. The error norm is
thus calculated with the MoM solution, the current vector [I ].
Relative root mean square error is used as it gives the most
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intuitive results and offsets in phase do not cause an unrealistic
amount of solution error. The error as a function of frequency
is defined by:

e(f) =
1

N

√

√

√

√

N
∑

k=1

|Ik − Im
k |2

|Ik|2
(8)

A norm as the mean error over the frequency range is then:

‖e‖ =
1

nf

nf
∑

f=1

e(f) (9)

A confidence interval is defined as the frequency range extend-
ing on either side of the centre frequency where the error is
less than 10%. It is often found that the confidence interval is
greater on the upper frequency range than the lower however
is expressed by a single value. The confidence interval gives
a user an idea of the simulation range that the technique can
be used and still reproduce accurate results.

A. Dipole Antenna

The impedance matrix interpolation technique was applied
to a 0.5m dipole antenna with a centre frequency of 500MHz.
The dipole antenna is used as it’s simplicity in structure and in
observables [2] makes it good for benchmarking the technique.
In general MBPE techniques would not be applied to cases
this small and simple as simulation from first principles can
be done quickly with modern computers.
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Fig. 7. Root square structure current error over simulation range for dipole
antenna

Fig. 7 shows the mean root square error over frequency
for the dipole antenna, both method show a low level of
error over the entire range being 0.04% and 0.4% for the
standard and improved methods respectively. In cases such
as this where the maximum interaction distance is small the
standard method outperforms the improved one. While the
error is small for both case the simulation time improvement
is better of the standard case being 36% apposed to 34% with
improved method. However the gain in seconds is so slight
that the loss in accuracy is not worth the speedup in simulation
time.

B. Log Periodic Dipole Array

Broadband antennas such as the LPDA are ideally suited
to MBPE method due to the wide frequency range required
and size of the structure [27]. As there are many variable
parameters in the structure numerous computer simulations
are required to optimise the design. Even a small increase
in simulation efficiency will result in a large time reduction
when computing observables for a large number of cases. The
LPDA brings transmission lines into the structure which effect
the performance if the impedance matrix fitting models.
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Fig. 8 shows the input impedance the LPDA antenna and the
impedance generated with the improved interpolation method.
The observable curve is well conditioned over the entire range.
Consider the root square error in Fig. 9, the standard method
shows a high level of inaccuracy while the improved method
has acceptable error over the simulation range. Sparse points
of increased error are attributed to the transmission line in the
solution, further work is needed to generate a fitting model to
account for the elements. However the a mean error of 2.8 %
can be expected in the confidence interval of 147 MHz with
a simulation time speedup of 41%. The radiation pattern is
also well reproduced when using the improved method, the
radiation pattern can be found in [26].
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C. Horn Antenna

Like the LPDA horn antennas are used in broad-band
applications, they consist of a waveguide element connected
to a conical or pyramid radiation element [28]. Metal plates
are modelled as grid mesh of wire segments, a large number
of segments are required modelling such plates. Simulation
time is further increased in NEC as the number of junctions
at the segment ends is greater than wires. The basis functions
are evaluated over all the adjacent connected segments [11],
however when filling the matrix from the fitting model only
a single calculation is needed for each element independent
of connection. To increase the simulation bandwidth this total
simulation bandwidth was split into two sub-bands the first
extending from 207-390 MHz with a center frequency of 400
MHz and a second extending from 395-500 MHz with a center
frequency of 450MHz. To reduce the problem size the first
band was segmented at 300MHz and the second at 500MHz
resulting in a problem size of 1289 and 3535 unknowns
respectively. Only the improved interpolation method was used
for this example as the maximum interaction distance was 2.2
metres.
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Fig. 10 show the input impedance of the antenna over
both the frequency bands, the impedance matrix interpolation
method reproduces the curve well over the entire frequency
band. There is a discontinuity between bands however it is
the same for the SuperNEC and MBPE cases, this is due to
the different segmentation frequencies. Mean root square error
for the first band is 18.9% and the second 19.8%. This level
of error is higher than in previous examples due to the large
number of segments in the structure and large interaction dis-
tances. The error however in the input impedance is relatively
small in comparison due to the reduced effect the elements
with large interaction distances have on the input impedance.

V. IMPROVEMENT IN COMPUTATIONAL EFFICIENCY

The computational time required to in the MoM is pro-
portional to N2f [29] where N is the probelm size and
f the number of frequency values of interest. Whether the
impedance matrix elements are calculated from direct com-
putation or by evaluating a fitting function the simulation

time will be proportional to this factor. Additional time which
must be made up when using impedance matrix interpolation
is in the sampling of the impedance matrices and solving
fitting function coefficients. A break even point can be found,
for small problems (less than 500 unknowns) 17 and 38
frequency points must be of interest for the standard and
improved method respectively in order to obtain an increase
in efficiency [30]. This is a guide a matrix filling time differs
for different structure geometries. Solving of the matrix is
performed with LU decomposition: an N 3 process [31], this
term is expected to dominate simulation time are the problem
size increases sufficiently. However problems sizes exceeding
5000 unknowns have been tested with the dominant time
component remaining the matrix filling time.

Impedance matrix interpolation was applied to various wire
and grid antenna structures, the simulation time performance
is shown in Table I

TABLE I

SIMULATION TIME FOR ANTENNA CASES

[Z] fill time Time Gain
Antenna N f Direct MBPE Direct/MBPE (s)
Dipole 15 307 0.016 0.01 1.71 1.23
Yagi 50 290 0.047 0.031 2.16 6.85

LPDA 221 240 0.568 0.454 1.68 65.18
Horn 1289 46 24.43 13.5 1.71 359.9
Horn 3535 37 145 78 1.7 1372

VI. DISCUSSION

Impedance matrix interpolation can be used to increase the
computational efficiency of the method of moments. While
simulation time improvements are made with small structures
(less than 50 segments) the improvement in efficiency only
becomes relevant with dealing with large structures over wide
bandwidths. Broadband antennas such as the LDPA and horn
antenna are well suited to the use of impedance matrix interpo-
lation, however to obtain a wide enough bandwidth numerous
sub-bands may be required resulting in discontinuities. This
may be acceptable as MBPE is used in infancy of the design
process where computational efficiency is traded for accuracy.
In general it is possible to extrapolate to higher frequencies
than is predicted by the method in Section III however not
lower, this is especially true when input impedance is of con-
cern. As input impedance is calculated on a single segment the
effect of segments with large interaction distances have little
effect on the solution. However when calculating radiation
patterns the extrapolation range should not be exceeded as
all the segment currents are used in the far field calculation.
Simulation efficiency improvement of approximately 1.7 can
generally be expected. When simulating electrically small
structures the time again, in seconds, is not significant however
when the problem size is large and many frequency points are
of interest the use of impedance matrix interpolation results
in a large reduction in simulation time.
A possible extention to the method is to treat each fitting
function separately. The polynomial coefficients would be cal-
culated from samples for the specific element before sampling
the next element. This would reduce the additional storage
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required, as impedance matrix sample need not be stored.
Another benefit of this method is that the sample range for
all the fitting function samples need not be the same. The
sample range could then be specified per element, depending
on interaction distance and connection, as to achieve the most
accurate fitting function.

VII. CONCLUSION

Two impedance matrix interpolation methods have been
effectively implemented in SuperNEC as a form of MBPE. The
standard method approximates all the elements in the matrix
with quadratic functions directly and an improved method
where the dominant frequency variation terms is removed prior
to approximation. The impedance matrix is then filled from
the simpler fitting functions this reducing the simulation time
as the fitting function is evaluated with less computational
expense than direct computation. Choice of correct sample
points in important in obtaining an accurate fitting model, the
sample range can be determined by the maximum interaction
distance of the structure, the centre frequency and simula-
tion range. Curves where developed to obtain a relationship
between simulation range and sample range. Given correct
sample and simulation ranges a mean root square error of less
than 10% can be expected of the entire range and significantly
less error when the input impedance if the only parameter of
interest. To extend the simulation bandwidth the band should
be split up into sub bands, thus reducing the problem size for
each of the sub-bands by segmenting at a highest frequency of
the band. The use of impedance matrix interpolation methods
have been found to be 1.7 times faster than using direct
SuperNEC computation providing enough frequency points are
of interest to make up for the time used in sampling the matrix
and solving fitting function coefficients.
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A.1 Introduction

Calculation of wideband electromagnetic observable information is a computationally ex-
pensive task when using frequency domain methods such as the method of moments. This
is because the simulation is to be performed at each frequency interval of interest. Much of
computational time is in the filling of the impedance matrix, an N ×N matrix also referred
to as the mutual impedance matrix. As the observable parameters are difficult to predict
themselves a method of interpolating the impedance matrix has been employed make the
filling of the impedance matrix more efficient. As the elements in the impedance matrix vary
predictably over frequency the elements are approximated with quadratic functions. This
appendix contains the theory used in the method of moment and the method used to interpo-
late the impedance matrix. Three interpolation methods are proposed, a standard method
where all the elements are approximated with quadratic function directly. An improved
method, where the frequency variant componet has been removed before approximation.
Thirdly a windowing method, where the impedance matrix elements are approximated with
overlapping piecewise polynomial functions multiplied by a hann window function to remove
discontinuities. Their implementation in SuperNEC is discussed as well as memory analysis
performed.

A.2 Model-Based Parameter estimation

MBPE has been explained by Miller in [1] as a form of “cleaver” curve fitting, unlike standard
methods of curve fitting the fitting model is chosen with physics of the problem in mind.
When applied to problems in Computational Electromagnetics (CEM) MBPE is used to
reduce computational time required to calculate required observable parameters such as
antenna input impedance, VSWR and radiation (electric far field) pattern [2]. In EM design,
the value of these parameters are required over a wide frequency band. Frequency domain
EM solver methods such as the Methods of Moments (MoM) and Finite Element Modelling
(FEM) require the problem to be solved at each frequency point of interest, making them
computationally expensive methods to obtain wide-band information.

Since EM observable parameters generally vary unpredictably with frequency it is difficult to
estimate the values using standard methods of interpolation and extrapolation, like polyno-
mial approximation and Taylor series. Thus methods have been employed to approximated
these variables and still produce accurate results. Rational functions can be employed to
accurately represent EM parameters over frequency, these function have the ability to model
“nulls”, generally encountered when dealing with EM problems over a wide frequency band.
Another methods is to approximate a predicable function used in the calculation with a
simple approximation techniques. If less computational effort is used in evaluating the fit-
ted function than original function improvements can be made in simulation time without
losing solution accuracy.

A.3 Method of Moments

The method of moments (MoM) is a numerical method to solve the electric field integral
equation (EIFE) on perfect electrical conductors (PEC), for a detailed explanation of the
method of moments see [3, 4, 5]. The EFIE, in (A.1), represents the electrical field due to

a volume current distribution
−→
J [6].

−→
E (−→r ) =

−jη

4πk

∫

v

−→
J (−→r ) · G(−→r ,−→r ′)dV ′ (A.1)

where:
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G(−→r ,−→r ′) = (k2I + OO)g(−→r ,−→r ′)

g(−→r ,−→r ′) = e(−jk|−→r −−→r ′|)

|−→r −−→r ′|

k = ω
√

µ0ε0

η =
√

µ0

ε0

In order to reduce above vector integral to a scalar integral the thin wire approximation is
used. The assumption is made that the current flow axially only on the wire, a filament

current scalar I replaces the surface current vector
−→
J . The field integral in (A.1) is now

reduced to the one in (A.2), also know as Polockington’s equation.

ŝ · −→E I =
jη

4πk

∫

L

I(s′)

(

k2ŝ · ŝ′ − δ2

δsδs′
)g(−→r ,−→r ′

)

ds′ (A.2)

where:
s = distance parameter along wire axis at r
s′ = distance parameter along wire axis at r′

The primary field (ŝ · −→E I) can be the excitation on the structure or an incident plane wave
on the structure [7]. The current I(s′) is solved by splitting the structure into N pieces or
segments as expressed in (A.3)

I(s′) =

N
∑

n=1

αnfn(s) (A.3)

Where αn are the unknown constants and fn(s) a set of weighting or basis functions. By
substituting into (A.2) we obtain the N th order linear system:

∑

i Zmnαn = Em m = 1, 2 . . .N (A.4)

[Z] is the N×N impedance matrix, where the row and column are represented by subscripts
m and n respectively. The element Zmn represents the mutual impedance between the
observation segment m and testing segment n [8].

Zmn =
jη

4πk

∫

L

fn(s)K(rm, r′)ds′ (A.5)

K(rm, r′) =
δ2

δsδs
g(rm, r′) + k2g(rm, r′) (A.6)

where the free space Green’s function:

g(rm, r′) =
e−jk|−→rm−

−→
r′ |

|−→rm −−→
r′ |

(A.7)

Various choices exist for the testing functions fn(s), The testing funcitons used in the Nu-
merical Electromagnetic Code (NEC) are the Sine, Cosine and Constant basis functions
shown in (A.8).

fn(s) = Ai + Bisink(s − s′) + Cicosk(s − s′) (A.8)

A detailed explanation of the implementation of these testing functions can be found in
[6, 9].
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A.3.1 SuperNEC

SuperNEC is an implementation of the Numerical Electromagnetic Code (NEC) originally
developed by Lawence Livermore Laboratories [6]. The code and theory was reimplemented
in C++ by Derek Nitch [9] in 1987. The object-oriented nature of the code made it easy to
modify and extend. Extentions have included an Uniform Geometric Theory of Diffraction
(UTD) Method of Moments hybrid [10] and fast iterative solver methods. Other additions
include a parallel implementation such that simulation can be run on multiple computers
on a local area network (LAN) [11].

One of SuperNEC ’s advantages is the Matlab input-output graphical user interface(GUI).
With the aid of the Matlab environment a user can run batch simulation, varying input
parameters in order to optimise output observables. Wire grid models, such as metal struc-
tures and antennas, can easily be generated with the aid of SIG (structure interpolation
and gridding) [12]. A genetic algorithm (GA) antenna optimising tool was developed by
Brandon Orchard [13], which interfaces with SuperNEC via Matlab.

The formulation of MoM shown in Section A.3.1 imposes restrictions on the structure used
in the simulation and the way it is segmented. In order to obtain an accurate solution when
using the method of moments it is important to ensure that the structure is segmented
correctly. Segmentation in SuperNEC is performed by the input GUI however it is important
to ensure that the model frequency is set to the highest frequency point of interest [14]. The
conditions for producing a well segmented structure are shown in Tables A.1 and A.2, where
∆, λ and a are segment length, simulation wavelength and radius respectively.

Table A.1: Guidelines for length and radius of individual segments [14]

Segment condition Error

Length to wavelength condition ∆ > λ
5

Radius to wavelength condition λ
a

< 30

Length to Radius ratio ∆
a

< 0.5

Table A.2: Guidelines for length and radius at segment junctions [14]

Segment condition Error

Length ratio ∆max

∆min
> 5

Radius ratio amax

amin
> 10

Length to Radius ratio ∆
a

< 2

A.4 Impedance matrix interpolation

Impedance matrix interpolation as a MBPE method was implemented on dipole thin wire
antenna structures by Newman [15] and later by Vigra and Rahmat-Samii [16] on more
complex communications antennas. Both of these implementation used a quadratic func-
tion to approximate the elements in the impedance matrix ([Z]) over the frequency range
of interest. The underlying principle in impedance matrix MBPE is that the elements in
the impedance matrix vary predictably over a specified frequency range. Consider the 1m
wire dipole antenna in Figure A.1, which has been segmented into 27 pieces each 0.04m in
length with a constant 0.01m radius. The antenna input impedance is shown in Figure A.2,
we can clearly see that the input impedance varies too much to be approximated by a poly-
nomial or Taylor series. A rational function fitting model could be used however the order
and sample points would need to be chosen correctly, as is the case with radiation pattern
interpolation [17]. If we now consider the impedance matrix elements Z1,2, Z1,12 and Z1,22

shown in Figure A.3. Element Z1,2 represents the mutual impedance between the first and
second segments, 0.037 metres apart, Z1,12 is the mutual impedance between the first and
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twelfth elements, 0.44 metres apart and Z1,22 is mutual impedance between the first and
twenty second segment, 0.81 metres apart. As the interaction distance increases as does
the variation over frequency of the impedance matrix elements. However the element’s vari-
ation is predictable over frequency and can easily be approximated by a polynomial function.

Figure A.1: Dipole antenna with 27 Segments
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Figure A.2: Input impedance of 1 metre dipole antenna

(A.5) is used to calculate the impedance matrix elements, the sine, cosine and constant
testing functions fn(s) vary little over frequency. The green’s function in (A.7) is largely
effected by the interaction distance of the source and observations points. By keeping
this distance small the elements in the impedance matrix can easily be approximated by
a quadratic function.

As the the impedance matrix is an N × N matrix filled with complex values, 2N 2 fitting
functions would be required. Two Kth order polynomial functions are used to approximate
each of the impedance matrix elements. The real and imaginary components are treated
separately hence two function are required as shown in (A.9). To determine the polynomial
coefficients the at least K+1 samples of the impedance matrix must be taken. Samples of the
impedance matrix are obtained by filling the matrix using the standard MoM method, these
samples are stored and used in the computation of the impedance matrix fitting functions.

Zm,n(f) = (aKfK + · · · + a1f + a0) + (bKfK + · · · + b1f + b0)i (A.9)

The method of least squares [18] was initially used to solve for the polynomial coefficients.
This method was chosen as it is flexable as to the order of the polynomial as well as the
number of sample points taken. Using a higher order polynomial function one could produce
a better fit on the impedance matrix elements and hence a more accurate final solutions.

A.5



100 200 300 400 500 600 700

−5

−4

−3

−2

−1

0

1
ℜ([z]) 

ℜ
 [Z

] (
V

A
)

Frequency (MHz)
100 200 300 400 500 600 700 800

−8

−7

−6

−5

−4

−3

−2

−1

0

1
ℑ ([z]) 

ℑ
 [Z

] (
V

A
)

Frequency (MHz)

Z
1,2

 r = 0.037m

Z
1,12

 r = 0.44m

Z
1,22

 r = 0.81m

Figure A.3: Real and Imaginary components of three impedance matrix elements over fre-
quency

The ability to sample more than the minimum number of points gives the ability to vary
the sample range without loosing accuracy in the fit. A detailed explanation of the least
squares method can be found in Section A.4.1.

Preliminary testing on arbitrary structures showed that when approximating the impedance
matrix elements with a polynomial the dominant factor in obtaining an accurate approxi-
mation was the sample range. Figure A.4 shows the current mean square relative error over
the 200−700MHz frequency range for a 0.5m dipole antenna with increasing sample range.
The error converges at the minimum for any number of samples points used. For this reason
the method of least squares replaced by a faster but less flexible method of calculating the
coefficients for a 2nd order polynomial by sampling the impedance matrix at three points
and solving the resulting linear system.
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A.4.1 Method of Least Squares

The method of least squares is a method of fitting a kth order polynomail to a data set K
samples large. This is done by reducing the sum of the mean square error. For a more details
explanasion of the least squares method can be found in [19]. The polynomail coefficients
are determined by solving the linear system below:
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(A.10)

A.4.2 Windowing

The above method is only accurate over a narrow frequency band as the polynomial ap-
proximation of the impedance matrix looses accuracy with extrapolation past the centre
frequency. A method proposed to counteract this effect is to use multiple polynomial func-
tion to approximate the impedance matrix elements over a wide frequency band. Each of
the polynomial function is calculated from points sampled within a smaller frequency band.
Filling of the impedance matrix is then performed by evaluating the polynomial function
specified for the current frequency range.

f(x) =



















f1(x) for 0 6 x1

f2(x) for x1 < x 6 x2

...
fn(x) for xn−1 < x 6 xn

(A.11)

Discontinuities will result if the functions are implemented one after another as in (A.11).
To counteract this overlapping polynomials multiplied by a window function used. Each
of the functions are overlapped in a way such that the sum of the window functions will
equal one. A N point Hann window function is used as the overlapping window function,
evaluated by :

w(n) = 0, 5

(

1 − cos
2πn

N − 1

)

(A.12)

Second order polynomial functions are used for each of the window intervals. To reduce
the number of samples required and any discontinuities between the functions sample point
sharing is used. This is achieved by using the last sample point used in calculating the first
polynomial as the first sample point for the second polynomial, and so on. The window will
then extend from the first sample point used for the given function to the last. A slightly
different approach is used for the first and last windows, the first window function will equal
one to the point where the second function begins. From this point the first window will
become the second half of the Hann window as in (A.12). This procedure is illustrated
Figure A.5, where three window functions are overlapped. It is shown that the sum of the
window functions results in one over the entire range.

Applying this method to the impedance matrix elements produce an accurate fitting model.
Figure A.6(a) shows the <{Z1,1} element of the impedance matrix approximated by three
piecewise quadratic functions, multiplied by the above window function. The approximation
is better than when using a single quadratic function, however not dramatically as the
impedance matrix elements does not vary largely over the frequency range. Figure A.6(b)
shows the <{Z1,20} element approximated using the same procedure outlined above, greater
frequency variation is attributed due to the greater interaction distance between the source
and observation segment. Using three windowed functions now shows a large improvement
in the accuracy obtained by the approximating function when compared to using a single
quadratic function.
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A.4.3 Improved interpolation

The general method used to improve impedance matrix interpolation schemes is to remove
the dominant frequency variation term. [15, 16, 20, 21] show that the elements in the

impedance matrix are proportional to e−j2πλ
−→
R where

−→
R is the centre to centre distance

between the source and observation segments. By removing this term from each of the
impedance matrix elements, as in (A.13), the frequency variation of the impedance matrix
terms are reduced significantly.

[Z]′ =
[Z]

e−j2πλ
−→
R

(A.13)

The MBPE scheme is now to interpolate the new [Z]′ matrix once the variant term has
been removed. This term is re-introduced when the impedance matrix is evaluated from the
polynomial functions by evaluating the inverse of (A.13).
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Figure A.7: Real and Imaginary component of three impedance matrix elements over a wide
frequency band
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Figure A.8: Real and Imaginary component of three [Z]′ matrix elements over a wide fre-
quency band

Figure A.7 shows three impedance matrix elements over a wide frequency band, one can

clearly see the oscillatory componet introduced by the e−j2πλ
−→
R term in both the Real and

Imaginary components. This component has been removed in Figure A.8, the elements
of [Z]′ vary predictably over frequency and can easily be approximated by a low order
polynomial such as a quadratic function.
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A.4.4 SuperNEC implementation

All three of the above impedance matrix interpolation schemes where implemented in the
SuperNEC C++ code. Due to the object-oriented nature of the SuperNEC code additional
functionality can be added while still having the standard method available for testing and
code benchmarking. As the SuperNEC source code is large the OO nature of the code made
it possible to easily access the parts of the code which where needed for the implementation
of the MBPE methods. These parts where the input file reading code and the matrix filling
methods. SuperNEC has various matrix filling procedures including the direct method and
spares methods, the impedance matrix code was only applied to the direct matrix filling
case. However there is scope to apply MBPE to the other filling methods.

The polynomial and improved interpolation methods will be explained first as they use the
same input file format and the evaluation process in similar.

Standard and Improved impedance matrix interpolation

The input .NEC file is used to input the parameters of the MBPE simulation, these param-
eters are:

• Number of sample points

• Order of polynomial approximation

• Frequency at which samples are taken

• Method used to determine coefficients

These parameter are included in the NEC file as follows:

FS NOSAMPLES

FR 0 1 0 0 FREQ1

EX 0 1 1 0 1.00000 0.00000

XQ

FR 0 1 0 0 FREQ2

EX 0 1 1 0 1.00000 0.00000

XQ

FR 0 1 0 0 FREQ3

EX 0 1 1 0 1.00000 0.00000

XQ

IT ORDER METHOD

Where the FS card indicates that the impedance matrix interpolation method is to be
used and the argument NOSAMPLES specifies the number of samples to used. FR is the
standard NEC frequency card and is used to specify the sample frequency. EX and XQ are
the standard excitation and execute cards respectively. Note that the number of FR, EX
and XQ cards used must equal NOSAMPLES specified for the simulation. IT tells the code
to calculate the polynomial coefficients, ORDER specifies the order of the polynomial to
be used. METHOD specifies the method used to calculate the the polynomial coefficients
being either 0 Least squares method or 1 the analytical method. If the analytical method is
used only a second order polynomial can be used and only three impedance matrix samples
are required. Checks have been implemented to ensure that parameters specified will result
in a valid simulation.

This code is included after the geometry cards and before the simulations parameters are
specified, for more information on the NEC input file structure see [6, 14]. Presently these
are included in the NEC file manually, code could be include in the Matlab frontend to
specify and write these parameters.
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Figure A.9: Flow diagram of improved interpolation scheme
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The flowchart in Figure A.9 shows the process in the improved interpolation method. The
[R] matrix represents a matrix of interaction distances between testing and observation
segments. The impedance matrix is sampled at the specified sample frequency points, each
of these samples is converted to the [Z]′ matrix via the calculation in (A.13). Once all
the samples have been obtained the polynomial coefficients are calculated using the method
specified in the input NEC file and stored in a N ×N × (k +1) complex matrix, this matrix
is referred to as the coefficient matrix. Filling of the impedance matrix is then achieved
by evaluating each of the polynomials at each frequency point of interest and the variant
component re-introduced by evaluating the inverse of (A.13). Once the impedance matrix
has been filled it is solved using the standard SuperNEC method.
The method used in standard interpolation is the same with the exception of filling the
[R] matrix, removing and re-introducing the resonant component. The polynomial fitting
functions are obtained using the impedance matrix samples.

Windowed polynomial interpolation

The windowed polynomial method uses a similar method to input the simulation parameters
as the above methods. All parameter information is specified in the input NEC file, the
format of the windowing commands is as follows:

WI STARTFREQ ENDFREQ NOWINDOWS

As before this information is inserted after the geometry information and before the simu-
lation information. WI specifies that the windowing method is to be used, STARTFREQ
and ENDFREQ specify the first and last frequency points respectively. NOWINDOWS is
the number of window functions to be used over the specified frequency range. The sample
points are then calculated by the code such that point-sharing can be done. A second order
polynomial is used for each interval using three impedance matrix samples to calculate the
coefficients, the number of impedance matrix samples is calculated by:

Ns = (2Nwindows + 1) (A.14)

To obtain the sampling frequency rate (∆f) :

∆f =

[

2 × TotRange

Nwindows + 1

]

(A.15)

where:

TotRange = ENDFREQ - STARTFREQ
Nwindows = NOWINDOWS

Recalculation of the impedance matrix elements is done by evaluating all the quadratic
functions multiplied by the window function. Due to the complex nature of the windowing
method no simulation time improvement is obtained in the use of the method and hence no
efficiency or accuracy analysis had been done.

A.4.5 Storage

As impedance matrix samples along with polynomial coefficients need to be stored it is
worth discussing the memory required in their storage. The impedance matrix consists of
complex values with a large numerical range as can be seen in Figure A.3, two floating point
(float) variables are used to express the Real and Imaginary components of the value. Four
bytes of memory are required to store a single float value, hence eight bytes is used for each
impedance matrix element. 8N2 bytes is used in storing entire impedance matrix, while
8N2 × Ns is used in storing Ns samples of the matrix.
A single matrix element fitting model is represented by k+1 complex values, thus 8N 2 (k + 1)
bytes are used to store the coefficient matrix. The memory used to store the impedance
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matrix can only be freed once the coefficients have been calculated hence the maximum
amount of additional memory used ,in bytes, for the standard impedance matrix interpola-
tion technique is:

MEMmax = 8N2 (Ns + k + 1) (A.16)

The only additional memory requirement when using the improved method is the inclusion
of the [R] matrix. A single float value is used to for each of the elements in the matrix.
Thus (A.16) can be modified to include this component:

MEMimproved
max = 8N2 (Ns + k + 1.5) (A.17)

The windowing method requires significantly more memory than the other two methods as
a polynomial matrix must be stored for each of the domains. The memory used in specifying
the window function is small compared to the memory used in storage, thus is not considered
in this analysis. One method used to reduce the amount memory needed is to only store the
impedance matrix samples required in the calculation of the specific polynomial function.
The maximum additional memory required, in bytes, is:

MEMwindow
max = 8N2 (3 × Nwin + 4) (A.18)

Figure A.10 shows the amount of additional memory used in the impedance matrix inter-
polation schemes, three samples with a second order polynomial fitting model have been
used for the standard and improved method while three window functions are used in the
windowing method. As the problem size increases the amount of memory increase dramat-
ically, for this reason it has been not possible to use the windowing method on problems
sizes exceeding a few hundred unknowns.
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Figure A.10: Additional memory used in the impedance matrix MBPE methods

A.5 Conclusion

The filling of the impedance matrix in the method of moments is a computationally expen-
sive task. This process can be made more efficient by interpolating the impedance matrix by
approximating the the elements in the matrix with simple function. The standard interpola-
tion method uses quadratic functions to approximate the impedance matrix elements, three
samples must be obtained to determine the coefficients of the fitting functions. This method
is adequate over narrow frequency bands with electrically small structures. The improved

method removed the frequency variant component e−j2πλ
−→
R , where

−→
R is the interaction dis-

tance between segments, before the fitting functions are calculated. This improved method
allows the impedance matrix interpolation to be applied to large structures over greater
frequency bands. A method of using multiple polynomial functions over sub-bands was
also implemented. Each of the overlapping sub-bands where approximated by a quadratic
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function multiplied by a Hann window function to remove discontinuities between band.
The implementation if these MBPE methods in SuperNEC increases the amount of memory
required in the simulation, it was found that the standard and improved methods use approx-
imately 40N2bytes of additional memory and the windowing method uses and additional
8N2 (3 × Nwin + 4) bytes, where Nwin is the number of sub-bands. Efficiency analyses of
the standard and improved method can be found in [22] and accuracy analysis in [23].
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B.1 Introduction

Ultimately the accuracy of MBPE will determine how usefull it is as method to increase the
computational efficiency the Method of Moments (MoM). If the method cannot accurately
approximate the observable parameters required design it would not be of great use in the
design process. In any approximation method a certain amount accuracy is lost, however
knowing how accurate the method is also of great importance. It is important to quantify the
accuracy loss in the method such that the designer make an informed decisions when using
the optimisation tool. In impedance matrix interpolation there are many variable which will
determine the error in observable these include interaction distance, sample range, simulation
range, number unknowns in the structure and segmentation of the structure. This appendix
aims to give a guide to a designer as to what the best sample range and simulation ranges
should be used for specific maximum interaction distances. Various specific antenna cases
have been simulated using the determined sample range and the results analysed. The
concept of a confidence interval is introduced, a frequency band around the centre frequency
where the model can be used confidently. Only the standard and improved interpolation
method are analysed in this section, the windowing method is shown to not produce and
increase in simulation efficiency and hence is not regarded as a usable MBPE method. For
the figures and tables in the following sections MBPE1 refers to the standard interpolation
method and MPBE2 the improved interpolation method, for the details of the theory and
implementation of these methods see [1].

B.2 Error Analysis Method

Model fitting can be done to specific cases, however this is often not usefull as a general
case. Impedance matrix interpolation schemes can be implemented on any MoM structure
however the error will not be the same for all cases. Since it is impossible to test every
possible structure case. A few structure properties relate to obtainable accuracy when using
MBPE, these properties include source observation distance, number of unknown in the
structure (segments) and how these segments are connected within the structure.

Impedance matrix interpolation schemes approximate each of the elements in the impedance
matrix with a simpler function over frequency. The most obvious method of specifying the
error would be to give it terms of the error between the fitting model and the actual value.
This would be meaningless as the impedance matrix is not only large it also does not relate to
any observable parameter used in EM design. Furthermore the impedance matrix is inverted
and multiplied by the excitation vector to obtain a solution for the structure currents.
Thus specifying the error of the impedance matrix elements would be misleading as a small
deviation in impedance matrix values may result in a large solution error. An observable
parameter must then be used to quantify the error in the solution, input impedance could
be used however the input impedance generally only relates to a single segment. If one was
to consider an antenna mounted on an airplane the currents on the end of the wing would
have little effect in the input impedance of the antenna but may have a larger effect on the
radiation pattern of the antenna. Structure currents have been chosen as the observable
parameter to quantify the error it is the direct solution of the MoM procedure. Once again
it is difficult to look the error for all the currents in the structure individually, hence an
average of all the currents is used. Thus the root square error as a function of frequency is
defined by:

e(f) =
1

N

√

√

√

√

N
∑

k=1

|Ik − Im
k |2

|Ik|2
(B.1)

This give the root square relative error of the all the currents in the structure at a specific
frequency. Relative error has been used apposed to absolute error as a norm value as it
is gives a more intuitive error value. The effect of phase offset in the solution when using
absolute error is disproportionately increase while root mean error give a realistic error.
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Using this information it is possible to determine the accuracy over any frequency range of
interest. An average error over a specific frequency band is defined by:

‖e‖ =
1

nf

nf
∑

f=1

e(f) (B.2)

B.3 Sampling

Choosing the correct sampling frequencies is critical in obtaining an accurate solution, it is
important to note that there will never be a standard sampling frequency. One will always
to have to take into account the structural properties and the frequency range over which
the observable it required. Acceptable error is also an important consideration, it is possible
to trade accuracy for a wider observation range in frequency, in which case a wider sampling
range should be used. This would generally be the tradeoff as MBPE methods are used as a
“first step” in EM design as wide band information can be generated faster than using the
direct method. However the designer may wish to decrease the acceptable error and run the
simulation over a narrower band to refine the design in specific bandwidths. When using
these MBPE methods one would have the advantage of being able to generate observable
parameters at more frequency intervals such that finer information of the frequency band in
question can be obtained.

The method used for determing the sampling rate in [2, 3] is to restrict the maximum phase
shift in the e−j2πλ−→r mn term [1] to π. Hence for a maximum centre to centre separation in
the structure Rmax the interpolation step size is found to be:

∆fs =
fmax

2
(

Rmax

λ

) (B.3)

Where fmax is the maximum frequency point of interest. Note this equation gives the
sample frequency in terms of λ and hence the must be multiplied by the centre wavelength.
This method of determing the sample frequency can be used well as a guide however does
not necessarily ensure that the optimum sample range. The variant term e−j2πλ−→r mn has
been removed from the sampling data in the improved interpolation scheme and hence this
method, while not producing inaccurate results, may not be the best method for determing
the sample range for the improved method. One advantage of using (B.3) is that it relates
the sample range to the upper frequency limit, however as the results in [3] showed that
the frequency range can easily be too wide to produce sufficiently accurate results. The
method used was to reduce the range into two sub-domains, a similar technique to the
windowing method [1]. Sample range as a function of interaction distance was tested to
find on optimum sample range. A three segment structure was tested, with the segments
being vertically aligned and with increasing separation. The maximum separation in the
structure is the centre to centre distance of the two further most segments. The segment
length to wavelength ratio was performed at the maximum solution frequency [4] as to avoid
any additional errors caused by an invalid structure. As a starting point the simulation
was performed in single MHz steps ranging from 200to400MHz with a centre frequency
of 300MHz. The code was then tested using both methods with a varying sample range,
the sample range which produced the lowest mean error over the range was noted. (B.2) is
used to determine the mean error over the frequency range specified. Figure B.1 shows the
sample range which achieved the minimum solution mean relative error, the results for both
method differ from those predicted by the theoretical values. However the variation in the
point where minimum solution error occurs, especially for the improved interpolation case,
shows that this result cannot provide a sufficiently predictable relationship to determine
best sample range.

[3] specified that a sampling range of less than (B.3) should be used to produce accurate
results, however never specified how much less for each case. In order to produce a dynamic
solution to any problem a reliable method must be obtained to to determine the sampling
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Figure B.1: Sample range where minimum mean relative error occurs with increasing inter-
action distance

range. A slight variant of the (B.3) is used and shown in (B.4), the difference being is
that the sample range is now relative to the centre frequency and a factor ks is introduced.
This factor will be different for various cases. The simulation frequency is then specified by
(B.3) where kf is a constant to relate the simulation frequency range to the equation.

∆fs = ks ×
fcentre

2
(

Rmax

λ

) (B.4)

fM = kf × fcentre
(

Rmax

λ

) (B.5)

The each of the two constants (ks and ks) in the above equations where varied and the
MBPE method tested with the calculated frequency range and sample range using (B.5)
and (B.4) respectively. Direct computation was used over the same frequency such that
the error in the MBPE simulation could be calculated. This was done for various cases
of maximum interactions distance. The sample range which produced the minimum error
for each of the simulation ranges was noted, this procedure was continued for increasing
interaction distance. The resulting curves produce a form of look-up table which can be
used to determine the sample frequency which should be used for a given simulation range
and interactions distance, as to produce the most accurate solution. The above coefficients
are thus obtained by the curves in Figure B.3. For cases with a maximum interaction
distance of less than 1λ the sample range became too large, these cases should be treated as
if the maximum interaction distance is 1λ. The results show that sample range coefficient
(fs) converges to 0.05 past a maximum interaction distance of 3λ. Note that the simulation
range is still specifies by the user, however is related to the simulation range coefficient by
means of (B.5). If the value of kf is greater than 1 the simulation range should be split
into smaller sub-ranges., this method is discussed later.

The average root mean error over the performed simulation range is shown in Figure B.3,
these curves are for maximum interaction distance. Note that the error obtained in these
curves must only be used as a guide, the exact error value is depend on more parameters
than the interaction distance itself. However these curves show for which simulation ranges
acceptable error can be obtained. Figure B.3(a) show that the standard interpolation method
should not be used with a simulation range coefficient greater than 0.4 while the improved
method produces acceptable error over the entire range.
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Figure B.2: Simulation range coefficient (fs) versus Sampling coefficient (ks) for optimum
sample range
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B.4 Confidence interval

The confidence interval is defined as the the frequency range over which the impedance
matrix can be interpolated while reproducing sufficiently accurate results in the solution.
In order to define this range must specify an acceptable error (or cut-off limit) in the so-
lution. When dealing with the extrapolation range the error tends to be fairly constant
over a certain range then increase drastically at two points, these are the upper and lower
limits of the interpolation range. Consider the mean relative current error shown in Fig-
ure B.4(a) both interpolation methods show a drastic increase in error when extrapolating
past a certain point if frequency. The horizontal line represents 10% error in the solution,
this has been chosen as the cut-off limit to determine the extrapolation range. However as
the Figure B.4(a) shows, if the cut-off limit is decreased it would not have a large effect
the confidence interval. This is especially true of the standard interpolation scheme and the
lowever limit of the improved method. The upper limit of the improved method generally
extends further than the lower one, however as a guide the same cut-off limit is used to
determine the confidence interval.
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Figure B.4: Mean relative current error and input impedance over frequency for Yagi antenna

As mentioned before the MoM solution error is not only a function of interaction distance,
number of unknowns and frequency range. The characteristics of the antenna effect the
solution, as the error is being calculated on the observable parameter current, the variation
in the waveform must be considered when specifying how well any fitting model performs.
Figure B.4(a) shows the relative error of the currents in a Yagi structure, Figure B.4(b)
shows input impedance of this antenna of the simulated range it is clear that the impedance
varies relatively slowly over frequency. By contrast consider the input impedance of a highly
resonant structure such as a loop antenna [5] in Figure B.5(b), the input impedance varies
significantly more over frequency. Both structure have a similar number of segments and
maximum interaction distance. Comparing the mean relative current error in Figures B.4(a)
and B.5(a) the loop antenna case shows a slightly narrower confidence interval than was the
case with the Yagi antenna. It is important to note that although the performance on the
MBPE method is slightly worse for a structure with more variation in the observable it is
still significantly better than using a general fitting model on the observable itself [6].

B.6



200 300 400 500 600 700 800

0

0.05

0.1

0.15

0.2

0.25

0.3

Frequency (MHz)

R
el

at
iv

e 
E

rr
or

 

 
MBPE

1

MBPE
2

(a) Mean relative current error over frequency
, Rmax = 1.6λ fc = 500MHz

300 400 500 600 700 800 900

0

500

1000

1500

2000

2500

 Real component

 

 

300 400 500 600 700 800 900
−1500

−1000

−500

0

500

1000

 Imag components

SuperNEC
MBPE

1

MBPE
2

(b) Input impedance, MBPE methods com-
pared to direct SuperNEC computation

Figure B.5: Mean relative current error and input impedance over frequency for Loop an-
tenna

B.5 Effect of specific simulation and structure proper-

ties

B.5.1 Error as a function of separation distance

As the elements in the impedance matrix become more variant it is important to quantify
how accurate the use of the MBPE methods are with increasing interaction distance. For
this three separate segments where used space equally apart, with the source segment in the
centre. The gaps between the segments where increased for each simulation and the error
between the MBPE and standard SuperNEC solutions noted. The sample range was chosen
at 200MHz and the simulation was run in single MHz increments over the same range.
The choice of sample range was arbitrarily selected to determine how the method performs
with a standard set of parameters.
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Figure B.6: Relative error vs interaction distance of three segments structure

Figure B.6 shows the mean relative error over the frequency range versus the interaction
distance of the two furthest segments in the structure. One can clearly see that the the
performance the improved interpolation scheme is significantly better than the standard
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method. Almost no increase in error is obtained when the interaction distance is increase
opposed to a quadratic increase in error with the standard case.

B.5.2 Affect of problem size on solution accuracy

As the interaction distance has a profound effect on the accuracy of the standard inter-
polation method only the improved method will be considered as it is difficult to increase
the problem size without increasing maximum interaction distance. It was shown in Sec-
tion B.5.1 that the as the maximum interaction distance had little effect on the solution
accuracy given the method in Section B.3 was used to determine the sample range.
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Figure B.7 shows that there is no trend in relating MoM problem size to the accuracy of
the impedance matrix interpolation method. This curve was generated by increasing the
length of a wire structure such that the number of unknowns increased. Since the length of
the structure increased so did the maximum interaction distance, as method in Section B.3
was used to determine both the sample range and simulation range these parameters where
not constant for all the length cases. The constants kf and ks where set to 0.8 and 0.4
respectively. The example shown here validates that the method for determining the sample
and simulation ranges is correct as the error tend is constant over the increasing interaction
distance.

B.5.3 Error due to incorrect structure segmentation

Due to the assumptions used in the NEC formulation [7] various segmentation restrictions
are placed on the structure to take the assumptions into account. These restrictions limit
the length and radius of segments for the given wavelength for both individual segments and
segments junctions, the restrictions are outlined in [1, 4]. While simulating an illconditioned
structure using direct SuperNEC computation will produce an inaccurate solution, the use
of impedance matrix interpolation on the same structure will compound the error. The solid
line in Figure B.8 represents direct SuperNEC computation with the structure segmented
at the maximum frequency. The dotted line is the SuperNEC solution with an underseg-
mented structure. The input impedance obtained when using improved interpolation on
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the undersegmented structure is shown by the dashed line. The interpolation method here
performs worse than it would if the correct segmentation had been used.
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Figure B.8: Input impedance of dipole antenna produced by SuperNEC with correct seg-
mentation, incorrect segmentation and improved interpolation with incorrect segmentation

In order to produce the best possible solution it is important that the structure is segmented
at the maximum frequency of interest and not the centre frequency. To ensure this is achieved
the SuperNEC structure checker should be used before performing any simulations [4]. The
higher the segmentation frequency to more unknowns are introduced into the problem.
As MBPE is a method to reduce the simulation time simulation may be more efficient to
simulate over multiple frequency band with separate segmentation frequencies than simulate
over the entire band with the maximum segmentation. In order to determine whether this
method would be more efficient one must consider the simulation time as a function of
number of unknowns and frequency points of interest as shown in [8].

B.6 Specific antenna cases

To truly quantify the performance these optimisation methods they must be applied to test
case structures. Each antennas in the following sections where chosen as they introduce
specific elements to the simulation both in structure and observable. The antennas chosen
are electrically large wire structures as they perform well with in SuperNEC , microstrip
antennas and electrically small antennas have been omitted as SuperNEC does not handle
these types of structures particularly well. The current version of SuperNEC does not
have the ability to include dielectrics to the structure, a case which impedance matrix
interpolation has been applied to with good results [3, 9]

B.6.1 Dipole Antenna

As the dipole antenna is the one of the most simple antenna type in terms structure and
observable parameters it is a good choice to use in benchmarking. The dipole antenna used
was 0.5m dipole antenna with a centre frequency of 500MHz. Segmentation was done at
a frequency of 800MHz as to ensure that errors due to incorrect segmentation where not
introduced.
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Figure B.9: Input impedance of 0.5m dipole antenna via direct SuperNEC computation and
MBPE methods

Figure B.9 shows the input impedance of the dipole antenna calculated with the use of the
standard SuperNEC direct computation method and the MBPE methods. Both methods
show good agreement with those produced by direct computation. The variation in this case
is low as is maximum interaction distance being only 0.83λ. Consider average the error in
all the segments in Figure B.10, the error value is below 10% for the all of the simulation
range in the standard interpolation case and only above the value at the extremeties for
the improved case. A wider simulation range was used for the improved method however
the same range could have been used for the standard method due to the small interaction
distance of the segments, with the maximum distance being less than 1λ.
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Figure B.10: Root square structure current error over simulation range for dipole antenna

Table B.1 contains the simulation sample range and simulation range coefficients and the
error obtained for the simulation. The improved method performed worse than the stan-
dard method, this is largely due to the fact that a larger sample range was used for the
improved method and the interaction distance was kept low. For case such as this it would
be advantages to use the standard method as it shows a greater improvement in simulation
time. This is significant as less frequencies points where used in the standard case and if
the same where used in both case the standard method would outperform the improved
method further. However the increase in simulation time, in seconds, is so small that the
using direct SuperNEC computation should be used.
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Table B.1: Simulation parameters and results for dipole antenna
MBPE1 MBPE1

ks 0.45 0.58
kf 0.6 0.8

Number of Frequency points 255 339
Total average error (%) 0.046437 0.40669

Maximum error (%) 0.45287 2.9366
Confidence interval (MHz) 201 307

Mean error in confidence interval (%) 0.046446 0.40669
Total increase in simulation time (%) 36 34

B.6.2 Yagi antenna

The complexity, both in structure and observable, is increased in simulating a Yagi antenna.
A five element yagi antenna was used with the same centre frequency, of 500MHz as the
case before. The maximum interaction distance of the simulated antenna was 1.3λ with 50
segments in the structure.
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Figure B.11: Input impedance of five element yagi antenna via direct SuperNEC computa-
tion and MBPE methods

Figure B.11 shows the input impedance of the yagi antenna for both the MBPE cases with
points generated by SuperNEC overlaid. The standard method now loses accuracy toward
the lower end of the frequency band however reproduces the observable well on the upper
range. The improved interpolation method accurately approximates the input impedance of
the antenna over the entire simulation range being a wider range than the standard method.

The root mean structure current error is shown is Figure B.12, it is clear that the improved
method outperforms the standard method with the entire simulation band being well below
the 10% error level. The standard method produces a large error to the left of the centre
frequency however is acceptable to the right. This is generally the case when simulating
antenna cases with large interaction distances with the standard method. Table B.2 shows
the parameters and results from the simulation. The improved method shows mean accuracy
of 4.4% error over the entire range and 4.3% within the confidence interval. The confidence
interval is more than double that of the standard case. For this reason if the input impedance
is the observable of interest it may better to use the standard MBPE method over multiple
smaller bandwidths as to have a greater reduction in simulation time. However if the entire
solution is of importance as would be the case when looking at the radiation pattern the use
of the improved method would be better, as the calculation of radiation pattern is done by
taking all the segment currents into account [7].
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Figure B.12: Root square structure current error over simulation range for yagi antenna

Table B.2: Simulation parameters and results for yagi antenna
MBPE1 MBPE1

ks 0.35 0.4
kf 0.6 0.8

Number of Frequency points 231 286
Total average error (%) 9.0876 4.448

Maximum error (%) 241 315.32
Confidence interval (MHz) 128 292

Mean error in confidence interval (%) 5.5 4.3
Total increase in simulation time (%) 51 53

B.6.3 Log periodic dipole array

The log periodic dipole array (LPDA) antenna is widely used in broadband applications.
The structure is similar to that of the yagi antenna in the case above however transmission
line connect the wire elements, this make for intersting results when using MBPE as currents
are not only a function of interaction distance.

The input impedance of the antenna when using the standard interpolation method in
Figure B.13(a) shows a poor approximation to the impedance generated by SuperNEC . The
approximation is worse once again toward the lower end of the frequency range than the
upper end. By contrast the improved method in Figure B.13(b) shows an well conditioned
approximation to the input impedance generatated by SuperNEC. The use of the improved
interpolation scheme here would be the only reliable method, the root square current error in
Figure B.14 shows that the average error over all the structure the currents for the standard
interpolation case is very erratic. While the improved case is not as good as was the case
with other antenna cases it still shows a low level of error over the frequency range.

The radiation pattern of this poorely designed LPDA antenna shows a non-omnidirectional
radiation pattern. The elevations radiation pattern of the antenna at 380MHz and 600MHz
is shown in Figures B.15(a) and B.15(b) respectively. The standard interpolation method
fails to approximate the pattern generated by direct computation while the improved method
reproduces the curve such that the difference is not apparent. If the standard method was
used in the design the results show a performance better than as it the real case, by contrast
if the improved method is used the designer would get accurate results of how the antenna
performs. The result of the simulation in Table B.3 reiterate that only the improved method
should be used for this antenna type, due not only to the greater interaction distance of
the structure but the network connecting the elements. However the total sample range of
the LPDA antenna should be decrease to produce better results than where achieved in this
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Figure B.13: Input impedance of LPDA antenna via direct SuperNEC computation and
MBPE methods
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Figure B.14: Root square structure current error over simulation range for LPDA antenna
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Figure B.15: Elevation radiation pattern of LPDA at 380MHz and 600MHz
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case.

Table B.3: Simulation parameters and results for LPDA antenna
MBPE1 MBPE1

ks 0.1 0.1
kf 0.6 0.8

Number of Frequency points 99 133
Total average error (%) 62 12

Confidence interval (MHz) 47 147
Mean error in confidence interval (%) 2.8 80
Total increase in simulation time (%) 41 39

With this structure the problem size, 221 unknowns, is large enough to produce a signifi-
cant decrease in simulation time. Which makes this method a usefull tool in determining
EM observables. The increase in computational speed is worth the loss in accuracy when
generating wide band information. Since the LPDA antenna is a wide band antenna [10]
the improved interpolation method is a good choice for the first step in the design process.

B.6.4 Horn Antenna

The plate structures in the horn and horn waveguide introduce many segments into the
structure. The horn antenna used in the simulation has 1289 segments, making the antenna
another good candiated for impedance matrix interpolation as even generating narrow band
information is a computationally expensive task. A large amount of simulation time can be
reduced by the use of MBPE methods.
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Figure B.16: Input impedance of horn antenna via direct SuperNEC computation and
MBPE methods

Figure B.16 shows the input impedance of the antenna over the frequency band, a norrow
frequency band was used due to the time required to simulate and structure of this size over
a wide band. The input impedance generated by the MBPE methods again shows very little
error over the simulation range.

The error over frequency shown in Figure B.17 shows a error of around 5% for most of the
simulation range. The simulating range used was very narrow resulting in a very narrow
sampling frequency range. It is expected that if the range was increased the improved
method would perform well while the standard method would become very inaccurate.
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Figure B.17: Root square structure current error over simulation range for horn antenna

Table B.4: Simulation parameters and results for horn antenna
MBPE1 MBPE2

ks 0.05 0.05
kf 0.3 0.3

Number of Frequency points 25 25
Total average error (%) 6.7 5.6

Confidence interval (MHz) 20 21
Mean error in confidence interval (%) 7.8 6.6
Total increase in simulation time (%) 40 36

B.6.5 UTD plate

The yagi antenna from the example in Section B.6.2 was simulated with the addition of
a UTD plate. The addition of the UTD plate greatly increases the simulation time. The
forumlation of the UTD used in SuperNEC can be found in [11], SuperNEC uses a UTD-
MOM hybrid code such that UTD plates and cylinders can be included in a MoM structure.
Simulation using UTD plates and cylinders is a time consuming task due to the brute force
method used in calculating the path of the rays. While impedance matrix interpolation has
not been developed directly to apply to the UTD case it can be used to interpolate in the
impedance matrix with a UTD structure present. The 1m2 UTD plate is aligned vertically
0.2m behind the the yagi antenna, with the flat plane facing the backend of the antenna.

The input impedance calculated using the impedance matrix method in Figure B.18 shows
accuracy is lost toward the lower end of the frequency range. The error over frequency in
Figure B.19 also shows that the error is greater than other antenna case in prior examples.
A high level of error is found around the centre frequency which can be attributes to the
distance of the plate to the structure, which is around 0.5λ at the centre frequency. For
this reason impedance matrix interpolation methods should not be applied to the UTD case
directly. However if we consider the simulation time improvement of over 22 seconds for both
the MBPE case it would should be a method to consider in the future. The UTD case is
also generally used in the calculation of radiation patterns, impedance matrix interpolation
methods do not increase the efficiency of the radiation pattern calculation other than in
finding the structure currents. While impedance matrix interpolation methods could be
applied to speed up this portion of the far field calculation it is a relatively fast process
when compared to computing the far field itself. Impedance matrix interpolation method
could be used in conjunction with UTD optimisation methods such as ray tracing, a method
which had recently been applied in SuperNEC [12].
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Figure B.18: Input impedance of Yagi antenna with UTD plate via direct SuperNEC com-
putation and MBPE methods
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Figure B.19: Root square structure current error over simulation range for Yagi antenna
with UTD plate
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B.7 Analysis of results

From the results discussed it is shown that developing a general rule for determing the ac-
curacy of the impedance matrix interpolation methods is not feasible. However it is possible
to get rule-of-thumb method for determing where the solution was accurate for specific sim-
ulated structures and simulation ranges. The standard interpolation method should not be
used for structures with maximum interaction distance of greater than a wavelength unless
it is over a very narrow frequency band. Since the standard method shows a greater increase
in simulation efficiency it may be an option to use the standard method over number smaller
simulation ranges and adjust the structure segmentation accordingly. Discontinuities will
result between the simulation band so this method must be used at the designers discretion.
The improved method can be used for electrically large structures over wider bands with
accurate results. From the cases above it is generally possible to extrapolate to higher fre-
quencies than specified, but not lower frequencies. Simulation over a too wide range requires
segmentation of the structures to a point where it may be more efficient to use the tech-
nique over smaller band, however discontinuities will result in the solutions. If the sub band
approach is used with direct SuperNEC computation discontinuities would be expected as
simulating with a differently segmented structure will yield different results. The disconti-
nuities however would not be a great as with the MBPE methods as the dissimilar solution
will be magnified by the inaccuracy in the approximation.
Antenna structure properties should also be considered when using impedance matrix in-
terpolation methods. From the above antenna cases the LPDA antenna showed areas in
frequency where the error was significantly greater than others. These areas of increased
error can be attributed to the transmission lines in the structures. Remember that the
impedance matrix is considered to be a matrix of mutual impedances in the structure, con-
necting them with transmission line will effect their predictability.
When considering the calculation method one must also consider the observable of interest,
in the above cases input impedance was generally well reproduced by both schemes. This
was independent of structure size however when looking at the error over all the currents
the standard method performed poorly for larger cases. The standard method also performs
poorly when reproducing far field patterns of large structures. If a designer was interested
in the far field pattern the improved method would be a better option. The reason why it is
still possible to reproduce an accurate input impedance with a large structure when using
the standard method is down to the effect of elements electrically far from the observation
point have. Consider a half wavelength dipole antenna and the same antenna with a small
wire segment placed one wavelength away. Figure B.20(a) shows the input impedance of
these two structures on the Smith chart, the is almost not difference in the pattern. By
contrast the gain of the two structures, in Figure B.20(b), much greater difference in the
two curves.
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The final aspect when considering the accuracy of the proposed method is the variation in
the observable parameter. While the actual numerical error in solution is no greater in an
observable with greater variation the perceive error may be. In EM design the position and
magnitude of peaks and null in the observable is very important. The solution when using
impedance matrix interpolation may show a small numerical error however a large offest in
the placement of the peaks over frequency may result. While a flatter frequency curve with
the same error would be no corse for concern. If the observable has a large amount over
variance over frequency a smaller simulation range should be used. The design stage will also
effect the simulation range chosen, in early stages of design greater error could be accepted
if a large enough speedup in simulation time is achieved. As the design process develops
designers should use smaller simulation ranges and for the greatest level of accuracy revert
to the direct simulation method.

B.8 Conclusion

This appendix outlined the error analysis the impedance matrix interpolation methods im-
plemented in the SuperNEC code. When using these methods to optimise MoM care must
be taken in choosing the correct simulation range and sample range. The simulation range
is defined as the frequency band used in the simulation extending equally on either side of
the centre frequency. While the sample range is the range in MHzbetween the first and last
sample point, as three samples are generally used in the calculation the impedance matrix
fitting functions the two outer most sample points are alighted to the ends of the sample
range and the second to the centre frequency. Linear sampling intervals have been used
for simplification however non-linear ones could be used. The sample range and simulation
range is determine by the maximum interaction distance of the two outer most segments in
the structure. A form of look up table has been developed to determine the sample range
for a given simulation range and maximum interaction distance. Error as a function of max-
imum intercation distance was shown to be constant for the improved case while it increases
greatly with increasing interaction distance when applying the standard method. The ef-
fect of problem size was shown to have little effect on the overall accuracy of the problem
provided the correct sample and simulation ranges where used. A confidence interval was
defined as the area around the centre frequency where the mean square error in the structure
currents is less than 10%, the confidence interval is generally greater in the upper frequency
ranges than the lower with respect to the centre frequency. Various structures where tested
using the SuperNEC engine and the two impedance matrix interpolation methods. Both
methods perform well for electrically small structures. As the maximum interaction dis-
tance increases past a wavelength the improved method shows significantly better results,
having both a lower error over the simulation range and a greater confidence interval. When
simulation the LPDA antenna the error over frequency showed a few sparatic points of in-
creased error, this is attributed to the transmission lines the structure. However the LPDA
antenna is a good candidate for impedance matrix interpolation as wide band information
of the antenna’s observables parameters is needed. When computing radiation patterns the
standard method or direct SuperNEC computation should be used, the standard method
was shown to not accurately reproduce far field patterns. The uses of this optimisation
method on UTD case should be used with caution, however with the speedup in solving the
MoM equation makes it an attractive option. More research is required to apply impedance
matrix interpolation for the UTD case. In general if antenna input impedance are the only
observable of interest either method can be used accurately provided the correct sample and
simulation range is used. Correct structure segmentation is also of great importance when
using these methods the structure should be segmented at the highest frequency point of
interest.
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C.1 Introduction

Generation of wide band electromagnetic information is a time consuming task when using
the method of moments (MoM) as the N × N impedance matrix ([Z]) is filled and solved
at every frequency point of interest. The required time in calculating the matrix elements
themselves can be reduced by approximating the elements with a simpler fitting function.
This evaluation time of the fitting function is significantly less than calculating them with
direct computation. Two Model- Based Parameter Estimation (MBPE) impedance matrix
interpolation methods have been implemented. A standard method where the elements in
the impedance matrix are approximated with the use of quadratic functions and an improved
method where the frequency variant componet is removed before the quadratic functions are
used to approximate the function. The calculation of the fitting functions involves sampling
the impedance matrix at three or more points, the coefficients are then solved. A certain
number of frequency points must be of interest to achieve the break even point where the
use of impedance matrix interpolation is faster than direct computation. The simulation
time of both impedance matrix interpolation methods and the standard SuperNEC method
have been analysed in terms of each of the components in there evaluation. The components
are initial setup and file write time, filling the matrix and the factor and solve routine for
direct computation. The MBPE method includes the time required to compute the fitting
functions and then time to fill the matrix using the fitting functions. From the analysis
polynomial functions are developed to approximate the simulation time in terms of the
number of unknowns in the structure and the number of simulation frequencies of interest.
By equating the functions it is possible to determine where the break even point is and
simulation time improvements obtainable when using the impedance matrix interpolation
methods. Various large structure have been simulated using each version of the code to show
the time gain for real applications. Along with the large structures smaller antennas where
simulated and a structure with the inclusion of a uniform geometric theory of diffraction
(UTD) plate included. The simulation time of each of these examples in analysed. For
the Figures, Tables and Equations in the following sections MBPE1 refers to the standard
interpolation method and MPBE2 the improved interpolation method, for the details of the
theory and implementation of these methods see [1].

This document contains analysis of the standard SuperNEC and both MBPE codes sim-
ulation time. The simulation time in analysed in terms of seconds to complete the entire
simulation or a part of it.

C.2 Simulation Time

[2, 3] shows that the filling of the impedance matrix [Z] is a computationally expensive task,
largely due to the integration required in determining each of the matrix values. This fill
time is reduced with the use of the MBPE impedance matrix interpolation methods, the
method used in the impedance matrix interpolation can be found in [1]. Analysis of the
simulation time for the various methods is done approximating a polynomial function with
the simulation parameters [4], where number of unknowns, sample points and simulation
frequencies are variables in the function. Each of the terms in the polynomial have constant
coefficients which relate the equations to the simulation time of the code in seconds. Note
that these coefficients will only be valid for personal computer on which the code was tested,
however the code efficiency is related to the original SuperNEC code making it possible to
determine how efficient the code is given a structure and number of simulation frequencies.

SuperNEC simulation time

The standard SuperNEC code simulation time can be analysed by the polynomial function
in (C.1), where the a1N

2Nf term is the time to fill the MoM matrix equation, the K is the
time required in initialising the simulation and writing data to the output file. Initialisation
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time includes the structure setup time, initialisation of global variables and pointers, and
writing initial information to the output file. This setup time is constant to all methods.
Computational time required to fill and solve the matrix is of interest in the analysis of
the MBPE code, specifically the matrix fill time. For more information on the matrix fill
procedure and the Method of Moments see [2, 5], and specifically for SuperNEC see [3]. The
number of boundary conditions varies with the number of segments connected to the source
segment, thus the term a1 is not constant for any given antenna problem. SuperNEC makes
use of LU decomposition when solving the matrix [2] which is an N 3 process.

OC(N, Nf )mom = (a1N
2 + asN

3)Nf + K (C.1)

Where:
N = number of unknowns

Nf = number of simulation frequencies
a1 = Impedance matrix fill coefficient
as = Impedance matrix solve coefficient

Figure C.1 shows the time required to factor and solve in the MoM impedance matrix versus
the number of unknowns in the simulation. The the factor time is the time required for the
LU decomposition and the solve time the time required in multiply the inverse matrix. As
expected, computational time to invert the matrix is follows a cubic function.
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Figure C.1: MoM impedance matrix factor and solve time

MPBE1 simulation time

Impedance matrix interpolation simulation time for can be modeled by the function in
(C.2), it is noted that the coefficients as

0 and a1 are the same at those in (C.1). As the
impedance matrix is not factored and solved only the fill time is required. Hence to obtain an
improvement in simulation time the condition a2 � a1 must hold, where the term a2N

2Nf

is the fill and solve time using the MBPE method. The impedance matrix elements are
determined by evaluating a second order polynomial, which is computationally less complex
than the standard method.

OC(N, Nf )mbpe1
= (a2N

2 + asN
3)Nf + af

1N2Ns + a3N
2 + K (C.2)

Where:
Ns = number of sample points
a2 = polynomial evaluation time
a3 = polynomial coefficients solve time

Figure C.2 shows the time to evaluate all the polynomial coefficients for an N × N matrix.
It is found that it takes 8.3 Milli seconds to determine the polynomial coefficients for each
of the matrix values.
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MPBE2 simulation time

The second, improved, MBPE method includes the removal the dominant frequency vari-
ation term e−j2πλ−→r mn . This results in an increase in simulation time when compared to
the first MBPE method, as this term is removed before the polynomial coefficients are cal-
culated. This factor is once again included after impedance matrix elements have been
calculated evaluating the polynomial.

OC(N, Nf )mbpe2
= (asN

3 + a3N
2 + a4N

2)Nf + af
1N2Ns + a3N

2 + K (C.3)

Where:
a4 = Frequency variation evaluation time
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Figure C.3: Impedance matrix fill time via polynomial interpolation

C.3 Results

Simulation time coefficients

Approximate values have been obtained for the simulation time coefficients by simulating
with increasing problem size, polynomial approximations where techniques where applied
to the test results to obtain the approximate coefficient values. These values are shown in
Table C.1. All the simulation where performed on a Pentium 4 3.8 GHz personal computer
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with 2GB RAM, running Windows XP. The simulation time will naturally differ on other
systems.

Table C.1: Simulation time equation coefficients
Coefficient Coefficient Name Value

as Matrix Solve time 6.2E − 10
a1 SuperNEC fill time 7E − 6
a2 Polynomial coefficient solve time 8, 9E − 6
a3 Polynomial evaluation time 5, 4E − 6
a4 Frequency variation evaluation time 0, 9E − 6

In order to achieve an increase in performance a certain number of frequency points must
be of interest, this is to overcome the initial time in sampling the matrix and solving the
polynomial coefficients. Solving the requirement of simulation time decrease, OCmbpe1

−
OCmom 6 0, it is found that 17 frequency points are required. Using the same method for
the second MBPE method, 38 frequency points are required. For both these cases three
impedance matrix samples are taken. Figures C.4(a) and C.4(b) shows the simulation time
gain improvement obtained when using the impedance matrix interpolation schemes as a
function number of unknowns and simulation frequencies.

Yagi antenna

The Yagi-Uda structure in Figure C.3 was simulated at 100 frequency points ranging from
200MHz to 700MHz at 5MHz intervals. To increase the complexity of the structure
one wire grid was placed below the structure and another behind it. The structure was
segmented to a frequency of 700MHz, resulting in 1327 segments in the structure. Hence
the problem size N = 1327, with a 1327× 1327 impedance matrix.

Table C.2 shows the simulation, fill and solve times are more efficient when using the MBPE
methods. The matrix fill time is twice as fast as using direct MoM, however due to the time
required to factor and solve the matrix is the same for both case, the over all simulation
time reduction is not as great.

Table C.2: Yagi - Uda structure simulation time
Method Simulation time (sec) Fill Time (sec) Solve time (sec)
SuperNEC 2513 26,87 1,25
MBPE1 1205 9,67 ”
MBPE2 1278 10,2 ”

Patch antenna

The code was tested using a patch antenna, a structure with greater number of connections
at the segment nodes. Hence there are more boundary conditions for each segments and the
filling procedure for the direct MoM is slower than if all the segments in the structure where
unconnected. The antenna was segmented such that there where 4170 unknowns in the
simulation, 80 frequency points where used, ranging from 460MHz to 540MHz in 1MHz
intervals. As the SuperNEC code currently only operates in free space [6], no dielectric was
used between the patch and ground plane. Table C.3 compares the results obtained using
the different codes, once again the first MBPE method is faster than the second method,
however both are significantly faster than the direct method. The fill time using MBPE is
more than twice as fast and the overall simulation time is 33% of the overall SuperNEC
simulation time.
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Figure C.4: Mesh plot showing simulation time reduction (in seconds) for the impedance
matrix interpolation schemes versus number of unknowns and simulation frequencies

Figure C.5: 5 Element Yagi-Uda Antenna with wire grids
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Table C.3: Patch antenna simulation time
Method Simulation time (sec) Fill Time (sec) Solve time (sec)
SuperNEC 17031 255,625 30,656
MBPE1 11312 97,547 ”
MBPE2 12772 114,313 ”

Simulation time from examples in [7]

The simulation time of the structures tested in the error analysis section [7] will be discussed.
The antennas simulated where a half wavelength dipole, a five element yagi antenna, an log
periodic dipole array (LPDA), a horn antenna and the previous yagi antenna with uniform
theory of diffraction (UTD) plate included. The centre frequency of 500MHz was used for
all the antenna except for the horn where 300MHz was used. The simulation range was
selected by the method shown in [7] which specifies the simulation range as a function of
the interaction distance of the two further most segments in the structure. This method
is shown to work well for maximum interaction distances greater than a wavelength. The
sample range was also chosen using the method proposed however holds no relevance in the
analysis of the simulation time.

The method used to determine the simulation time increase (%) is

Simulation time increase(%) =
OCmom − OCmpbe

OCmom

× 100 (C.4)

Table C.4: Table showing simulation time for test cases with standard interpolation
(MBPE1)

No Segments No Freq points Increase in Simulation time (%)
Dipole 15 255 36
Yagi 50 231 53
LPDA 221 99 41
UTD 50 231 2700
Horn 1289 21 40

Table C.5: Table showing simulation time for test cases with improved interpolation
(MBPE2)

No Segments No Freq points Increase in Simulation time (%)
Dipole 15 339 34
Yagi 50 307 51
LPDA 221 133 39
UTD 50 307 2700
Horn 1289 21 36

The timing equations are shown to have a similar trend as the real results however the
values are not exact. This is attributed to the fact that the coefficients in the equations
where determined with the use of curve fitting methods and where not exact reproductions
of the parameters.

The result in Tables C.4 and C.5 shows a good increase in simulation time can be made
with by using the impedance matrix interpolation methods. Gains in simulation time are
made with smaller structures, the method becomes a usefull one when dealing with many
unknowns (more than 100) in the structures and simulation over a wide frequency band
with small frequency steps. As the problem size becomes too great however the amount
of memory needed in the storage of the samples and coefficients becomes great (more than
1GB), this is less of a problem as many personal computers have over a 1GB of RAM and
and can easily have up to 4GB.
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C.4 Conclusion

The implementation impedance matrix interpolation schemes was shown to reduce the sim-
ulation time in solving the MoM equation. This is done by reducing the computational time
in filling the impedance matrix by interpolation each of the elements with a simpler function
which can be evaluated faster than using direct computation. The increase is speed depends
largely on the size of the structure under test and the number of simulation frequency point
of interest. Mathematical functions have been developed to relate the simulation time to the
parameters in the frequency domain simulation being number of unknowns and simulation
points. In determing the fitting model extra time is used in sampling the impedance ma-
trix by direct computation and solving the fitting model coefficients. A break even point is
where the use of the MBPE method is faster than using the direct SuperNEC method, this
break even point is dependent of the number of unknowns and simulation points. From the
theoretical models the break even points was found to only depend on the number of simu-
lation points being 17 for the standard method and 38 in the improved case. When applied
to real cases less simulation point where needed for larger structures, as was the case with
the horn antenna where 21 simulation points resulted in a 40% improvement in simulation
time. In general the improvement in simulation time for the tested cases was found to be
around 40%. This is because the number of frequency range which the MBPE method can
be used accurately decreasing with increasing interaction distance in the structure, which
generally means an increase in problem size. While speed up is made with structures with
a small number of unknowns it it only with the larger structures over a wider frequency
band where the method becomes usefull. When the problem size is small simulation time
is so fast (in terms of seconds) that the speed up is not really worth the loss in accuracy.
By contrast when the problem size increases past 100 unknowns the reduction in simulation
time is significant as simulations can take many minutes and even hours. If a designer was
doing multiple simulation over a wide frequency range in order to optimise a design the re-
duction in time would become significant. Electrically large structure, such as horn antennas
and those requiring wide band simulation data, such as LPDAs, are best suited to the use
of impedance matrix interpolation as method to reduce simulation time. Smaller antennas
and those which require narrow band information should be simulated using the standard
SuperNEC engine. SuperNEC does not have the functionality to simulate dielectrics and
substraits other than air. When impedance matrix interpolation is applied to MoM field
solver with the ability to solve problems of this nature it is shown to greatly reduce the
simulation time [8, 9]. The method was applied to the UTD case with a great reduction
in simulation time, over 29 times faster. The application to the UTD case however showed
poor level accuracy in the MoM solution and more research is required to apply the method
to this case.
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Appendix D

Radiation Pattern Interpolation
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D.1 Introduction

Computation of the far field pattern or radiation pattern is a computationally expensive
task, as the far field is to be calculated at each of the spacial and frequency points of
interest. To generate a three dimensional far field information in one degree increments:
64,800 values must be calculated. This is done at every frequency point of interest. Another
issue with generating radiation patterns using this method is storage, three dimensional
radiation pattern information over a wide frequency band would result in a output file
of many megabytes in size. If one could use model-based parameter estimation (MBPE)
to generate a fitting model to approximate the radiation pattern computational time and
storage could be reduced significantly. Generating a fitting model for an EM observable
parameter such as radiation pattern requires the use of a fitting function, such as a rational
function, able to reproduce the peaks and nulls encountered in the parameter [1] . Radiation
pattern MBPE was implemented by Werner in [2] to interpolatate antenna radiation patterns
spatially and over frequency. The method uses a rational function to approximate the
radiation pattern. This technique was implemented in Matlab using radiation generated by
SuperNEC, however produced poor results. A single rational function in a single dimension
was used to approximate firstly the gain over frequency and later the radiation pattern
spatially.

D.2 MoM far field calculation

[3] shows that the radiated far field at an arbitrary observation point from an antenna
modelled with thin wires in NEC can be calculated by:

−→
E (−→ro) =

jkn

4π

e−jkro

ro

∫

L

[(

k̂ · −→I (s)
)

k̂ −−→
I (s)

]

ej
−→
k ·−→r ds (D.1)

Where −→ro is the observation point, k = 2π/λ,
−→
k = −→ro/|−→ro | and k̂ = k

−→
k . The integral in the

equation is evaluated in closed form each of the segments in the structure. As the structure
has been discretised the integral is reduced to the sum over all the segments. The current
I(s) is the solution of the MoM procedure outlined in [3, 4], thus it follows that the sum used
to solve the above integral will be N in size, where N number of segments, or unknowns, in
the structure.

The antenna gain in spherical coordinates (θ, φ) is determined by:

Gp(θ, φ) = 4π
P (θ, φ)

Pin

(D.2)

where Pin is the total antenna power at the source calculated by:

Pin = 0.5<(V I∗) (D.3)

And using (D.1) P (θ, φ) is determined by:

P (θ, φ) =
|ro|2
2η

(−→
E · −→E ∗

)

(D.4)

From this formulation it is clear that wideband far field information is generated at great
computational cost. The operation count for determing a far field field pattern at Nf

frequency points, Nθ θ and Nφ φ points for a N segment large structure is:

OC = NNθNφNf (D.5)

A similar amount of storage is required to store the far field information. A model-based
fitting model solution would be an obvious approach to reduce both the computational cost
and storage needed for the process. The fitting model could be used to replace the data set
entirely and be used to plot far field information and find features of interest such as peaks
and null with the use of standard numerical methods.
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D.2.1 Rational function overview

A rational function is a nth upon mth order polynomial, also known as a ratio of polyno-
mials. Rational functions are useful fitting models are they can reproduce nulls and peaks
encountered in many electromagnetic observables such as far electric field spatially and over
frequency. Determing rational function coefficients is done with aid of the Padé approxima-
tion and shown below.

f(x) =

∑n

i=0 aix
i

∑m

j=0 bjxj

=
anxn + an−1x

n−1 + ... + a1x + a0

bmxm + bm−1xm−1 + ... + b1x + b0

(D.6)

(D.7)

To determine coefficients the function a(x) is multiplied by an arbitrary constant resulting
in b0 = 1, by multiplying (D.7) out we obtain :

0 = a0 + a1x + · · · + anxn − 1 − b1xf(x) − · · · − bmxmf(x) (D.8)

The resulting coefficients are solved by sampling the function f(x) at m+n+1 points. The
resulting linear system is solved in matrix form.

D.2.2 Implementation

Rational functions of various orders where used approximate antenna gain over frequency
for wire antennas structures. p antenna gain values where sampled at constant ∆f interval

and a rational function of
m

n
was calculated with the use of Matlab . The resulting rational

function model was compared to original gain information generated by SuperNEC . A
“best-fit” procedure was used to determine the most accurate values for m and n.

When the correct fitting order is used very accurate results can be obtained, Figure D.1(a)
shows the gain pattern of a yagi-uda type antenna over the 200−400MHz frequency range.

Here a
5

6
fitting order was used, however Figure D.1(b) shows the gain of the same antenna

over a wider frequency band. In this case the best possible approximation uses a
9

5
fitting

order. It is important to note that the two fitting functions, while both are applied to the
same antenna, have significantly different rational function order.

If the incorrect fitting order is used entirely high inaccurate results are obtained, Figure D.2
is the same curve as in Figure D.1(a) with a different order rational function used to ap-
proximate the gain. This gain pattern is not very featured in terms of peaks and null in the
pattern over frequency and it is still difficult to predict the fitting order. Note the linear
sampling was used, hence the sample points are equally spaced over the sample range, if an
improved sampling method was employed it may be able to produce better results with any
give fitting order.

Spacial interpolation of radiation pattern was also done. Simulations over the theta (θ) range
were done while keeping phi(φ) at zero. As with the previous examples, rational function
approximations were used with varying m and n orders to find the best approximation.
Figure D.3 shows the spacial far field pattern from the Yagi antenna in the examples above,
the dotted line shows the rational function approximation. Once again if the correct rational
function orders are chosen an accurate approximation can be generated using this form of
fitting model.

The difficulty in implementing MBPE on radiation patterns is to develop a generic solution
for any struture or antenna case. In the examples outlined above the complexity of the
radiation pattern, in the frequency and spacial domain, was low. With increasing the number
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Figure D.1: Gain over frequency of a Yagi antenna with a Padé rational function fitting
model
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Figure D.2: Yagi gain pattern as in Figure D.1(a) with and incorrect rational function order
fitting model
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Figure D.3: Yagi Radiation pattern 90o ≤ θ ≤ 2700 with rational function interpolation
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of peaks and nulls in the farfield pattern this method of radiation pattern interpolation
becomes more complex. Position of nulls in frequency or specially is generally a large
consideration in antenna design [5], if a fitting model is unable to predict there position it
would be considered impractical. Werner in [6] further improved his approach with the use
of windowed functions to approximate the radiation pattern. This method used a number
of rational function of constant order to approximate sections of the radiation spatially and
pattern over frequency. This method showed improved results however with simple cases.
One possible use of this techniques would be to reduce the amount of storage needed for
three dimensional far field pattern. If a fitting model was calculated and stored instead of the
numerical value at each of the points of interest a large saving in storage could be achieved.
An accurate fitting model could be found as the full data set is avaliable to calculate the
fitting model. Position a frequency of peaks and nulls could be precisely found, hence the
order of the rational function or transfer function would known. This method would not
reduce the required computational time to calculate far field patterns much, however fewever
points could be used than are used to develop the full numerical solution.

D.3 Conclusion

Radiation patterns, spatially and over frequency, generated by SuperNEC was approximated
with Padé rational function. Given the correct rational function order the method could
reproduce the curve accurately, however an incorrect order resulted in a highley inaccurate
results. Since it is not obvious as to the fitting order of the rational function this method
is difficult to implement as to generic structures. Storage of the fitting model instead of
the numerical data would drastically decrease the amount of storage required for radiation
patterns. The far field however would still need to be calculated from the direct method of
moments method and the fitting model calculated of an extensive data set.
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