# **SP8607**

## 600MHz ÷ 2

The SP8607 is an emitter coupled logic divider which features ECL 10K compatible outputs when used with external pulldown resistors. The inputs are AC coupled.

## **FEATURES**

- ECL Compatible Outputs
- AC Coupled Inputs (Internal Bias)

## **QUICK REFERENCE DATA**

- Supply Voltage: -5.2V
- Power Consumption: 80mW
- Temperature Range:
  - -55°C to +125°C (A Grade)
  - -30°C to +70°C (B Grade)



Fig.1 Pin connections - bottom view

## **ABSOLUTE MAXIMUM RATINGS**

Supply voltage
Output current
10mA
Storage temperature range
Max. junction temperature
Max. clock I/P voltage
-8V
-55°C to +150°C
+175°C
4175°C
2.5V p-p

## ORDERING INFORMATION

SP8607 A CM √ SP8607 B CM √ SP8607 AB CM √ SP8607 AC CM



Fig.2 Functional diagram

## **ELECTRICAL CHARACTERISTICS**

Supply voltage:  $V_{CC} = 0V$ ,  $V_{EE} = -5.2V \pm 0.25V$ Temperature: Tamb A Grade = -55°C to +125°C B Grade = -30°C to +70°C

| Characteristic                     | Symbol | Value |      | Units | Conditions            | Notes  |
|------------------------------------|--------|-------|------|-------|-----------------------|--------|
|                                    |        | Min.  | Max. | Units | Conditions            | Notes  |
| Maximum frequency (sinewave input) | fmax   | 600   |      | MHz   | Input = 400-800mV p-p |        |
| Minimum frequency (sinewave input) | fmin   |       | 40   | MHz   | Input = 400-800mV p-p |        |
| Power supply current               | lee    |       | 18   | mA    | VEE = -5.2V           |        |
|                                    |        |       |      |       | Outputs unloaded      |        |
| Output low voltage                 | Vol    | -1.8  | -1.4 | V     | VEE = -5.2V           | Note 4 |
| Output high voltage                | Vон    | -0.85 | -0.7 | V     | VEE = -5.2V           | Note 4 |
| Minimum output swing               | Vоит   | 400   | 1    | m∨    | VEE = -5.2V           |        |

#### NOTES

- Unless otherwise stated the electrical characteristics shown above are guaranteed over specified supply, frequency and temperature range. The temperature coefficients of  $V_{OH} = +1.63 \text{mV/}^{\circ}\text{C}$  and  $V_{OL} = +0.34 \text{mV/}^{\circ}\text{C}$  but these are not tested.
- The test configuration for dynamic testing is shown in Fig.5. 3.
- 4. Tested at 25°C only.



Fig.3 Typical characteristic of SP8607A



Fig.4 Typical input impedance. Test conditions: supply voltage -5.2V, ambient temperature 25°C, frequencies in MHz, impedances normalised to 50 ohms.

3-93

## **OPERATING NOTES**

- The clock inputs (pins 1 and 2) can be driven singleended or differentially and should be capacitively coupled to the signal source. The input signal path is completed by connecting a capacitor from the internal bias decoupling, pin 3, to ground.
- 2. In the absence of a signal the device will self-oscillate. If this is undesirable it may be prevented by connecting a 15k resistor from the unused input to VEE (ie pin 1 or 2 to pin 8). This causes a drop in sensitivity of about 100mV.
- 3. The circuit will operate down to DC but slew rate must be better than  $100V/\mu s$ .
- 4. The outputs are compatible with ECL II. There is an internal load of 4k on each output. The outputs can be interfaced to ECL 10K by addition of a pulldown resistor of 1.5k to the outputs to increase the output voltage swing.
- 5. Input impedance is a function of frequency. See Fig. 4.
- 6. All components should be suitable for the frequency in use.



Fig.5 Test circuit



Fig.6 Typical application showing interfacing