Ansoft

Maxwell 2D

Electromagnetic and Electromechanical Analysis

electronic design automation software

user's guide - Maxwell 2D

The information contained in this document is subject to change without notice. Ansoft makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Ansoft shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

© 2009 Ansoft Corporation. All rights reserved.

Ansoft Corporation 225 West Station Square Drive Suite 200 Pittsburgh, PA 15219 USA Phone: 412-261-3200 Fax: 412-471-9427

Maxwell, ePhysics and Optimetrics are registered trademarks or trademarks of Ansoft Corporation. All other trademarks are the property of their respective owners.

New editions of this manual will incorporate all material updated since the previous edition. The manual printing date, which indicates the manual's current edition, changes when a new edition is printed. Minor corrections and updates which are incorporated at reprint do not cause the date to change. Update packages may be issued between editions and contain additional and/or replacement pages to be merged into the manual by the user. Note that pages which are rearranged due to changes on a previous page are not considered to be revised.

Edition: REV2.0 Date: 15 January 2009 Software Version: 12.1

Contents

- This document discusses some basic concepts and terminology used throughout the Ansoft Maxwell application. It provides the following information:
 - A Overview
 - 1.0 Maxwell 2D
 - Examples Eddy Current
 - 6.1 Jumping Rings Axisymmetric Model
 - 6.2 Instantaneous Forces on Busbars
 - Examples Transient
 - 7.1 Gapped Inductor Model
 - A 7.2 Solenoid Problem with an External Circuit
 - A Examples Basic Exercises
 - 9.1 Electrostatic
 - 9.3 Magnetostatic
 - 9.4 Parametric
 - 9.5 Transient
 - 9.6 Transient with Circuit Editor
 - 9.8 Optimetrics
 - 9.10 Scripting
 - 9.12 Eddy Current
 - 9.13 Rotational Transient Motion
 - 9.14 Boundary Conditions
 - 9.15 Permanent Magnets Assignment
 - Examples Motors
 - 11.1 Permanent Magnet Synchronous Machine
 - 11.2 Three-phase Induction Machine
 - ▲ 11.3 Permanent Magnet Motor

3D/2D Electromagnetic Field Simulation

Maxwell[®] is a comprehensive electromagnetic field simulation software package for engineers tasked with designing and analyzing 3D/2D structures, such as motors, actuators, transformers and other electric and electromechanical devices common to automotive, military/ aerospace and industrial systems. Based on the Finite Element Method (FEM), Maxwell can solve static, frequency-domain and time-varying electromagnetic and electric fields. In addition, the software can be dynamically linked with Simplorer[®] to create a powerful, system-level electromagnetic-based design flow. This flow enables users to combine complex circuits with accurate component models to design high-performance electromechanical and power electronic systems. Additionally, Maxwell's 3D solvers have dynamic links to ePhysics[™]. This allows engineers to perform complex 3D multi-physics studies by linking Maxwell to ePhysics' thermal and structural solvers.

KEY BENEFITS

Electromagnetic field simulation

Maxwell includes 3D/2D Transient, AC Electromagnetic, Magnetostatic, Electrostatic and Electrotransient solvers that accurately solve for force, torque, capacitance, inductance, resistance, and impedance, as well as generate state-space models.

Automatic adaptive meshing

Maxwell uses the Ansoft-pioneered automatic adaptive meshing techniques. This robust meshing algorithm automatically creates and refines the finite element mesh as the solution converges, streamlining the solution process and making the software very easy to use.

Dynamic link - ePhysics

The Maxwell 3D solvers can be dynamically linked with ePhysics' thermal and stress analysis and are the ideal solution for every electromechanical device requiring cross-disciplinary design analysis.

Dynamic link - Simplorer

Dynamic links with Simplorer multi-domain system simulation allow accurate high-fidelity component models to be combined with circuits and system architecture to create a powerful, electromagneticbased design flow.

Import

CAD files can be imported in Maxwell streamlining the design process.

Multi-processing and distributed analysis

Maxwell can leverage available computing power with multi-processing and distributed analysis options for fast turnaround of your largest designs.

Optimization

Optimetrics[™] provides parametric, optimization, sensitivity, and statistical analysis capabilities to Maxwell. Optimetrics automates the design-optimization process by quickly identifying optimal values for design parameters that satisfy user-specified constraints.

Customized pre-processors

RMxprt (electric machine design) and PExprt[™] (magnetic component design) are used to design devices based on a traditional analytical approach. They also can be directly linked to Maxwell and provide fully automated design creation and analytical analysis. Users can perform preliminary studies of design concepts prior to performing rigorous electromagnetic analysis with Maxwell.

APPLICATIONS

Electromechanical

- Motors and generators
- Linear or rotational actuators
- Relays
- MEMS
- Magnetic recording heads

<u>Electromagnetic</u>

- Coils
- Permanent magnets
- Sensors

Power electronic

- Transformers
- Converters
- Bus bars
 - IGBTs and similar devices

EM behavior

- Insulation studies
- Electrostatic discharge
- Electromagnetic shielding
- EMI/EMC
- Semiconductor
- Biomedical

The new 2D interface provides strong coupling with 3D and many new usability features.

KEY FEATURES

Low-frequency electromagnetic field simulation and analysis using FEM for 3D/2D structures

- Transient nonlinear analysis with: Motion—rotation, translational, non-cylindrical rotation External circuit coupling Permanent magnet demagnetization analysis Core loss computation Lamination modeling for 3D
- AC Electromagnetic—Analysis of devices influenced by skin/ proximity effects, eddy/displacement currents
- Magnetostatic—Nonlinear analysis with automated equivalent circuit model generation
- Electric Field—Transient, Electrostatic/Current flow analysis with automated equivalent circuit model generation

Display of data/visualization of results

- Field visualization and animations (shaded, contour and vector plots)
- Mesh visualization (full, partial)
- Current, induced voltage, flux linkage
- Power loss, stored energy
- Core loss, eddy, excess, hysteresis loss (including the minor loop effects)
- Impedance, inductance, capacitance
- Force, torque
- Custom reports of user-defined solution data

Performance and integration

- Distributed Analysis* for parallel computing of parameterized models
- 64-bit operating system support
- Links to Simplorer[®]*, ePhysics^{™*}, HFSS^{™*}, RMxprt^{™*}, PExprt^{™*}

Integrated 3D modeler featuring ACIS v16 and MFC technology

- Standard primitives and multi-sweep functions
- Boolean operations: union, subtraction, intersection
- Direct import of SAT and DXF files
- AnsoftLinks[™]* for import of STEP, IGES and Pro/E files

Automatic, adaptive mesh technology

- Fault-tolerant meshing algorithms
- Mesh-generation feedback
 - GUI performs validation and integrity checks
 - Software identifies artifacts within the imported geometry
- Mesh-based model resolution

Versatile material manager and material types

- User, group and system libraries
- Linear, nonlinear anisotropic materials
- Material assignment by coordinate type: cartesian, cylindrical or spherical

Integrated Optimetrics[™]*

- Geometry and material parameterization
- Optimization, sensitivity and statistical analysis

*Option available at additional charge.

Current density in a busbar system as calculated by Maxwell 3D.

Maxwell, Simplorer, ePhysics, Optimetrics, PExprt, AnsoftLinks, and HFSS are trademarks of Ansoft Corporation. All other trademarks are the property of their respective owners. © 2008 Ansoft Corporation 0308

225 West Station Square Drive • Suite 200 • Pittsburgh, PA 15219-1119 USA T 412-261-3200 F 412-471-9427 E info@ansoft.com W www.ansoft.com

OPTIMETRICS

Parametric Analysis and Optimization

OVERVIEW

Optimetrics[™] enables users to study the effects of geometry and materials on a design by creating parameters for the dimensions and material constants of the model to be analyzed. Optimetrics then varies these parameters and adjusts the geometry and materials to achieve the desired, user specified, performance goal.

Leveraging previously computed parametric simulation results within its optimizer, Optimetrics enables engineers to understand device

FEATURED CAPABILITIES

- Parametric Analysis
 - User-specified range and number of steps for parameters
 - Automatic analysis of parameter permutations
 - Distributed Analysis (cost option)
 - Automated parser management across multiple hardware platforms and reassembly of data for parametric tables and studies
- Sensitivity Analysis
 - Design variations to determine sensitivities
 - o Manufacturing tolerances
 - o Material properties

Optimetrics[™] is an optional software module that adds parametric capabilities, optimization algorithms, sensitivity and statistical analyses to Ansoft's best-in-class electromagnetic-field simulation products—HFSS[™], Maxwell[®] 3D and Q3D Extractor[®]. Optimetrics automates the designoptimization process for high-performance electronics, such as microwave/ RF devices, printed circuit boards, on-chip passives, IC packages and electromechanical components, by quickly identifying optimal values for design parameters that satisfy user-specified constraints and goals.

This example is a connector designed with HFSS and Optimetrics. The control panel displays design variables (i.e., cost functions, parameters), launches design perturbations and converges to the optimal performance criterion.

тм

characteristics over a large design space and quickly identify the best performing design that is least sensitive to manufacturing tolerances.

Optimetrics, when used in conjunction with HFSS[™], Maxwell[®] 3D and Q3D Extractor[®], delivers an innovative and robust design platform from which users gain a greater understanding of the design space and the ability to make insightful design choices.

- Optimization
 - User-selectable cost functions and goal objective
 - o Quasi-Newton method
 - o Sequential Nonlinear Programming (SNLP)
 - o Integer-only Sequential Nonlinear Programming
 - Automatic analysis of parameter variants until optimum goal obtained
- Tuning
 - User-controllable slide bar for real-time tuning display and results
- Statistical Analysis
 - Design performance distribution versus parameter values

Ansoft Corporation • 225 West Station Square Drive • Pittsburgh, PA 15219-1119 USA TEL 1.412.261.3200 FAX 1.412.471.9427 EMAIL info@ansoft.com WEB www.ansoft.com

Current sensor optimization results using Maxwell 3D and Optimetrics

Please consult your local sales representative for pricing and information on this and on other Ansoft products. HFSS, Maxwell, Optimetrics and 03D Extractor are trademarks of Ansoft Corporation. All other trademarks are the property of their respective owners. © 2005 Ansoft Corporation PH15-1105

SIN Similar plorer v7.0

Multi-domain simulation software

Overview

SIMPLORER[®] is the premier software program for the design and analysis of complex, multi-domain systems commonly found in automotive, aerospace/defense and industrial systems.

SIMPLORER v7 offers VHDL-AMS wizard technology, making it easy to leverage the IEEE multi-domain modeling standard.

Multi-domain system design is challenging and complex. It consists of many interdisciplinary and nonlinear components from multiple domains: electrical, mechanical, thermal and control. The close interaction across domains renders single-domain system simulation tools ineffective.

SIMPLORER is the only system engineering tool to offer multiple standard modeling techniques (VHDL-AMS, circuits, block diagrams, state machines, C/C++) that can be used concurrently. It also utilizes the concept of "natures," allowing components of different engineering domains to interact.

SIMPLORER is the ideal tool for system designs such as:

- Power Systems
- Electric Motors and Drives
- Powertrains
- Hybrid-electric Propulsion
- Other Multi-domain Systems

Modeling Techniques

SIMPLORER allows components to be described as behavioral or physical models using one or any combination of SIMPLORER's modeling techniques. This eliminates error-prone mathematical transformations and model analogies often employed by singledomain simulation tools.

SIMPLORER Model Libraries

SIMPLORER offers optional application-specific model libraries to enhance productivity and reduce design time:

- Alternative Power
- Mechanical Power
- Hydraulic
- SMPS
- Machine

Automotive

Sensor

SIMPLORER v7 now includes a transient simulation coupling link. Users can simultaneously solve a transient FEA project with a transient system simulation.

Statistical Analysis and Optimization

SIMPLORER includes many advanced analysis capabilities such as parametric sweeps and optimization routines to provide insight into design variations and "trade-offs."

- Parameter Sweep/Table
- SIMPLEX
- Monte Carlo
- 3D Graphic
- Genetic Algorithm
- Successive Approximation
- Frequency Sweep
- Worst Case
- Sensitivity

1.1

Integration

Scripting

This powerful feature opens APIs in the SIMPLORER environment, allowing SIMPLORER to be embedded into existing design flows. The scripting capability is language independent so users can work with popular scripting languages, such as Visual Basic[®], Java[®] or Tcl/Tk and interact easily with other tools supporting the Microsoft Com interface, such as MS Office and LabView®

Co-Simulation

SIMPLORER allows the integration of proprietary C/C++ programs, MATLAB[®]/Simulink[®], Mathcad[®] and other specialized programs, allowing SIMPLORER to utilize customized code and existing design control. The direct integration of models in their native environment avoids model translation, saves design time and allows communication and model exchange across departments and between suppliers and OEMs.

FEA-Based Models

For models requiring the highest level of fidelity, SIMPLORER provides a direct link to Ansoft's industry-leading electromagnetic field simulation and design programs: Maxwell[®], RMxprt[™], and PExprt[™]. Users can easily create equivalent circuit models from the finite-element analysis (FEA) results and import them directly to SIMPLORER.

Alternatively, users can employ the Transient Simulation coupling link to couple transient FEA directly to SIMPLORER. This powerful feature provides the ultimate in accuracy and flexibility and is ideal for detailed analysis of electromechanical components operating within a system.

Manufacturers' Models

SIMPLORER users can access up-to-date manufacturer-specific components online at www.model.simplorer.com. MOSFET, IGBT, ultra capacitors and other components are available to customers as a free download.

RMxprt[™] is a versatile software program that speeds the design and optimization process of rotating electric machines. With RMxprt, users can calculate machine performance, make initial sizing decisions, and perform hundreds of "what if" analyses in a matter of seconds. As the entry point for the Ansoft motor and drive design methodology, RMxprt automatically produces both system-level models and geometric data, allowing the preliminary design to be refined and integrated with power electronic and control circuitry.

RIVIXPRT

Design Software for Electric Machines

KEY BENEFITS

Fast design

RMxprt offers numerous machine-specific, template-based interfaces for induction, synchronous, and electronically and brush-commutated machines that allow users to easily enter design parameters and to evaluate design tradeoffs early in the design process.

Performance metrics

Critical performance data, such as torque versus speed, power loss, flux in the air gap, power factor and efficiency can be quickly calculated.

Robust calculation methods

RMxprt uses classical analytical motor theory and equivalent magnetic circuit methods to compute performance metrics for a specific machine design and accounts for nonlinear magnetic characteristics and 3D effects, such as skew and end-turn.

Model pre-processor

RMxprt is a key part of Ansoft's motor design methodology. In addition to providing classical motor performance calculations, RMxprt can automatically create 3D and 2D geometry and assign material properties and other necessary problem definition data necessary to perform rigorous finite element analysis on the design using Maxwell[®].

Wire library

RMxprt includes a comprehensive database of ANSI and IEC wires.

High-fidelity system models

RMxprt creates high-fidelity, state-space system models incorporating machines' physical dimensions, winding characteristics and nonlinear material properties. Engineers can use the resulting behavioral model to explore electronic control topologies, loads, and interactions with drive-system components in Simplorer[®].

Convenient design sheet output

Design sheets list all the relevant input parameters and calculated parameters and graphically display waveforms including current, voltage, torque and back EMF as well as a detailed winding layout. RMxprt also can output Excel-format design sheets based on the user-defined template.

Design optimization

RMxprt can perform hundreds of "what if" analyses in a matter of minutes, making it a valuable tool for designers needing to make initial sizing and material decisions quickly.

Powerful scripting

RMxprt can be integrated with third party development programs through scripting languages such as VB script, Tcl/TK, JavaScript[®], Perl, Excel and MATLAB[®]. This allows users to customize the design flow and leverage internally developed programs and historical data.

DESIGN TEMPLATES

Machine types

- Induction machines
- o Single-phase motors
- o Three-phase motors
- Synchronous machines
 - o Line-start PM motors
 - o Salient-pole motors and generators
 - o Non-salient pole motors and generators
- Brush commutated machines
- o DC motors and generators
- o Permanent magnet DC motors
- o Universal motors
- Electronically commutated machines o Brushless DC motors
 - o Adjustable-speed PM motors and generators
 - o Switched reluctance motors
 - o Claw-pole generators

RMxprt delivers the reports you need to quickly analyze and tune your design.

KEY FEATURES

- Machine-specific template editor o Rotor
 - o Stator
 - o Running strategies
 - o Drive circuits
- Auto-design feature

 Slot size
 Coil turns and wire diameter
 Starting capacitance
 - o Winding arrangement
- Performance curves
 - o Torque
 - o Power
 - o Efficiency

- Output waveforms
- o Current
- o Cogging torque
- o Flux in the air gap
- Graphical winding editor
- Cross section Editor
- Customizable design sheet
- Cost evaluation
- Integrated parametrics and optimization
- State-space model export to Simplorer[®]
- Automated project setup for Maxwell[®] 2D
- Automated geometry and material setup for Maxwell 3D

RMxprt[™] creates 3D and 2D geometry, assigns materials and sets up boundary conditions for Maxwell. Additionally, any parameter changed in RMxprt is automatically updated in the finite element project.

DESIGN FLOW

RMxprt is the ideal starting point for a comprehensive electric machine design flow. RMxprt with Maxwell and Simplorer provides an efficient and accurate methodology to design and optimize an electric machine and related electric drive and control system.

RMxprt, Simplorer and Maxwell are trademarks of Ansoft Corporation. All other trademarks are the property of their respective owners. © 2008 Ansoft Corporation 0308

1

Maxwell 2D is a high-performance interactive software A package that uses finite element analysis (FEA) to solve electric field and magnetic field problems.

Maxwell[®]v12

- Maxwell 2D solves the electromagnetic field problems for a given model with appropriate materials, boundaries and source conditions applying Maxwell's equations over a finite region of space.
- ▲ There are two geometry modes available in Maxwell 2D:
 - ▲ Cartesian (XY) model
 - Axisymmetric (RZ) model
- ▲ There are six solvers available in Maxwell 2D:
 - Electrostatic
 - AC Conduction
 - DC Conduction
 - Magnetostatic
 - Eddy Current
 - Transient Magnetic

Electric Fields
Magnetic Fields

Presentation

1

Different Methods of Electromagnetic Analysis

Presentation

Differential Form of Maxwell's Equations

Faraday's Law of Induction $\nabla \times E = -\frac{\partial B}{\partial t}$ Gauss's Law for Magnetism $\nabla \bullet B = 0$ Ampere's Law $\nabla \times H = J + \frac{\partial D}{\partial t}$ Gauss's Law for Electricity $\nabla \bullet D = \rho$

FEM and adaptive meshing

- In order to obtain the set of algebraic equations to be solved, the geometry of the problem is discretized automatically into small elements (e.g., triangles in 2D).
- All the model solids are meshed automatically by the mesher.
- The assembly of all triangles is referred to as the finite element mesh of the model or simply the mesh.
- Approximate aspect ratio limit in 2D:

Overview

FEM Approximation Functions

The desired field in each element is approximated with a 2nd order quadratic polynomial

$$A_z(x,y) = a_0 + a_1x + a_2y + a_3x^2 + a_4xy + a_5y^2$$

- Field quantities are calculated for 6 points (3 corners and 3 midpoints) in 2D
- Field quantities inside of the triangle are calculated using a 2nd order quadratic interpolation scheme

Presentation

Overview

FEM Variational Principle

• Poisson's equation: $\nabla^2 A = -\mu J$

is replaced with energy functional: $F(A) = \frac{1}{2} \int \left(\frac{\nabla A \bullet \nabla A}{\mu} + A \bullet J \right) dV$

This functional is minimized with respect to value of A at each node in every triangle

FEM Matrix Equation

Now, over all the triangles, the result is a large, sparse matrix equation

$$[S][A] = [J]$$

- This can be solved using standard matrix solution techniques such as:
 - Sparse Gaussian Elimination (direct solver)
 - Incomplete Choleski Conjugate Gradient Method (ICCG iterative solver)

FEM Error Evaluation

A Put the approximate solution back into Poisson's equation

$$\nabla^2 A^{approx} + \mu J = R$$

- ▲ Since A is a quadratic function, R is a constant in each triangle.
- ▲ The local error in each triangle is proportional to R.

FEM Percent Error Energy

Summation of local error in each triangle divided by total energy

Percent Error Energy =
$$\sum_{i=1}^{n} \frac{|R(\text{local})_i|}{\text{Total Energy}} \times 100\%$$

Local errors can exceed Percent Error Energy

Transient Solver Fully Coupled Dynamic Physics Solution

Time-varying Electric and Magnetic Fields

Overview

Transient Solver - Magnetic Field Diffusion

- Magnetic fields "diffuse" into materials at different rates depending on:
 - Material properties of the component
 - A Physical size of the component
- ▲ For a cylindrical conductor, diffusion time is:

$$\tau = \frac{u\sigma a^2}{2.4048^2} \quad (sec)$$

where : $u = perm, \sigma = conductivity, a = radius in meters$

Induced eddy currents always occur in conducting objects due to time-varying fields; however, they may not always be significant

GUI - Desktop

- The complex functionality built into the Maxwell solvers is accessed through the main user interface (called the desktop).
- Problem can be setup in a fairly arbitrary order.
- A new "validation check" has been added to insure that all required steps are completed.

Presentation

Overview

ACIS solid modeling kernel

- The underlying solid modeling technology used by Ansoft products is provided by ACIS geometric modeler. ACIS version 16 is presently used.
- Users can create directly models using primitives and operations on primitives.
- In addition, users can import models saved in a variety of formats (sm2 .gds .sm3 .sat .step .iges .dxf .dwg .sld .geo .stl .prt .asm)
- When users import models into Ansoft products, translators are invoked that convert the models to an ACIS native format (sat format).
- Exports directly .sat, .dxf, .sm3, .sm2, .step, .iges

Presentation 1

Overview

Supported platforms

- Mindows XP Pro
- Windows XP Pro x64 Edition
- Mindows Server 2003
- Mindows Server 2003 x64 Edition
- ▲ Red Hat Enterprise Linux 3, 4
- ▲ SuSE Linux Enterprise Server 9.3
- ▲ Solaris 8 -10

Starting Maxwell

- Click the Microsoft Start button, select Programs, and select the Ansoft > Maxwell 12 > Maxwell 12
- Or Double click on the Maxwell 12 icon on the Windows Desktop

Adding a Design

- When you first start Maxwell a new project will be automatically added to the Project Tree.
- To insert a Maxwell Design to the project, select the menu item *Project > Insert Maxwell 2D Design*

Presentation

1

Maxwell Desktop

Maxwell Desktop - Project Manager

- Multiple Designs per Project
- Multiple Projects per Desktop
- Integrated Optimetrics Setup (requires license for analysis)

Presentation 1

Presentation

1

M Geometry Mode

- To set the geometry mode:
 - 1. Select the menu item *Maxwell 2D > Solution Type*
 - 2. Solution Type Window:
 - G Choose Geometry Mode: Cartesian XY
- Maxwell Geometry Modes
 - A Cartesian (XY) model represents a cross-section of a device that extends in the z-direction. Visualize the geometric model as extending perpendicular to the plane being modeled.
 - An Axisymmetric (RZ) model represents a cross-section of a device that is revolved 360° around an axis of symmetry (the z-axis). Visualize the geometric model as being revolved around the z-axis.

5olu	ition Type: Project2 - Maxwell2DDesign1	
	Geometry Mode: Cartesian, XY 💌	
	Magnetic:	
	 Magnetostatic 	
	C Eddy Current	
	C Transient	
	Electric:	
	C Electrostatic	
	C AC Conduction	
	O DC Conduction	

- Set Solution Type
 - To set the solution type: select the menu item Maxwell 2D > Solution Type

Magnetic Solution Types

Magnetostatic

Magnetic: Magnetostatic Eddy Current Transient Electric: Electrostatic AC Conduction DC Conduction

Computes the static magnetic field that exists in a structure given a distribution of DC currents and permanent magnets. The magnetic field may be computed in structures with both nonlinear and linear materials. An inductance matrix, force, torque, and flux linkage may also be computed from the energy stored in the magnetic field.

Eddy Current

Computes the oscillating magnetic field that exists in a structure given a distribution of AC currents. Also computes current densities, taking into account all eddy current effects (including skin effects). An impedance matrix, force, torque, core loss, and current flow may also be computed from the computed field solution.

Transient

Computes transient (Time Domain) magnetic fields caused by permanent magnets, conductors, and windings supplied by voltage and/or current sources with arbitrary variation as functions of time, position and speed. It can also be coupled with external circuits. Rotational or translational motion effects can be included in the simulation. Uses a time-stepping solver. Considers source induced and motion inducted eddy effects.

Electric Solution Types

Electrostatic

Computes the static electric field that exists in a structure given a distribution of DC voltages and static charges. A capacitance matrix, force, torque, and flux linkage may also be computed from the electric field.

AC Conduction

Computes the AC voltages and current density distribution in a material having both conductive and dielectric properties given a distribution of AC voltages. An admittance matrix and current flow may also be computed from the calculated fields.

DC Conduction

Computes the DC currents that flow in a lossy dielectric given a distribution of DC voltages. A conductance matrix and current flow may also be computed from the computed electric field solution.

Set Model Units

- To set the units:
 - Select the menu item Modeler > Units
 - 2. Set Model Units:
 - 1. Select Units: mm
 - 2. Click the OK button

Set Default Material

- M To set the default material:
 - Using the Modeler Materials toolbar, choose Select
 - 2. Select Definition Window:
 - Type steel_1008 in the Search by Name field
 - 2. Click the OK button

vacuum	•	Model	•
vacuum			
mu_metal			
copper			
Select			

mals Material Filters learch Parameters Jearch by Name	Search Oriteria.	c	Librario	es 🔽 Show Project defi	innions 🗆 Show all libraries
Search	1	-			
/ Name	Location	Origin	Relative Permeability	Bulk. Conductivity	Magnetic n Coercivity
sepphire	SysLibrary	Materials	1	0	10
Sheldahl ComClad HF (tm)	SysLibrary	Materials	1	Û.	10
silicon	SysLibrary	Materials	1	Û.	10
silicon_dioxide	SysLibrary	Materials	1	0	10
silicon_nitrate	SysLibrary	Materials	1	Û.	0
silver	SysLibrary	Materials	0 99998	61000000siemens/m	10
SmCo24	SysLibrary	Materials	1.06313817927575	11111111siemens/m	-756000 000000003A_per_
SmCo28	SysLibrary	Materials	1.03838895916414	1111111siemens/m	-820000 000000002A_per_
solder	SysLibrary	Materials	1	7000000siemens/m	0
steel_1008	Systematic	Materials	BHLUNE.	2000000stemens/m	Deuter Inneter
steel_1010	SysLibrary	Materials	BH Curve	2000000siemens/m	.û
steel_stainless.	SysLibrary	Materials -	1	1100000siemens/m	10
Taconic CER-10 (tm)	SysLibrary	Materials	1	Û.	- 10
Teconic RF-30 (tm)	SysLibrary	Materials	1	Û.	10
					4
View/Edit Materials	Add Material.	C	one Material(s)	Remove Material(s)	Export to Library

Presentation

1

- A The Coordinate Entry fields allow equations to be entered for position values.
 - Examples: 2*5, 2+6+8, 2*cos(10*(pi/180)).
- A Variables are not allowed in the Coordinate Entry Field
- Note: Trig functions are in radians

Point 2

Presentation

1

Modeler - Importing .dxf and .dwg CAD files

- Check "Import as 2D sheet bodies" so objects come in as sheets and not solids
- To change the number of segments on an imported curve:
 - A Change to face select mode: Edit > Select > Faces and click on face
 - Modeler > Surface > Uncover Faces
 - A Change to object select mode: Edit > Select > Objects and click on open polyline
 - Modeler > Purge History
 - Modeler > Generate History
 - Expand the history tree for that polyline and change number of segments as desired
 - Select the polyline and: Modeler > Surface > Cover Lines

DXF/DWG Import	🚷 Ansoft Maxwell -	Project3 - Maxwell2DD)esign2 - 3	3D Modeler - [Project3	- Maxwell2DDesign2 - Modeler]
DWG/DXF Layer Selection Options Language	File Edit View	Project Draw Modeler	Maxwell 2	2D Tools Window Help	
Drawing Units none				≈∓ ⊔∣≝ %⁄	
Import Units mm		-] c 🔛 🔏 👍 !	" "•)• .ft	 :\	
Union overlapping objects	Project Manager			× *	
Auto-detect closed objects	Properties			× ×	
Self-stitch objects	Name	Value	Unit	Evaluated Value	CreatePolyline
De-feature geometry at distance	Segment Type	3 Point Arc			CreateArc
Round coordinates to nearest nth decimal place	Point1 Point2	0.9375,0,0	mm	0.9375mm , 0mm , 0mm	CoverLines
☐ Write closed polylines with non-zero line width as filled polygons	Point3	-0.9375 ,0 ,0	mm	-0.9375mm , 0mm , 0mm	
✓ Import as 2D sheet bodies	Number of Segments	6		6	
Import method : O Script G Acis					E Planes

Presentation

1

Modeler - Object Properties ۸.

	ommand Attribute			
dimensions	Name	Value	Unit	Evaluated Value
nd history)	Command	CreateCylinder		
	Coordinate System	Global		
	Center Position	0,0,0	mm	Omm , Omm , Omm
	Axis	Z		
	Radius	0.447213595499958	róró	0.447213595499958mm
	Height	0.6	min	0.6mm
	*			
				☐ Show Hidden

In History Tree:

	Name	Value	Unit	Eval
(Name	Cylinder1		
properties	Material	vacuum		
of the object)	Solve Inside	V		
ne object)	Orientation	Global		
	Model	V		
	Display Wireframe	-		
	Color	Edit		
	Transparent	0		

Name	Value	Unit	Evaluated Value	Description	Read-on
Name	Cylinder1				
Material	vacuum				F
Solve Inside	1				1
Orientation	Global				Г
Model	V				F
Display Wireframe	1				T
Color	Edit				F
Transparent	0				T

Modeler - Attributes

Name	Value	Unit
Name	Box1	
Material	vacuum	
Solve Inside	~	
Orientation	Global	
Model \	~	
Displ a y Wireframe		
Color \	Edit	
Transparent	0	
Attribute		

Solve Inside - if unchecked meshes but no solution inside (like the old exclude feature in material manager)

Model - if unchecked, the object is totally ignored outside of modeler with no mesh and no solution

nais MatenaiFilters earch Paramisters earch by Name	Search Criteria — 👎 by Marrie	🦈 Бу Рюр	Libraties <table-cell></table-cell>	ihow Project definitions 🛛 🔽	Show all libraries
Search	1	4]_		_
Name	Location	Drigin	Relauve Permeability	Buin. Conductivity	n
WHEE 20	Sylumary	Marenal*	0447 3047.33	6.2000 the optimized	-8-375-8
NdFe35	SysLibrary	Materials	1.0997785406	625000siemens/m	-89000
Nelco N4000-13 (tm)	SysLibrary	Materials	1	D	0
Nelco N4000-13 Si (tm)	SysLibrary	Materials	1	D	-0-
Neltec NH9294 (tm)	SysLibrary	Materials	1	D	0
Neltec NH9300 (tm)	SysLibrary	Materials	1	D	0
Neltec NH9320 (tm)	SysLibrary	Materials	1	D	0
Neltec NH9338 (tm)	SysLibrary	Materials	1	-0-	-0-
Netted NH3348 (tm)	SysLibrary	Materials	1	D	.0
Nellec NH3300 (m)	SysLibiary	Materials	-	D	0
INGIGC NA 3240 ((III)	SASTICUTION	Materials	- P	5	
	Add Malarial	Clone Mate	nal(s) Rem	iove Material(s) E	xport for Library .
hew Edit Materials	- material -				
News/Edit Materials					
/iew/Edit Materials				OK Care	al Help
hern Edit Materials	Myreyr / Edit Materia	=)	Mate	OK Carro	nel Help
hern Edit Materials	Material Name Vacuum	al	Mater Carte	OK Cano ial Coordinate System Type Isian	el Help
henviedt Materiels	M View / Edit Materia Material Name Vacuum	a)	Mater Carte	Tial Coordinate System Type esian	nal Help
AerwEdit Materials	Material Name View / Euit Material Material Name Vacuum Properties of the Materi	e) al	Mater Carte	Tial Coordinate System Type esian View/En	nal Help
AerwEdit Materials	Material Name View / Edit Materia Material Name Vacuum Properties of the Materia Name Properties of the Materia	el al Type	Mater Carts Value	Tial Coordinate System Type esian Units	al Help
AerwEdt Materiels	Motion / Edit Materia Material Name Vacuum Properties of the Materi Name Fielding Promision Bulk Conductivity	el al Type Ny Simple Simple	Value 0 siem	ital Coordinate System Type asian Units ens/m	al Help
AerwEdit Materiels	Material Name Vacuum Properties of the Materia Name Relative Premiesbi Bulk Conductivity Magnetic Coercivity	el al Ilype Ny Simple Simple Vector	Value 0 sieme	Tial Coordinate System Type asian Units	al Help
AerwEdit Materiels	Material Name Vacuum Properties of the Materi Bulk Conductivity Magnetic Caercivity - Magnetic Caercivity	el al Nyr Simple Simple Vector Ma	Value 0 siems g 0 A_pe	Dit Can nal Coordinate System Type asian Units r_mater	Adive Design This Products
AerwEdt Materiels	Material Name Vacuum Properties of the Materia Disk Conductivity Magnetic Coercivity - Magnitude Composition	al Ivype Simple Vector Ma	Value O siemu g 0 A_pe Solid	Dit Cano rial Coordinate System Type ssian Units r_meter	al Help dit Material for Active Design This Products
AerwEdit Materiels	Material Name Vacuum Properties of the Materia Name Frei anne Demicable Buik Conductivity Magnetic Coercivity - Magnitude Composition	el al Ivype Nyr Simple Simple Vector Ma	Value O siems g 0 A_pe Solid	Dit Cano rial Coordinate System Type ssian Units r_meter	al Heir
AerwEdit Materiels	Material Name View / Edit Materia Material Name Vacuum Properties of the Materia Name Felalws Penneabn Bulk Canductivity Magnetic Coercivity - Magnitude Composition	al Type Ny Snople Simple Vector Vector Ma	Value I 0 siem g 0 A_pe Solid	Dik Cano nal Coordinate System Type esian Units r_mater	ali Material for Active Design This Product All Products
AerwEdit Materiels	Material Name View / Edit Materia Material Name Vacuum Properties of the Materi Name Felalws Promeatin Bulk Canductivity Magnetic Caerovity - Magnitude Composition	al IVV Simple Simple Vector Ma Vector Ma	Value D 'siemu g 0 A_pe Solid	ial Coordinate System Type esian Units r_mater	al Help
AerwEdit Materiels	Material Name Vacuum Properties of the Materia Name Felalwe Promeado Bulk Conductivity Magnetic Coercivity Magnetic Coercivity Composition	al Itype Simple Vector Ma Culate Properties	Value 0 siems 9 0 A_pe Salid	ial Coordinate System Type esian Units r_meter	ali Material for Active Design This Product All Products

- Modeler Views
 - View > Modify Attributes >
 - Orientation Predefined/Custom View Angles
 - Lighting Control angle, intensity, and color of light
 - Projection Control camera and perspective
 - Background Color Control color of 3D Modeler background
 - View > Visualization Settings displayed resolution of curves
 - View > Active View Visibility Controls the display of: 3D Modeler Objects, Color Keys, Boundaries, Excitations, Field Plots
 - View > Options Stereo Mode, Drag Optimization, Color Key Defaults, Default Rotation
 - View > Render > Wire Frame or Smooth Shaded (Default)
 - View > Coordinate System > Hide or Small (Large)
 - View > Grid Setting Controls the grid display

Toolbar: Toggle Grid Visibility

isualization Settings: sim	ple_magnet_r 🗙
Maximum Deviation	
Ignore	
C Relative Deviation	
C Absolute Deviation	
0.002000	▼ mm
Maximum Normal Deviation	
15.000000	▼ deg
Save As Default	Restore Defaults
Apply	Close

Grid Spacing	
Grid type:	© Polar © Line 30 pixels
Cartesian dx: 1 dy: 1 dy: 1	dR: 1
Grid Visible	Save As Default
OK	Cancel

Presentation

1

Changing the View

- Since changing the view is a frequently used operation, some useful shortcut keys exist. Press the appropriate keys and drag the mouse with the left button pressed:
 - ALT + Drag Rotate
 - In addition, there are 9 pre-defined view angles that can be selected by holding the ALT key and double clicking on the locations shown on the next page.
 - M Shift + Drag Pan
 - ALT + Shift + Drag Dynamic Zoom

Maxwell V12 Keyboard Shortcuts

General Shortcuts

- F1: Help
- Shift + F1: Context help
- CTRL + F4: Close program
- CTRL + C: Copy
- A CTRL + N: New project
- CTRL + O: Open...
- CTRL + S: Save
- CTRL + P: Print...
- CTRL + V: Paste
- CTRL + X: Cut
- CTRL + Y: Redo
- CTRL + Z: Undo
- CTRL + 0: Cascade windows
- CTRL + 1: Tile windows horizontally
- CTRL + 2: Tile windows vertically

Modeller Shortcuts

- B: Select face/object behind current selection
- F: Face select mode
- O: Object select mode
- CTRL + A: Select all visible objects
- CTRL + SHIFT + A: Deselect all objects
- CTRL + D: Fit view

.

٨

- CTRL + E: Zoom in, screen center
- CTRL + F: Zoom out, screen center
- CTRL + Enter: Shifts the local coordinate system temporarily
- SHIFT + Left Mouse Button: Drag
 - Alt + Left Mouse Button: Rotate model
 - Alt + SHIFT + Left Mouse Button: Zoom in / out
- F3: Switch to point entry mode (i.e. draw objects by mouse)
- F4: Switch to dialogue entry mode (i.e. draw object solely by entry in command and attributes box.)
- F6: Render model wire frame
- F7: Render model smooth shaded

Alt + double left Click here to restore view in an RZ model

ALT + Right Mouse Button + Double Click Left Mouse Button at points on screen: give the nine opposite projections.

Alt + double left Click here to restore view in an XY model

.....

٨

Ansoft Maxwell Field Simulator v12 - Training Seminar

Predefined View Angles

Presentation

1

Simple Example

- Magnetic core with coil
- Use 2D RZ Magnetostatic Solver

Setup the geometry mode and solver

- Choose Cylindrical about Z under Maxwell 2D > Solution Type
- Choose Magnetostatic
- Click the OK button
- Create Core
 - M To create the core:
 - 1. Select the menu item *Draw > Rectangle*
 - 2. Using the coordinate entry fields, enter the center position
 - X: 0.0, Y: 0.0, Z: -3.0, Press the Enter key

X:	0	Y:	0	Z:	-3	Absolute 🔻	Cartesian	-	mm

- 3. Using the coordinate entry fields, enter the opposite corner of the rectangle
 - M dX: 2.0, dY: 0.0, dZ: 10.0, Press the Enter key

Continued on Next Page

Presentation

1

- Create Core (Continued)
 - To Parameterize the Height
 - 1. Select the **Command** tab from the **Properties** window
 - 2. ZSize: H
 - 3. Press the Tab key
 - 4. Add Variable Window
 - 1. Value: 10mm
 - 2. Click the **OK** button
 - To set the name:
 - 1. Select the Attribute tab from the Properties window.
 - 2. For the Value of Name type: Core
 - To set the material:
 - 1. Select the Attribute tab from the Properties window
 - 2. Click on the button in Material value: set to steel_1008
 - To set the color:
 - 1. Select the Attribute tab from the Properties window.
 - 2. Click the Edit button
 - M To set the transparency:
 - 1. Select the Attribute tab from the Properties window.
 - 2. Click the **OK** button
 - To finish editing the object properties
 - 1. Click the OK button
 - To fit the view:
 - 1. Select the menu item *View > Fit All > Active View*

Add Va	riable 🛛 🔀
Name	H
Value	10mm
C	, Define variable value with units: "1 mm"
	🖲 Local Variable
	OK Cancel

Presentation 1 Overview

Set Default Material A

- To set the default material:
 - Using the 3D Modeler Materials toolbar, choose Select 1.
 - Select Definition Window: 2
 - 1. Type copper in the Search by Name field
 - Click the **OK** button 2

Create Coil A

- To create the coil for the current to flow: Å.
 - Select the menu item *Draw > Rectangle* 1.
 - Using the coordinate entry fields, enter the center position 2.
 - X: 2.0, Y: 0.0, Z: 0.0, Press the Enter key
 - 3. Using the coordinate entry fields, enter the opposite corner of the re
- To set the name: Â.
 - 1. Select the Attribute tab from the Properties window.
 - 2.
 - Click the **OK** button 3
- To fit the view: s),
 - Select the menu item *View > Fit All > Active View* 1

Presentation

1

Create Excitation

- Assign Excitation
 - 1. Click on the coil.
 - 2. Select the menu item *Maxwell 2D > Excitations > Assign > Current*
 - 3. Current Excitation : General
 - 1. Name: Current1
 - 2. Value: 120 A (Note: this is 120 Amp-turns)
 - 3. Ref. Direction: Positive
 - 4. Click the OK button
 - 5. Note that for RZ models, positive current flows into the screen, however for XY models, positive current flows out of the screen.

Curren	t Excitation		×
	Name:	Current1	
	Parameters		
	Value:	120 A 💌	
	Ref. Direction:	Positive O Negative	
		Use Defaults	
	OK	Cancel	_

Define a Region

- Before solving a project a region has to be defined. A region is basically an outermost object that contains all other objects. The region can be defined by a special object in *Draw > Region*. This special region object will be resized automatically if your model changes size.
- A ratio in percents has to be entered that specifies how much distance should be left from the model.
 - To define a Region:
 - 1. Select the menu item *Draw > Region*
 - 1. Padding Data: One
 - 2. Padding Percentage: 200
 - 3. Click the OK button

Region		X
Padding Data:	Pad All Directions	
	C Pad Individual Directions	
Padding Percer	ntage:	
	200	
🗌 Save as de	fault	
0	K Cancel	

Note: Since there will be considerable fringing in this device, a padding percentage of at least 2 times, or 200% is recommended

Overview

Presentation

1

Setup Boundary

- Assign Boundary
 - 1. Change to edge selection mode by choosing: *Edit > Select > Edges*
 - 2. Using the mouse, click on the top, right and bottom edges while holding down the CTRL key.
 - 3. Select the menu item *Maxwell 2D > Boundary > Assign > Balloon*
 - 4. Click the OK button

2				
		Balloon Boundary		×
		Name:	Balloon1	
	×			
		OK	Cancel	

	 Maximum Nu Percent Error 2. Click the OK button 	r: 1
So	lve Setup	
	General Convergence Solver Defaults	
	Name: Setup1	
	Adaptive Setup	
	Maximum Number of Passes:	10
	Percent Error:	1
	Parameters	
	Solve Fields Only	
	Solve Matrix:	 After last pass
		Only after converging
	Display Force/Torque in Convergence	None

Solution Setup - Creating an Analysis Setup

M To create an analysis setup:

ANSOF

 Select the menu item *Maxwell 2D> Analysis Setup > Add Solution* Setup

X

- 2. Solution Setup Window:
 - 1. Click the General tab:
 - Maximum Number of Passes: 10

Overview

Presentation 1

Overview

Save Project

- M To save the project:
 - 1. In an Ansoft Maxwell window, select the menu item File > Save As.
 - 2. From the Save As window, type the Filename: 2D_simple_example
 - 3. Click the Save button

Model Validation

- To validate the model:
 - 1. Select the menu item *Maxwell 3D> Validation Check*
 - 2. Click the Close button
 - Note: To view any errors or warning messages, use the Message Manager.

Analyze

- To start the solution process:
 - 1. Select the menu item Maxwell 2D> Analyze All

maxwell_coil - MaxwellDesign1 - Setup1: Adaptive Pass 1 on Local Machine - RUNNING

Solve (Est. memory = 1MB, disk = 1MB)

Presentation Overview

1

View detailed information about the progress A

In the Project Tree click on Analysis > Setup1 with the right mouse button und select Profile s),

Presentation

1

Mesh Overlay

- Create a plot of the mesh
 - 1. Select the menu item *Edit > SelectAll*
- M To create a mesh plot:
 - Select the menu item *Maxwell 2D > Fields > Plot Mesh*
 - 2. Create Mesh Window:
 - 1. Click the Done button

Presentation

1

Field Overlays

- To create a field plot:
 - 1. In the object tree, select the plane for plotting:
 - 1. Using the Model Tree, expand Planes
 - 2. Select Global:XZ
 - 2. Select the menu item *Maxwell 2D> Fields > Fields > B > Mag_B*
 - 3. Create Field Plot Window
 - 1. Solution: Setup1 : LastAdaptive
 - 2. Quantity: Mag_B
 - 3. In Volume: Allobjects
 - 4. Click the Done button
 - When done, turn off the plot using:
 View > Active View Visibility > Filed Reporter

Create Field Plot	X
Specify Name Mag_B1 Specify Folder B	Fields Calculator Category: Standard
Design: Maxwell2DDesign1	Quantity In Volume
Solution: Setup1 : LastAdaptive Field Type: Fields Intrinsic Variables	Flux_Lines Core A_Vector Region Mag_H Begion H_Vector background Mag B AllObjects B_Vector Jphi J_Vector energy coEnergy ocEnergy appEnergy Dhmic_Loss

Field Overlays (cont)

- Create another field plot:
 - 1. In the object tree, select the plane for plotting:
 - 1. Using the Model Tree, expand Planes
 - 2. Select Global:XZ
 - 2. Select the menu item *Maxwell 2D> Fields > Fields > B > B_Vector*
 - 3. Create Field Plot Window
 - 1. Solution: Setup1 : LastAdaptive
 - 2. Quantity: **B_Vector**
 - 3. In Volume: Allobjects
 - 4. Click the Done button
 - When done, turn off the plot using:
 View > Active View Visibility > Filed Reporter

Field Overlays (cont)

- Create another field plot:
 - 1. In the object tree, select the plane for plotting:
 - 1. Using the Model Tree, expand Planes
 - 2. Select Global:XZ
 - 2. Select the menu item *Maxwell 2D> Fields > Fields > A > Flux_Lines*
 - 3. Create Field Plot Window
 - 1. Solution: Setup1 : LastAdaptive
 - 2. Quantity: *Flux_Lines*
 - 3. In Volume: Allobjects
 - 4. Click the Done button
 - When done, turn off the plot using:
 View > Active View Visibility > Filed Reporter

This completes the simple example.

Presentation **Overview**

1

Screen Capturing s

- To save the drawing Window or a plot to the clipboard select the menu item: *Edit > Copy Image* s),
- In any Windows application, select: *Edit > Paste* to paste the image s),

1

File Structure A

- Everything regarding the project is stored in an ascii file s),
 - File: <project name>.mxwl
 - Double click from Windows Explorer will open and launch Maxwell v12
- Results and Mesh are stored in a folder named Â. <project_name>.mxwlresults
- Lock file: <project_name>.lock.mxwl s),
 - Created when a project is opened
- Auto Save File: <project_name>.mxwl.auto s),
 - Multiple When recovering, software only checks date
 - If an error occurred when saving the auto file, the s), date will be newer then the original
 - Look at file size (provided in recover dialog)

Projects				
File Edit View Favorites Too	ols Help			75
🔾 Back 🔹 🌖 🎁 🔎 Sea	rch 🎼 Folders 📑 🕶			
/	alning\Projects			- 🖪 Go
File and Folder Tasks.	Name - Ex_5_1_Magnetic_Force.mxwlresults Ex_5_1_Magnetic_Force.mxwl MEx_5_1_Magnetic_Force.mxwl.lock	Size 76 KB D KB	Type File Folder Maxwell File LOCK File	Date Medified 1/8/2008 3:35 PM 12/14/2007 9:11 AM 1/6/2008 3:35 PM

Edit Configured Libraries

Configure Libraries.. Run <u>S</u>cript ...

Record Script ...

Ansoft Maxwell Beta Release - Ex_5_1_Magnetic_Force - Maxwe

File Edit View Project Draw Modeler Maxwell 3D Tools Window Help

1

►

- **Scripts** s
 - Default Script recorded in v12 s),
 - Visual Basic Script

Remote Solve (Windows Only) ٨

Tools > Options > General Options > Analysis Options s),

General Options	<
Project Options Miscellaneous Options Default Units Analysis Options WebUpdate Options	ļ
Design Analysis Options For Design Type	
Design Type: Maxwell 3D	
Analysis Machine Options	
Default Machine: Local Remote Distributed	
Remote Analysis Options	
Note: Current User must be selected if any remote machines are Unix-based.	
User Name:	
Password:	
Domain/Workgroup:	
V Queue all simulations	
OK Cancel	

Presentation

1

Menu Structure

- Draw Primitives
- Modeler Settings and Boolean Operations
- M Edit Copy/Paste, Arrange, Duplicate
- Maxwell 2D Boundaries, Excitations, Mesh Operations, Analysis Setup, Results

	Modeler Maxwell 2D Tools Windo		Maxwell 2D Tools Window Help
Draw Modeler Maxwell 2D To	Import	Edit View Project Draw Modeler	Solution Type
🔨 Line	Export	🖸 Undo 🛛 Ctrl+Z	🧧 List
Spline	Import From Clipboard	C Redo Ctrl+Y	Validation Check
Arc •	Group Objects By Material	X Cut Ctrl+X	Analyze All
CUT Equation Based Curve		Copy Ctrl+C	Edit Notes
Rectangle	Assign Material	Paste Ctrl+V	3D <u>M</u> odel Editor
🗢 Ellipse	Movement Mode	X Delete Del	Design Settings
○ <u>C</u> ircle	Snap Mode		Translate Material Database
<u>R</u> egular Polygon	New Object Type	<u>C</u> opy Image	Boundaries
<u>S</u> weep	<u>⊂</u> oordinate System	Delete Start Point	Excitations
User Defined Primitive	List •	Delete End Point	Parameters •
	Edge •	Select All Visible Ctrl+A	Mesh Operations
• Point	Surface	Select All	Analysis Setup
Line Segment	Boolean •	Select •	Optimetrics Analysis
	Units	Deselect All Ctrl+Sbift+A	<u>F</u> ields
10 Region	- Meacure		Results
		Arrange	⊆reate 3D Design…
	Generate History	Duplicate	Export Equivalent Circuit
	Delete Last Operation	Scale	
	Purge History	Properties	Design Properties
	Model Analysis		Design Datasets

Presentation

1

Modeler - Model Tree

Material Select menu item *Modeler > Group by Material*

Object View

Presentation

1

Modeler - Commands

- A Parametric Technology
 - A Dynamic Edits Change Dimensions
 - Add Variables
 - A Project Variables (Global) or Design Variables (Local)
 - Animate Geometry
 - Include Units Default Unit is meters
 - Supports mixed Units

dd Vari	iable to HFSSModel1	X
Name	my_x	
Value	2.8*cos(10*(pi/180))+\$global_var_1	
	Define variable value with units: "1 mm"	
	Local Variable	
	C <u>P</u> roject Variable	
	OK Cancel	

Name	Value	Unit
Command	CreateBox	
Coordinate System	Global	
Position	-1,-1.6,0	mm
XSize	2.6	mm
YSize	2.8	mm
ZSize	1	mm
;	I	
Command		

- Modeler Primitives
 - 2D Draw Objects
 - A The following 2D Draw objects are available:
 - Line, Spline, Arc, Equation Based Curve, Rectangle, Ellipse, Circle, Regular Polygon, Equation Based Surface
 - 3D Draw Objects
 - Note that 3D objects can be pasted into the 2D model window, but they are ignored by the solution
 - The following 3D Draw objects are available (in Maxwell 3D):
 - Box, Cylinder, Regular Polyhedron
 Cone, Sphere, Torus, Helix, Spiral, Bond Wire
 - True Surfaces
 - Circles, Cylinders, Spheres, etc are represented as true surfaces. In versions prior to release 11 these primitives would be represented as faceted objects. If you wish to use the faceted primitives, select the Regular Polyhedron or Regular Polygon.

Presentation 1

Overview

Modeler - Boolean Operations/Transformations

- Modeler > Boolean >
 - Unite combine multiple primitives
 - Unite disjoint objects (Separate Bodies to separate)
 - Subtract remove part of a primitive from another
 - Intersect- keep only the parts of primitives that overlap
 - Split break primitives into multiple parts along a plane (XY, YZ, XZ)
 - Split Crossing Objects splits objects along a plane (XY, YZ, XZ) only where they intersect
 - Separate Bodies separates objects which are united but not physically connected into individual objects

 Toolbar: Boolean
- Edit > Arrange >
 - Move Translates the structure along a vector
 - A Rotate Rotates the shape around a coordinate axis by an angle
 - Mirror Mirrors the shape around a specified plane
 - Offset Performs a uniform scale in x, y, and z.

Toolbar: Arrange

- A Edit > Duplicate >
 - Along Line Create multiple copies of an object along a vector
 - Around Axis Create multiple copies of an object rotated by a fixed angle around the x, y, or z axis
 - Mirror Mirrors the shape around a specified plane and creates a duplicate

Edit > Scale - Allows non-uniform scaling in the x, y, or z direction

- Modeler Selection
 - Selection Types
 - Molect (Default)
 - Face
 - A Edge
 - Vertex
 - Selection Modes
 - All Objects
 - All Visible Object
 - A By Name
 - Highlight Selection Dynamically By default, moving the mouse pointer over an object will dynamically highlight the object for selection. To select the object simply click the left mouse button.
 - Multiple Object Selection Hold the CTRL key down to graphically select multiple objects
 - Next Behind To select an object located behind another object, select the front object, press the b key to get the next behind. Note: The mouse pointer must be located such that the next behind object is under the mouse pointer.
 - To Disable: Select the menu item Tools > Options > Modeler Options

(Ŝ)

Object

Object Face

Edge Vertex

From the Display Tab, uncheck Highlight selection dynamically

Select Object	
Name:	
air Board Ground	
PML_air_1 PML_air_10 PML_air_11	
PML_air_12 PML_air_13 PML_air_14	
	Cance

Overview

∧

¥

1

Modeler - Moving Around s

- Modeler > Snap Mode to set the snaps Å
- Tools > Customize... Å Snap Mode to view Snap Mode toolbar

Toolbar: Snap Mode

	×
▲ New Reset Reset All	
	▲ New Reset Reset All

Presentation Overview

1

2D Measure s

- Modeler > Measure > Å.
 - Position Location, Distance, and Area s),
 - Edge Edge Length s),
 - Face Surface Area s),
 - Object Surface Area, Object Volume s),

	Measure Informatio	n	X
	Entity	Measure information	
Position Points	Vertex_111 Vertex_112	Position(Vertex_111) = [100, 100, -13] mil Position(Vertex_112) = [100, 100, 13] mil Distance = 26 mil X Distance = 0 mil Y Distance = 0 mil Z Distance = 26 mil	
	Select two points to get	the distance.	
	Clear	Clear All Close	

Presentation **Overview**

1

- **Options General** ٨
 - Tools > Options > General Options > Project Options Â.
 - Temp Directory Location used during solution process
 - Make sure it has at least 512MB free disk. Å.
- **Options Maxwell** ᠕
 - Tools > Options > Maxwell Options > Solver Â.
 - Set Number of Processors = 2 for 1 dual-core processor or two single-core processors. Requires additional license
 - Default Process Priority set the simulation priority from s), Critical

(highest) to Idle (lowest)

Maxwell Options	×
General Options Solver	
Number of Processors:	1
Default Process Priority:	Normal Priority
Desired RAM Limit (MB)	0
Maximum RAM Limit (MB)	0

General Options 🛛 🔀
Analysis Options WebUpdate Options Distributed Analysis Machines
Project Options Miscellaneous Options Default Units
Autosave
V Do Autosave
Autosave interval: 10 edits
Directories
Project Directory: F:\tmp\Maxwell11
Temp Directory: F:\Ansoft\temp
Library Directory: F:\Ansoft\Maxwell11
Reset Library Directory
Additional Options
When creating a new project: C Insert a design of type:
Ver Don't insert a design
OK Cancel

Options - Modeler Options

- Mathematical Strain Str
- Can enter in new dimensions using either Point (mouse) or Dialog entry mode
- Alternatively use F3 and F4 to switch between Point and Dialog entry modes

Typical "Dialog" entry mode window

Command Attribute			
Name	Value	Unit	Evaluated Value
Command	CreateCylinder		
Coordinate System	Global		
Center Position	0,0,0	in	0in , 0in , 0in
Axis	Z		
Radius	0	in	Oin
Height	0	in	Oin

- *Tools > Options > Modeler Options > Display* tab to enable playback
- Must close and re-open Maxwell after making change for this setting, to activate
- M Visualization is seen by clicking on primatives in the history tree (under subtract command, for instance)

Converting Older Maxwell Projects (pre-Maxwell v12) to Maxwell v12

- From Maxwell v 11 and older,
 - 1. Select the menu item *File > Open*
 - 2. Open dialog
 - 1. Files of Type: Ansoft Legacy EM Projects (.cls)
 - 2. Browse to the existing project and select the .cls file
 - 3. Click the Open button
- What is Converted?
 - Converts Entire Model: Geometry, Materials, Boundaries, Sources and Setup
 - M Solutions, Optimetrics projects and Macros are not converted

Open	? 🗙
Look in: 🗁 pcs_dual.pjt 🗾 🗢 🔁 🖻	* 💷 •
pcs_dual.ds	
File name: pcs_dual.cls	Open
Files of type: Ansoft Legacy EM Projects (*.cls)	Cancel

Overview

Material Setup - Libraries

- *3-Tier library structure*
 - System (global) level predefined from Ansoft and ships with new upgrades, users cannot modify this
 - *User Library to be shared among several users at a company (can be encrypted)*
 - A Personal libraries to be used only by single user (can be encrypted)
- Add a new material: Tools > Edit Configured Libraries > Materials
- New Interface for Materials Setting shared with RMxprt

Edit Li	ibrarie <i>s</i>							×
Mat	erials Material F	- ilters						
	Search Paramete Search by Name Search	15	Search Criteria Sy Name Relative Per	o mittivity	by Property [pers [sys]	ies Show Project defir conal] mylibrary] userlibby jmark Materials	iitions 🔲 Show all I	ibraries
Γ	Name	☐ ☐ Location	Origin	Relative Permittivity	Relative Permeability	Bulk Conductivity	Magnetic Loss Tangent	
	vacuum	Project	Materials	1	1	0	0	0
	steel14L10	UserLibrary	userlibby jmark	1	1	0	0	0
	copper	Project	Materials	1	0.999991	58000000Siemens/m	0	0
	arm_steel	Project		1	BH Curve	0	0	0A_

- Click "Add Material ...". The Material is only available in Project
- To add a material in the user or personal library: click on "Export Library" and save it in the desire library.
- In the main project window, click on *Tools > Configured Libraries*. Locate the library to have the material available for all the projects.
- Click on Save as default to automatically load library for any new project.

Configure Design Libraries	×
 System Libraries User Libraries Materials Personal Libraries 	OK Cancel Save as default
Available Libraries C:\Program Files\Ansoft\Maxwell11\sys Materials RMxprt Maxwell Circuit Elements Maxwell Circuit Elements Examples Rmxprt	Configured Libraries Materials

Presentation

1

Overview

1

Materials Setup - Editing ٨

Material Name steel_1008		-	Material Coordinate Cartesian	:System Type:
Properties of the M Nam Relative Per	faterial e Type neability Nonlinear	Value BH Curve.,	Units	View/Edit Material for
Bulk Conduc Magnetic Co Magnitude	tivity Simple ercivity Vector Vector Mag	2000000 0:	siemens/m A_per_meter	C All Products
		Solid		Validate Material

Material Setup - BH curve

- A Robust BH curve entry can delete points if you make a mistake
- Can import data from a file
- To export BH curve for use in future, right-mouse-click on curve and select Export to File...

1

- Material Setup Permanent Magnets
 - Direction of magnetization determined by material's object's Orientation and Magnetic Coercivity Unit Vectors.
 - To modify the Orientation, open the Attribute for the object and change the coordinate system. The default Orientation for permanent magnets is Global CS.
 - To modify the Magnetic Coercivity Unit Vectors for a permanent magnet material, enter the Materials Library and edit the material.
 - The material coordinate system type can be described in Cartesian, Cylindrical, Spherical
 - The magnetic coercivity has unit vectors corresponding to the chosen coordinate system: for instance X,Y,Z for cartesian.
 - To rotate a magnet in a parametric simulation and the magnetization direction, you must first rotate the object and second assign the FaceCS, as shown below in the history tree

đ	🕻 View / Edit Material								
	M	aterial Name Material Coordinate System Type: IdFe35 Cartesian Properties of the Material							
			Name	Туре	Value	Units			
N			Relative Permeability	Simple	1.0997785406				
L	V		Bulk Conductivity	Simple	625000	siemens/m			
L			Magnetic Coercivity	Vector					
L			- Magnitude	Vector Mag	-890000	A_per_meter			
L			- X Component	Unit Vector	1				
L			 Y Component 	Unit Vector	0				
L			 Z Component 	Unit Vector	0				
			Composition		Solid				

Material Setup - Anisotropic Material Properties

- $ε_1$, $μ_1$, and $σ_1$ are tensors in the X direction.
- $ε_2$, $μ_2$, and $σ_2$ are tensors in the Y direction.
- $\overline{ε_3}$, μ_3 , and $\sigma \overline{3}$ are tensors in the Z direction.

Note: Nonlinear anisotropic permeability not allowed in Maxwell 2D.

$$\begin{bmatrix} \varepsilon \end{bmatrix} = \begin{bmatrix} \varepsilon_1 & 0 & 0 \\ 0 & \varepsilon_2 & 0 \\ 0 & 0 & \varepsilon_3 \end{bmatrix}, \quad \begin{bmatrix} \mu \end{bmatrix} = \begin{bmatrix} \mu_1 & 0 & 0 \\ 0 & \mu_2 & 0 \\ 0 & 0 & \mu_3 \end{bmatrix}, \quad \begin{bmatrix} \sigma \end{bmatrix} = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \end{bmatrix}$$

Solver	Anisotropic Permitivity	Anisotropic Permeability	Anisotropic Conductivity	Dielectric Loss Tangent	Magnetic Loss Tangent
Electrostatic	yes	no	no	no	no
DC Conduction	no	no	yes	no	no
AC Conduction	yes	no	yes	no	no
Magnetostatic	no	yes	no	no	no
Eddy Current	no	yes	no	no	no
Transient	no	yes	no	no	no

Overview

1

Electric Field Boundary Conditions (Electrostatic, DC Conduction, AC Conduction)

Boundary Type	E-Field Behavior	Used to model
Default Boundary Conditions (Natural and Neumann)	 Field behaves as follows: Natural boundaries – The normal component of D changes by the amount of surface charge density. No special conditions are imposed. Neumann boundaries – E is tangential to the boundary. Flux cannot cross a Neumann boundary. 	Ordinary E-field behavior on boundaries. Object interfaces are initially set to natural boundaries; outer boundaries are initially set to Neumann boundaries.
Symmetry	 Field behaves as follows: Even Symmetry (Flux Tangential) – E is tangential to the boundary; its normal components are zero. Odd Symmetry (Flux Normal) – E is normal to the boundary; its tangential components are zero. 	Planes of geometric and electrical symmetry.
Balloon	Field behaves so that voltage can fringe	Ground at infinity
Matching (Master and Slave)	The E-field on the slave boundary is forced to match the magnitude and direction (or the negative of the direction) of the E-field on the master boundary.	Planes of symmetry in periodic structures where E is oblique to the boundary.
Resistance (DC conduction solver only)	A resistance boundary models a very thin layer of resistive material (such as that caused by deposits, coatings or oxidation on a metallic surface) on a conductor at a known potential.	Use this boundary condition when the resistive layer's thickness is much smaller than the other dimensions of the model.

1

Magnetic Field Boundary Conditions (Magnetostatic, Eddy Current, Transient)

Boundary Type	H-Field Behavior	Used to model
Default Boundary Conditions (Natural and Neumann)	 Field behaves as follows: Natural boundaries – H is continuous across the boundary. Neumann boundaries – H is tangential to the boundary and flux cannot cross it. 	Ordinary field behavior. Initially, object interfaces are natural boundaries; outer boundaries and excluded objects are Neumann boundaries.
Magnetic Vector Potential	Sets the magnetic vector potential on the boundary. Note: In the Magnetostatic solver, A is RMS while in the Eddy Current solver, A is peak.	Magnetically isolated structures.
Symmetry	 Field behaves as follows: Odd Symmetry (Flux Tangential) – H is tangential to the boundary; its normal components are zero. Even Symmetry (Flux Normal) – H is normal to the boundary; its tangential components are zero. 	Planes of geometric and magnetic symmetry.
Impedance (Eddy Current only)	Includes the effect of induced currents beyond the boundary surface.	Conductors with very small skin depths.
Balloon	Field behaves so that magnetic flux can fringe	No fringing at infinity
Matching (Master and Slave)	The H-field on the slave boundary is forced to match the magnitude and direction (or the negative of the direction) of the H-field on the master boundary.	Planes of symmetry in periodic structures where H is oblique to the boundary.

Electric Field Sources (Electrostatic, DC Conduction, AC Conduction) s

Source	Type of Excitation	
Floating Conductor	Used to model conductors at unknown potentials.	
Voltage	The DC voltage on a surface or object.	
Charge	The total charge on a surface or object (either a conductor or dielectric).	
Charge Density	The charge density in an object.	
Notes: In the Electrostatic solver, any conductor without a source condition will be assumed to be floating.		

Magnetic Field Sources (Magnetostatic)

Source	Type of Excitation		
Current	The total current in a conductor.		
Current Density	The current density in a conductor.		
Notes:			
In the Magnetostatic solver, current is RMS ampturns.			
Permanent magnets will also act as a	a source in the Magnetostatic solver.		

Magnetic Field Sources (Eddy Current)

Source	Type of Excitation	
Current	The total current in a conductor.	
Parallel Current	The total current in a a group of parallel conductors.	
Current Density	The current density in a conductor.	
Notes:		
▲ In the Eddy Current solver, current is	s peak amp-turns.	
Sources can be solid (with eddy effective states)	ects) or stranded (without eddy effects).	

Magnetic Field Sources (Transient) A

Source	Type of Excitation	
Current	The total current in a conductor.	
Current Density	The current density in a conductor.	
Coil	Current or voltage on a winding representing 1 or more turns	
▲ Permanent magnets will also act as a source in the Transient solver.		

8	Assign Material		
	<u>A</u> ssign Band		
	Assign Boundary		
	Assign Excitation	Current	
	Assign Parameters	Current Density	
	Assign Mesh Operation	C <u>o</u> il	
	Fields •	End Connection	
	Plot Mesh	E <u>x</u> ternal Circuit	×
	Copy Image	Add Winding	
	Zobà nugăc	Setup V Connection	
		Decab L Connection	
		Set Eddy Effects	

- Current and voltage sources (solid or stranded) can be constant or functions of intrinsic A variables: speed (rpm or deg/sec), position (degrees), or time (seconds)
- Dataset function can be used for piecewise linear functions: Pwl_periodic (ds1, Time) s

Current Excitation			
General Defaults			
Name:	left_1		
Parameters			
Value:	120*sin(2*pi*60*ti	me) + Pwl_periodic(ds1, Time)	
Туре:	Solid	C Stranded	
Ref. Direction:	Positive	C Negative	

Presentation

1

Magnetic Field Sources (Transient)

- Maxwell 2D > Excitation > Current
 - Value: applies current in amps
 - Type:
 - Solid
 - for windings having a single conductor/turn
 - eddy effects are considered
 - Stranded
 - for windings having many conductors/turns
 - eddy effects are <u>not</u> considered
 - A Ref Direction:
 - A Positive or Negative

urrent Excitation		×
General Defaults		
Name:		
Wante.		
Parameters		
Value:	120*sin(2*pi*60*time) + P	
Turner	COLL COLL	
Type:	 Solid Stranded 	
Ref. Direction:	Positive C Negative	

Presentation

1

Magnetic Field Sources (Transient)

- Maxwell 2D > Excitation > Add Winding
 - Current applies current in amps
 - Solid or Stranded
 - Input current and number of parallel branches as seen from terminal
 - Voltage applies voltage (total voltage drop over the length of a solid conductor or the entire winding)
 - Solid or Stranded
 - Input initial current, winding resistance, extra series inductance not considered in FEA model, voltage, and number of parallel branches as seen from terminal
 - External couples to Maxwell Circuit Editor
 - Solid or Stranded
 - Input initial current and number of parallel branches

Maxwell 2D > Excitation > Assign > Coil

Pick a conductor on the screen and then specify:

- Mame
- Number of Conductors
- Polarity: positive, negative, or functional winding direction

Note: Windings in the XY solver will usually have 2 coils: one positive and one negative polarity. Both coils will be added to the appropriate winding by right-mouse clicking on **Coil** in the project tree and choosing **Add to Winding** -

inding			×
General Defaults			
Name: Wind	ing1		
Parameters			
Type: Volta	ge 💌	🛛 🔿 Solid 💿 Stranded	
Curre Initial Current Voltag Extern	nt ge nal	A	
Resistance: 0		ohm 💌	
Inductance: 0		mH	
Voltage: 0		V	
Number of parallel bra	nches: 1		
il Excitation			×
General Defaults			
Name:	Coil		
Parameters			- II
Number of Conductors:	100		
Polarity:	Positive		
	O Negative		
	C Function:		
Maxwell2DDesign2	(Transient, about 2	2]×	

1

To Create an External Circuit

- 1. Select: *Maxwell2D > Excitations > External Circuit > Edit External Circuit > Import Circuit*
- 2. After circuit editor opens, add elements to construct the circuit. Note that the name of the Winding in the circuit (Winding1) must match the name of the Winding in Maxwell (Winding1)
- 3. Save circuit as *.amcp file and then *Maxwell Circuit > Export Netlist > *.sph* file.

Overview

Core Loss Calculation Method

The core loss for electrical steel is based on:

$$p = K_h B_{\max}^2 f + K_c (B_{\max} f)^2 + K_e (B_{\max} f)^{1.5}$$

where:

- M Kh is the hysteresis coefficient.
- Kc is the classical eddy coefficient.
- Ke is the excess or anomalous eddy current coefficient due to magnetic domains.
- A Bmax the maximum amplitude of the flux density.
- f is the frequency.

The power ferrite core loss is based on:

$$p = C_m f^x B_{\max}^y$$

where:

- Cm is constant value determined by experiment.
- fx is the frequency.
- A Bymax is the maximum amplitude of the flux density

Maxwell 2D > Design Settings

- The Design Settings window allows you to specify how the simulator will deal with some aspects of the design. Tabs vary by solver used (the panel below is for the transient solver)
- Set the Symmetry Multiplier (For Transient XY Solutions only).

D	Design Settings
	Preserve Transient Solution Advanced Product Coupling Background Material Thresholds Symmetry Multiplier
	Symmetry Multiplier: 1
	OK Cancel

- Set the Material Threshold for treating materials as conductors vs. insulators.
- Set Preserve Transient Solution options (For Transient Solutions Only).
- Set transient coupling with Simplorer on the Advanced Product Coupling tab (For Transient Solutions Only)
- Set the Model Depth (Maxwell2D XY Transient Designs Only).
- Set the default Background material (Maxwell2D Designs Only).

Maxwell 2D > Parameters

- Allows the automatic calculation of parameters following the field solution
- Includes: Force, Torque, Flux linkage, Core loss, and Matrix

	Max	well 2D Tools Window Help					
		Solution <u>Type</u>	b	🔎 🖪 🕴	5 No) D 🕂	1
		<u>L</u> ist		lav av Isa	-		-
	8	Validation Check	2	0000	Ð		
	<mark>[0</mark>]	<u>A</u> nalyze All					
	1	Edit <u>N</u> otes					
		3D Model Editor					_
		Design Settings	11-				-
1		Translate Material Database	H.				
1		Boundaries	•				-
		Excitations	· III-				
		Parameters		<u>A</u> ssign	۱.	Eorce	
		Mesh Operations	•	<u>L</u> ist		<u>M</u> atrix	
		Analysis <u>S</u> etup	•	<u>R</u> eassign	T		
		Optimetrics Analysis	•	<u>D</u> elete All			-
		<u>F</u> ields	•	Visualization			-
					the second se		

Maxwell 2D > Model > Motion Setup > Assign Band

Model	Þ	Motion Setup	<u>A</u> ssign Band
<u>B</u> oundaries	►	Set Symmetry Multiplier	<u>D</u> elete All
<u>E</u> xcitations	►	Set <u>M</u> odel Depth	Visualization

- 1. Defines the direction and type of motion (translation or rotation)
- 2. Defines the mechanical parameters such as mass, damping, and load force
- 3. Defines limits of motion

Motion Setup	Motion Setup
Type Data Mechanical Post Processing	Type Data Mechanical Post Processing
Motion Type: Translation	Consider Mechanical Transient
	Initial Velocity: 0 m_per_sec 💌
	Mass: 0 kg
Moving Vector: Global::Z	Damping: 0 N-sec/m
Positive O Negative	Load Force: 0 newton
OK Cancel	OK Cancel
Motion Setup	X
Type Data Mechanical Pos	t Processing
Initial Position:	mm
Translate Limit:	
Negative: 0	mm
Positive: 0.1	mm
	OK Cancel

Magnetostatic and Electric Solution Setup

- Start the menu of solution setup by: Maxwell > Analysis Setup > Add Solution Setup ...
- For Magnetostatic solver on Solver tab, suggest setting nonlinear residual = 0.001. On default tab choose Save Defaults to set this value for all future projects.

Solve Setup		Solve Setup	X
General Convergence Solver Defaults		General Convergence Solver Defau	ilts
Name: Setup1	-	Standard	
- Adaptive Setup		Refinement Per Pass:	30 %
Maximum Number of Passes:	τα	Minimum Number of Passes:	2
Percent Error:	T	Minimum Converged Passes:	1
Parameters		_ Optional	
🔽 Solve Fields Only		Use Output Variable Converg	gence
Solve Matrix:	After last pass	Output Variable:	T
And the second second	Unly after converging	Parameter:	▼ %
Display Force/Torque in Convergence	None 💌	Max Delta Per Pass:	1
Use Default			
		U	se Defaults
90 10 10	OK. Cancel		OK Cancel

Eddy Current Solution Setup s

olve Setup	ĺ
General Convergence Solver Frequency Swee	ep Defaults
Linear Residual: 1e-008 Adaptive Frequency: 60	Hz 💌
Use Defaults	

Туре;	Linear S	ten 🔻	Add to List >>	Frequency	Save Helds
Start:	10	Hz 💌	Replace List >>		
Stop	1000	Hz 💌			
Step Size	e 10	Hz 💌	Add Single Point		
P Save	Fields (All	Frequencies)	Delete Selection		
			Clear All		
			$1(\tau^{-1}\eta)_{\pm} \leq 1 - l_{popula}$		
-			L		

Presentation **Overview**

1

Transient Solution Setup ٨

Solve Setup		Solve Setup
General Save Fields Ad Name: Transient Setup Stop time: Time step:	dvanced Solver Output Variables Defaults	General Save Fields Advanced Solver Output Variables Defaults Sweep Setup Time Add to List>> Time Type: Invest Step Add to List>> Replace List>>> Stat: 0 s Replace List>>> Stap: 0.01 s Add Single Point Step Size: 0.005 s Add Single Point Delate Selection Clear All Image: All Image: All
	Use Default OK Ca	Please note the stop time defined in the General Page would be automatically included.

Presentation

1

Mesh Operations

- Model To assign Mesh operations to Objects, select the Menu item: Maxwell 2D > Assign Mesh Operations
 - 1. On Selection is applied on the surface of the object
 - 2. Inside Selection is applied through the volume of the object
 - 3. Surface approximation is applied to set faceting guidelines for true surface objects

Mesh Operations	Assign	On Selection 🔹 🕨
Analysis Setup	<u>D</u> elete All	Inside Selection
Optimetrics Analysis		Surface Approximation
<u>F</u> ields	I	
<u>R</u> esults		
⊆reate 3D Design…		
Export Equivalent Circuit	1	
Design Properties		
Design <u>D</u> atasets		

Presentation

1

1.

Length Based... On Selection Mesh Operations "On selection" Inside Selection Skin Depth Based... applied on the perimeter of the object Surface Approximation... Element length based refinement: Length Based Å. Skin Depth based refinement: Skin Depth Based Element Langth Bosed Refinement 5kin Depth Based Refinement Lenath2 Name uniteach (Nation Length of Elements Skin Depth Restrict Length of Elements: **On selection – skin** Ealculate Skin Depth Skin Depth: Maximum Length of Elements: depth based (2 layers) 11.2 TOPO \mathbf{T} mm Number of Elements Number of Layers of Elements: 2 Calculate Skin Demh Restrict the Number of Elements int-Surface Triangle Length: Relative Permeability: Maximum Number of Elements: 4000 1.2 mm 1000 Conductivity. 110e6 mhos/m Frequency: 1000 Number of Elements: Hz ÷ Restrict the Number of Surface Elements 🔽 OK. Cancel Maximum Number of Surface Elements 1000 DK' Cancel

On selection – length based

Presentation

1

- 2. Mesh Operations "Inside selection" applied throughout the volume of the object
 - Element length based refinement: *Length Based*

lement Length Broad	Refinement	
Name: Longth2		
Length of Elements		
Restrict Length of Maximum Length o	Elements:	
11.2	mm 🔄	
Number of Elements Restrict the Numb Mäximum Number	er of Elements Inc.	
1000		
QK	Cancel	

Inside Selection		Length Based
Surface Approximation		
	\square	
	Ð	
	₿	
	Ņ	
	ĸ	XXXXXXX
	K	XXXXXXXX
	Ż	
	₿	
	ĸ	
	K	
	1.1	

Inside selection – length based

Presentation **Overview**

1

3. Mesh Operations "Surface Approximation"

- For true surfaces, perform faceting control on a s), face-by-face basis
- Select Mesh operation > Assign > Surface s), approximation and specify one or more settings:
 - Maximum surface deviation (length) ٠

Maximum Surface Normal Deviation ٠ (degrees)

 Θ = Maximum Surface Normal Deviation

 $D = r(1 - \cos(\Theta/2))$

Maximum Aspect Ratio ٠

 $AspectRatio = \frac{ro}{2*ri}$

On Selection	Þ		Length Based
Inside Selection			Skin Depth Based
Surface Approximation		Г	

Surface Approximation	×
Name: SurfApprox1	
Maximum Surface Deviation]
Ignore	
Set maximum surface deviation (length):	
0.45 mm 💌	
Maximum Surface Normal Deviation	1
Use defaults	
Set maximum normal deviation (angle):	
15 deg 💌	
Maximum Aspect Ratio]
Use defaults	
C Set aspect ratio: 10	
OK	

Manual mesh creation ٨

- To create the initial mesh: Click *Maxwell > Analysis Setup > Apply Mesh Operations* s),
- To refine the mesh without solving s),
 - Define mesh operations as previously discussed 1.
 - Click Maxwell > Analysis Setup > Apply Mesh Operations 2.
 - Click *Maxwell > Analysis Setup > Revert to Initial Mesh* to restart to the initial mesh 3.

3D Model Editor Set Material Thresholds Translate Material Database		
<u>B</u> oundaries	►	
<u>E</u> xcitations	⊁	
Parameters	►	
Mesh Operations	•	
Analysis <u>S</u> etup	≯	🔎 Add Solution Setup
Optimetrics Analysis	►	Revert to Initial Mesh
<u>R</u> esults	≁	Apply Mesh Operations

To view mesh information: Click *Maxwell > Results > Solution Data* and click on the tab *Mesh Statistics*. s),

Presentation

1

Mesh Display

- 1. Select an object
- 2. Select the menu item *Maxwell 2D > Fields > Plot Mesh*

Create Mesh Plot	$\overline{\mathbf{X}}$
Name:	Mesh1
Design Name:	MaxwellDesign1
Solution:	Setup1 : LastAdaptive
Field Type:	Fields
	Done Cancel

1

- 2D transient meshing for rotational models
- Moving Surface" method used

Overview

2D transient meshing for translational models

Moving Band" method used

- Adaptive meshing not used, so user must manually create the mesh or link to a solved MS or Eddy design
- The band area is re-meshed at each time step
- M The stationary region and moving part(s) are not re-meshed
- M If you link the mesh to a solved MS or Eddy design:
 - M The entire mesh from the linked design is transferred to the transient design.
 - M The mesh in objects inside and outside of the band never changes as motion occurs.
 - If the starting transient position is the same as the linked MS or Eddy design, then the linked mesh in the band object is reused.
 - If the starting transient position is the different than the linked MS or Eddy design, then the linked mesh in the band object is completely deleted. The band is then re-meshed based only on mesh operations in the transient solver. Any mesh or mesh operation on the band in the linked MS or Eddy Design is ignored. The key point is that mesh operations are always required on the band object (use inside selection) for Maxwell 2D transient designs.
 - For subsequent positions as the object(s) move in the band, the mesh operations on the band in the transient design are re-applied at every timestep and a new mesh is created.

Post Processing

- Two Methods of Post Processing Solutions:
 - Viewing Plots
 - Manipulating Field Quantities in Calculator
- Five Types of Plots:
 - 1. Contour plots (scalars): equipotential lines, ...
 - 2. Shade plots (scalars): Bmag, Hmag, Jmag, ...
 - 3. Arrow plots (vectors): B vector, H vector, ...
 - 4. Line plots (scalars): magnitude vs. distance along a predefined line
 - 5. Animation Plots

Presentation Overview

1

Shade plot (tone) s

Shade plot (fringe with outline) A

Presentation

1

Arrow plot

Presentation

1

Line plot

Presentation

1

Multiple windows and multiple plots

