

16-Bit Digital Signal Controllers with High-Speed PWM, Op Amps and Advanced Analog Features

Operating Conditions

- 3.0V to 3.6V, -40°C to +85°C, up to 70 MIPS
- 3.0V to 3.6V, -40°C to +125°C, up to 60 MIPS

Core: 16-Bit dsPIC33E CPU

- · Code-Efficient (C and Assembly) Architecture
- Two 40-Bit Wide Accumulators
- · Single-Cycle (MAC/MPY) with Dual Data Fetch
- · Single-Cycle Mixed-Sign MUL plus Hardware Divide
- · 32-Bit Multiply Support

Clock Management

- · Internal Fast FRC Oscillator with 1% Accuracy
- · Programmable PLLs and Oscillator Clock Sources
- · Fail-Safe Clock Monitor (FSCM)
- · Independent Watchdog Timer (WDT)
- · Fast Wake-up and Start-up

Power Management

- Low-Power Management modes (Sleep, Idle, Doze)
- Executing Optimized NOP String with Flash Fetch
- · Integrated Power-on Reset and Brown-out Reset
- · 0.6 mA/MHz Dynamic Current (typical)
- 30 µA IPD Current (typical)

High-Speed PWM

- Up to 12 PWM Outputs (six generators)
- Primary Master Time Base Inputs allow Time Base Synchronization from Internal/External Sources
- · Dead Time for Rising and Falling Edges
- 7.14 ns PWM Resolution
- PWM Support for:
 - DC/DC, AC/DC, Inverters, PFC, Lighting
 - BLDC, PMSM, ACIM, SRM
- · Programmable Fault Inputs
- Flexible Trigger Configurations for ADC Conversions
- Supports PWM Lock, PWM Output Chopping and Dynamic Phase Shifting

Advanced Analog Features

- · Two Independent ADC modules:
 - Configurable as 10-bit, 1.1 Msps with four S&H or 12-bit, 500 ksps with one S&H
 - 11, 13, 18, 30 or 49 analog inputs
- · Flexible and Independent ADC Trigger Sources
- Up to Four Op Amp/Comparators with Direct Connection to the ADC module:
 - Additional dedicated comparator
 - Programmable references with 32 voltage points
 - Programmable blanking and filtering
- · Charge Time Measurement Unit (CTMU):
 - Supports mTouch™ capacitive touch sensing
 - Provides high-resolution time measurement (1 ns)
 - On-chip temperature measurement

Timers/Output Compare/Input Capture

- · 21 General Purpose Timers:
 - Nine 16-bit and up to four 32-bit timers/counters
 - Eight output capture modules configurable as timers/counters
 - PTG module with two configurable timers/counters
 - Two 32-bit Quadrature Encoder Interface (QEI) modules configurable as a timer/counter
- · Eight Input Capture modules
- Peripheral Pin Select (PPS) to allow Function Remap
- Peripheral Trigger Generator (PTG) for Scheduling Complex Sequences

Communication Interfaces

- Four Enhanced Addressable UART modules (17.5 Mbps):
 - With support for LIN/J2602 protocols and IrDA®
- Three 3-Wire/4-Wire SPI modules (15 Mbps)
- 25 Mbps Data Rate for Dedicated SPI module (with no PPS)
- Two I²C[™] modules (up to 1 Mbps) with SMBus Support
- Two ECAN $^{\mbox{\tiny TM}}$ modules (1 Mbps) with CAN 2.0B Support
- Programmable Cyclic Redundancy Check (CRC)
- Codec Interface module (DCI) with I²S Support

Direct Memory Access (DMA)

- · 4-Channel DMA with User-Selectable Priority Arbitration
- Peripherals Supported by the DMA Controller include:
 - UART, SPI, ADC, ECAN and input capture
 - Output compare and timers

Input/Output

- Sink/Source 15 mA or 10 mA, Pin-Specific for Standard VoH/VoL
- 5V Tolerant Pins
- Selectable Open-Drain. Pull-ups and Pull-Downs
- Up to 5 mA Overvoltage Clamp Current
- · Change Notice Interrupts on All I/O Pins
- PPS to allow Function Remap

Qualification and Class B Support

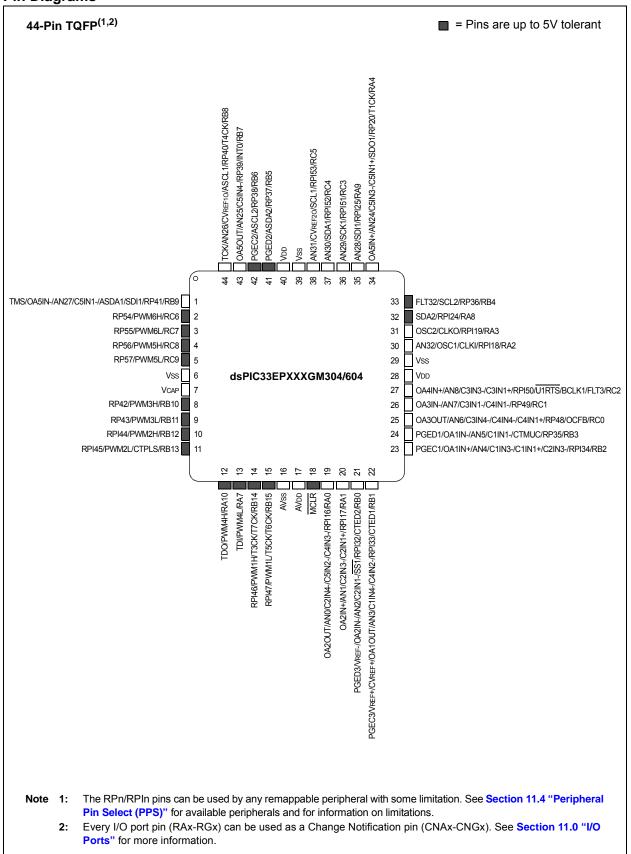
- AEC-Q100 REVG (Grade 1 -40°C to +125°C) Planned
- AEC-Q100 REVG (Grade 0 -40°C to +150°C) Planned
- · Class B Safety Library, IEC 60730

Debugger Development Support

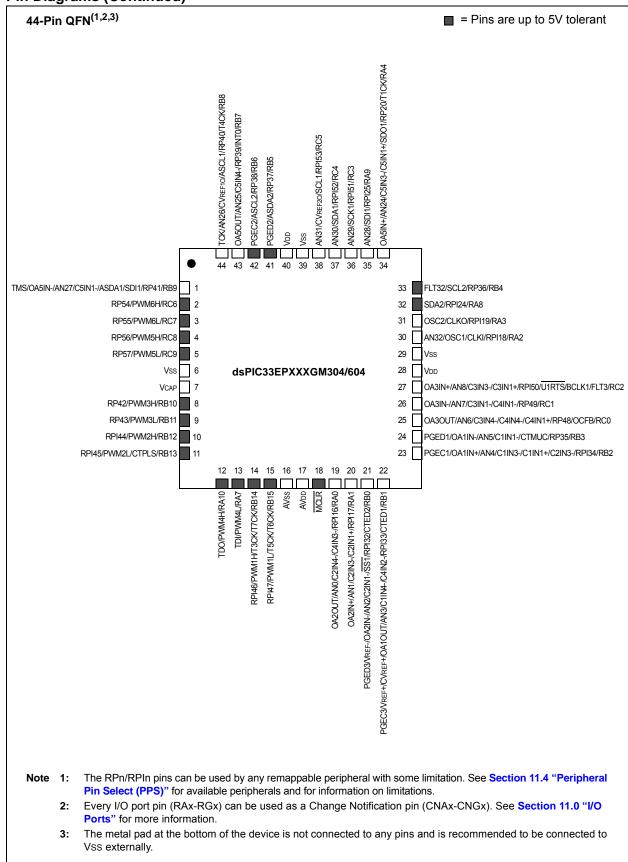
- · In-Circuit and In-Application Programming
- · Three Complex and Five Simple Breakpoints
- IEEE 1149.2 Compatible (JTAG) Boundary Scan
- · Trace and Run-Time Watch

dsPIC33EPXXXGM3XX/6XX/7XX PRODUCT FAMILY

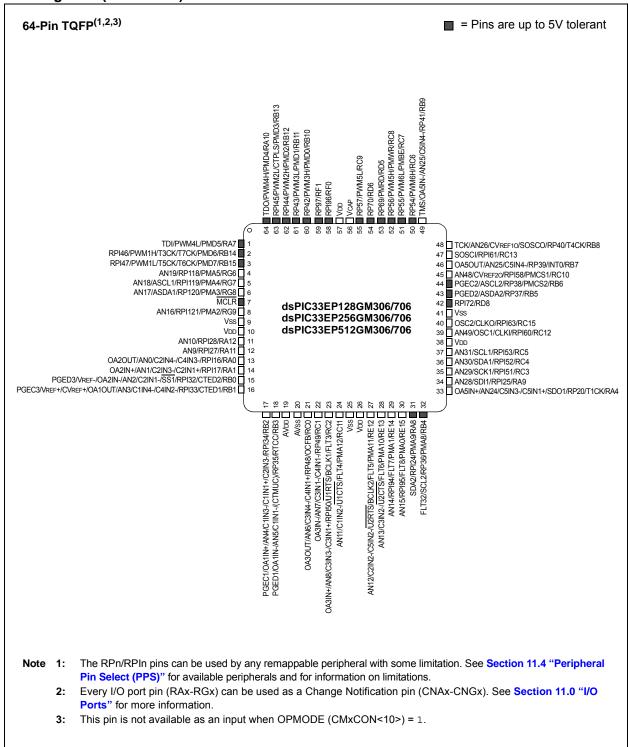
The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. Their pinout diagrams appear on the following pages.

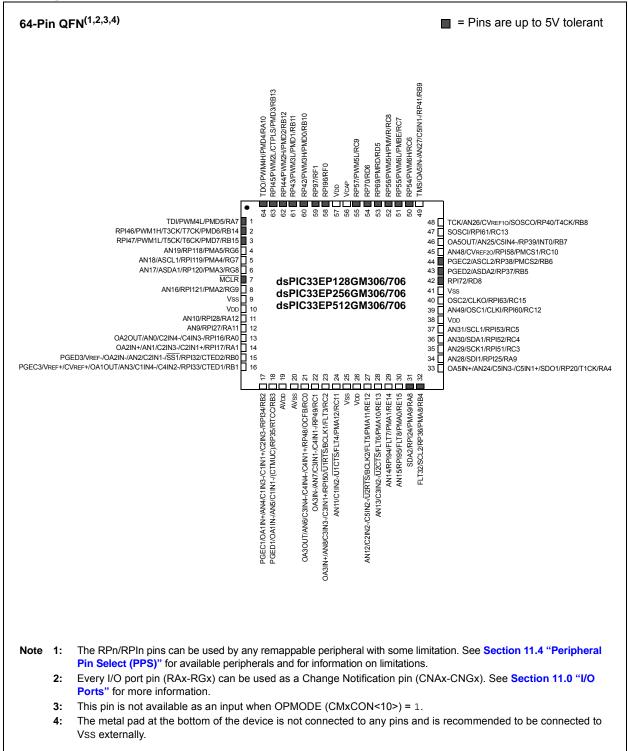

TABLE 1: dsPIC33EPXXXGM3XX/6XX/7XX FAMILY DEVICES

<u>~</u>				Remappable Peripherals																			
Device	Program Flash Memory (Kbytes)	RAM (Kbytes)	ECANTM	16-Bit/32-Bit Timers	Input Capture	Output Compare	Motor Control PWM (Channels)	QEI	UART	SPI ⁽¹⁾	DCI	External Interrupts ⁽²⁾	I ² Стм	CRC Generator	ADC	10-Bit/12-Bit ADC (Channels)	Op Amps/Comparators	CTMU	PTG	PMP	I/O Pins	Pins	Packages
dsPIC33EP128GM304	400	10	0																				
dsPIC33EP128GM604	128	16	2																				
dsPIC33EP256GM304	256	32	0	9/4 8	0	8	12	2	2 4	4 3	1	5	2	1	2	18	4/5	1	Yes	No	35	44	TQFP, QFN
dsPIC33EP256GM604	250	32	2		0	0	12				'	5			2	10	1,0	'	165	INO	33		
dsPIC33EP512GM304	512	48	0																				
dsPIC33EP512GM604	312	40	2																		<u> </u>		
dsPIC33EP128GM306	128	16	0					2	4	4 2	3 1	1 5	5 2	2 1		30	4/5 1		Yes	Yes	53	64	TQFP, QFN
dsPIC33EP128GM706	120	10	2												2								
dsPIC33EP256GM306	256	32	0	9/4	8	8	12											1					
dsPIC33EP256GM706	230	32	2	3/4	0	0	12		-	3	'	3		'	2	30	4/3	'	163				
dsPIC33EP512GM306	512	48	0																				
dsPIC33EP512GM706	312	70	2																				
dsPIC33EP128GM310	128	16	0																				TQFP, TFBGA
dsPIC33EP128GM710	120	10	2																				
dsPIC33EP256GM310	256	32	0	9/4 8	8	8	12	2	4	3	1	5	2	1	2	49	4/5	1	Yes	Yes	85	100/	
dsPIC33EP256GM710	200	52	2	317	0		12	_	"	3	'	5	_	'	_	49	7/3	'	163	163	00	121	
dsPIC33EP512GM310	512	48	0																				
dsPIC33EP512GM710	012	ď	2																				


Note 1: Only SPI2 and SPI3 are remappable.

2: INT0 is not remappable.


Pin Diagrams


Pin Diagrams (Continued)

Pin Diagrams (Continued)

Pin Diagrams (Continued)

Pin Diagrams (Continued) 100-Pin TQFP^(1,2,3) = Pins are up to 5V tolerant TMS/OA5IN-/AN27/C5IN1-/RP41/RB9 RP126/RG14 RP43/PWM3L/PMD1/RB11 RP125/RG13 RP113/RG1 RP97/RF1 5889888888888888888888888888 TCK/AN26/CVREF10/SOSCO/RP40/T4CK/RB8 SOSCI/RPI61/RC13 TDI/PWM4L/PMD5/RA7 RPI46/PWM1H/T3CK/T7CK/PMD6/RB14 OA5OUT/AN25/C5IN4-/RP39/INT0/RB7 RPI47/PWM1L/T5CK/T6CK/PMD7/RB15 AN48/CVREF20/RPI58/PMCS1/RC10 PGEC2/ASCL2/RP38/PMCS2/RB6 PWM5H/RD2 PGED2/ASDA2/RP37/RB5 PWM6L/T9CK/RD3 RPI72/RD8 AN47/INT4/RA15 PWM6H/T8CK/RD4 AN19/RP118/PMA5/RG6 AN46/INT3/RA14 AN18/ASCI 1/RPI119/PMA4/RG7 Vss dsPIC33EP128GM310/710 AN17/ASDA1/RP120/PMA3/RG8 OSC2/CLKO/RPI63/RC15 dsPIC33EP256GM310/710 MCLE AN49/OSC1/CLKI/RPI60/RC12 AN16/RPI121/PMA2/RG9 dsPIC33EP512GM310/710 VDD AN45/RF5 VDD AN44/RF4 AN22/RG10 AN43/RG3 AN21/RF8 AN42/RG2 AN20/RE9 AN31/SCL1/RPI53/RC5 AN10/RPI28/RA12 AN30/SDA1/RPI52/RC4 AN29/SCK1/RPI51/RC3 AN9/RPI27/RA11 OA2OUT/AN0/C2IN4-/C4IN3-/RPI16/RA0 AN28/SDI1/RPI25/RA9 OA2IN+/AN1/C2IN1+/RPI17/RA1 AN41/RP81/RE1 PGED3/OA2IN-/AN2/C2IN1-/SS1/RPI32/CTED2/RB0 AN40/RPI80/RE0 PGEC3/CVREF+/OA1OUT/AN3/C1IN4-/C4IN2-/RPI33/CTED1/RB1 OA5IN+/AN24/C5IN3-/C5IN1+/SDO1/RP20/T1CK/RA4 PGECT/OA1IN-ANMCTINN-CTINT-ICZING-PRPICARRE PGEDTIOA1IN-ANMCTINN-CTINCTESSFRTCORRES PGEDTIOA-IIN-ANMSCTINN-CTINCTESSFRTCORRES OA30UT/ANMSC3IN4-ICAIN4-ICAIN1-FRP48OCFBRCO OA3N-ANTOSINT-ISPACAINT-ISPACAIN-ISPACAIN-ISPACAIN-ISPACAIN-ISPACAIN-ISPACAIN-ISPACAINT-ISPACAIN-ISPACA AN39/RD15 SDA2/RPI24/PMA9/RA8 FLT32/SCL2/RP36/PMA8/RB4 VSS VDD AN38/RD14 The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Note 1: Pin Select (PPS)" for available peripherals and for information on limitations. 2: Every I/O port pin (RAx-RGx) can be used as a Change Notification pin (CNAx-CNGx). See Section 11.0 "I/O

Ports" for more information.

This pin is not available as an input when OPMODE (CMxCON<10>) = 1.

Pin Diagrams (Continued) 121-Pin TFBGA⁽¹⁾ = Pins are up to 5V tolerant dsPIC33EP128GM310/710 dsPIC33EP256GM310/710 dsPIC33EP512GM310/710 1 2 3 4 5 6 7 8 9 10 11 \bigcirc \bigcirc Α RA10 RB13 RG13 RB10 RG0 RF1 NC RD12 RC6 RB9 VDD \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc В NC RG15 RB12 RB11 RF7 RF0 VCAP RD5 RC7 Vss RB8 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc С RB14 RG12 RG14 RF6 NC RC9 RC8 NC RC13 RC10 VDD \bigcirc \bigcirc \bigcirc \bigcirc D RD1 RB15 RA7 NC NC NC RD6 RD13 RB7 NC RB6 \bigcirc \bigcirc \bigcirc \bigcirc Ε RD4 RD3 RG6 RD2 NC RG1 NC RA15 RD8 RB5 RA14 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc () \bigcirc F MCLR RG8 RG9 RG7 Vss NC NC VDD RC12 Vss RC15 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc G RE8 RE9 RG10 NC VDD Vss Vss NC RF5 RG3 RF4 \bigcirc Н RA12 RA11 NC NC NC VDD NC RA9 RC3 RC5 RG2 \bigcirc RA0 RA1 RB3 AVDD RC11 RG11 RE12 NC NC RE1 RC4 \bigcirc K RB0 RB1 RF10 RC0 RF12 RE14 RD15 NC VDD RA4 RE0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc L RB2 RF9 AVss RC1 RC2 RF13 RE13 RE15 RD14 RA8 RB4 Refer to Table 2 for full pin names.

PIN NAMES: dsPIC33EP128/256/512GM310/710 DEVICES(1,2,3) TABLE 2:

Pin #	Full Pin Name
A1	TDO/PWM4H/PMD4/RA10
A2	RPI45/PWM2L/CTPLS/PMD3/RB13
A3	RP125/RG13
A4	RP42/PWM3H/PMD0/RB10
A5	RPI112/RG0
A6	RP97/RF1
A7	VDD
A8	No Connect
A9	RPI76/RD12
A10	RP54/RC6
A11	TMS/OA5IN-/AN27/C5IN1-/RP41/RB9
B1	No Connect
B2	AN23/RP127/RG15
B3	RPI44/PWM2H/PMD2/RB12
B4	RP43/PWM3L/PMD1/RB11
B5	RF7
В6	RPI96/RF0
B7	VCAP
B8	RP69/PMRD/RD5
B9	RP55/PMBE/RC7
B10	Vss
B11	TCK/AN26/CVREF10/SOSCO/RP40/T4CK/RB8
C1	RPI46/PWM1H/T3CK/T7CK/PMD6/RB14
C2	VDD
C3	RPI124/RG12
C4	RP126/RG14
C5	RF6
C6	No Connect
C7	RP57/RC9
C8	RP56/PMWR/RC8
C9	No Connect
C10	SOSCI/RPI61/RC13
C11	AN48/CVREF20/RPI58/PMCS1/RC10
D1	PWM5L/RD1
D2	RPI47/PWM1L/T5CK/T6CK/PMD7/RB15
D3	TDI/PWM4L/PMD5/RA7
D4	No Connect
D5	No Connect
D6	No Connect
D7	RP70/RD6
D8	RPI77/RD13
D9	OA5OUT/AN25/C5IN4-/RP39/INT0/RB7
D10	No Connect
D11	PGEC2/ASCL2/RP38/PMCS2/RB6

Pin #	Full Pin Name							
E8	AN47/INT4/RA15							
E9	RPI72/RD8							
E10	PGED2/ASDA2/RP37/RB5							
E11	AN46/INT3/RA14							
F1	MCLR							
F2	AN17/ASDA1/RP120/PMA3/RG8							
F3	AN16/RPI121/PMA2/RG9							
F4	AN18/ASCL1/RPI119/PMA4/RG7							
F5	Vss							
F6	No Connect							
F7	No Connect							
F8	VDD							
F9	AN49/OSC1/CLKI/RPI60/RC12							
F10	Vss							
F11	OSC2/CLKO/RPI63/RC15							
G1	AN21/RE8							
G2	AN20/RE9							
G3	AN22/RG10							
G4	No Connect							
G5	VDD							
G6	Vss							
G7	Vss							
G8	No Connect							
G9	AN45/RF5							
G10	AN43/RG3							
G11	AN44/RF4							
H1	AN10/RPI28/RA12							
H2	AN9/RPI27/RA11							
H3	No Connect							
H4	No Connect							
H5	No Connect							
H6	VDD							
H7	No Connect							
H8	AN28/SDI1/RPI25/RA9							
H9	AN29/SCK1/RPI51/RC3							
H10	AN31/SCL1/RPI53/RC5							
H11	AN42/RG2							
J1	OA2OUT/AN0/C2IN4-/C4IN3-/RPI16/RA0							
J2	OA2IN+/AN1/C2IN3-/C2IN1+/RPI17/RA1							
J3	PGED1/OA1IN-/AN5/C1IN1-/CTMUC/RP35/RTCC/RB3							
J4	AVDD							
J5	AN11/C1IN2-/U1CTS/FLT4/PMA12/RC11							
J6	AN35/RG11							
J7	AN12/C2IN2-/C5IN2-/U2RTS/BCLK2/FLT5/PMA11/RE12							
al with some lin	with some limitation. See Section 11.4 "Peripheral Pin Select (PPS)"							

The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select (PPS)" Note for available peripherals and for information on limitations.

Every I/O port pin (RAx-RGx) can be used as a Change Notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information. The availability of I²CTM interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 30.0 "Special Features" for more information.

TABLE 2: PIN NAMES: dsPIC33EP128/256/512GM310/710 DEVICES^(1,2,3) (CONTINUED)

Pin#	Full Pin Name	Pin #	Full Pin Name
E1	PWM6H/T8CK/RD4	J8	No Connect
E2	PWM6L/T9CK/RD3	J9	No Connect
E3	AN19/RP118/PMA5/RG6	J10	AN41/RP81/RE1
E4	PWM5H/RD2	J11	AN30/SDA1/RPI52/RC4
E5	No Connect	K1	PGED3/OA2IN-/AN2/C2IN1-/SS1/RPI32/CTED2/RB0
E6	RP113/RG1	K2	PGEC3/CVREF+/OA1OUT/AN3/C1IN4-/C4IN2-/RPI33/ CTED1/RB1
E7	No Connect	K3	VREF+/AN34/PMA7/RF10
K4	OA3OUT/AN6/C3IN4-/C4IN4-/C4IN1+/RP48/OCFB/RC0	L3	AVss
K5	No Connect	L4	OA3IN-/AN7/C3IN1-/C4IN1-/RP49/RC1
K6	AN37/RF12	L5	OA3IN+/AN8/C3IN3-/C3IN1+/RPI50/U1RTS/BCLK1/FLT3/ PMA13/RC2
K7	AN14/RPI94/FLT7/PMA1/RE14	L6	AN36/RF13
K8	VDD	L7	AN13/C3IN2-/U2CTS/FLT6/PMA10/RE13
K9	AN39/RD15	L8	AN15/RPI95/FLT8/PMA0/RE15
K10	OA5IN+/AN24/C5IN3-/C5IN1+/SDO1/RP20/T1CK/RA4	L9	AN38/RD14
K11	AN40/RPI80/RE0	L10	SDA2/RPI24/PMA9/RA8
L1	PGEC1/OA1IN+/AN4/C1IN3-/C1IN1+/C2IN3-/RPI34/RB2	L11	FLT32/SCL2/RP36/PMA8/RB4
L2	VREF-/AN33/PMA6/RF9		-

Note 1: The RPn/RPln pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select (PPS)" for available peripherals and for information on limitations.

- 2: Every I/O port pin (RAx-RGx) can be used as a Change Notification pin (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.
- 3: The availability of I²C™ interfaces varies by device. Selection (SDAx/SCLx or ASDAx/ASCLx) is made using the device Configuration bits, ALTI2C1 and ALTI2C2 (FPOR<5:4>). See Section 30.0 "Special Features" for more information.

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-Bit Digital Signal Controllers	21
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	103
6.0	Resets	109
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	127
9.0	Oscillator Configuration	141
10.0	Power-Saving Features	151
11.0	I/O Ports	161
12.0	Timer1	209
13.0	Timer2/3, Timer4/5, Timer6/7 and Timer8/9	211
14.0	Input Capture	217
15.0	Output Compare	
16.0	High-Speed PWM Module	227
17.0	Quadrature Encoder Interface (QEI) Module	255
	Serial Peripheral Interface (SPI)	
19.0	Inter-Integrated Circuit™ (I ² C™)	277
20.0		285
	Enhanced CAN (ECAN™) Module (dsPIC33EPXXXGM6XX/7XX Devices Only)	
22.0	Charge Time Measurement Unit (CTMU)	317
23.0	10-Bit/12-Bit Analog-to-Digital Converter (ADC)	323
24.0	Data Converter Interface (DCI) Module	339
25.0	Peripheral Trigger Generator (PTG) Module	345
26.0	Op Amp/Comparator Module	361
27.0	Real-Time Clock and Calendar (RTCC)	379
	Parallel Master Port (PMP)	
29.0	Programmable Cyclic Redundancy Check (CRC) Generator	401
30.0	Special Features	407
31.0	Instruction Set Summary	415
32.0	Development Support	425
33.0	Electrical Characteristics	429
34.0	High-Temperature Electrical Characteristics	495
35.0	Packaging Information	503
Appe	endix A: Revision History	523
Index	X	525
The I	Microchip Web Site	533
Custo	omer Change Notification Service	533
Custo	omer Support	533
Prod	luct Identification System	535

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at docerrors@microchip.com. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000000A is version A of document DS30000000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

Referenced Sources

This device data sheet is based on the following individual chapters of the "dsPIC33E/PIC24E Family Reference Manual", which are available from the Microchip web site (www.microchip.com). These documents should be considered as the general reference for the operation of a particular module or device feature.

- "Introduction" (DS70573)
- "CPU" (DS70359)
- "Data Memory" (DS70595)
- "Program Memory" (DS70613)
- "Flash Programming" (DS70609)
- "Interrupts" (DS70600)
- "Oscillator" (DS70580)
- "Reset" (DS70602)
- "Watchdog Timer and Power-Saving Modes" (DS70615)
- "I/O Ports" (DS70598)
- "Timers" (DS70362)
- "Input Capture" (DS70352)
- "Output Compare" (DS70358)
- "High-Speed PWM" (DS70645)
- "Quadrature Encoder Interface (QEI)" (DS70601)
- "Analog-to-Digital Converter (ADC)" (DS70621)
- "UART" (DS70582)
- "Serial Peripheral Interface (SPI)" (DS70569)
- "Inter-Integrated Circuit (I²C™)" (DS70330)
- "Data Converter Interface (DCI)" (DS70356)
- "Enhanced Controller Area Network (ECAN™)" (DS70353)
- "Direct Memory Access (DMA)" (DS70348)
- "Programming and Diagnostics" (DS70608)
- "Op Amp/Comparator" (DS70357)
- "Programmable Cyclic Redundancy Check (CRC)" (DS70346)
- "Parallel Master Port (PMP)" (DS70576)
- "Device Configuration" (DS70618)
- "Peripheral Trigger Generator (PTG)" (DS70669)
- "Charge Time Measurement Unit (CTMU)" (DS70661)

NOTES:

1.0 **DEVICE OVERVIEW**

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com)

> 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXGM3XX/6XX/7XX Digital Signal Controller (DSC) devices.

dsPIC33EPXXXGM3XX/6XX/7XX devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit MCU architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

FIGURE 1-1: dsPIC33EPXXXGM3XX/6XX/7XX BLOCK DIAGRAM

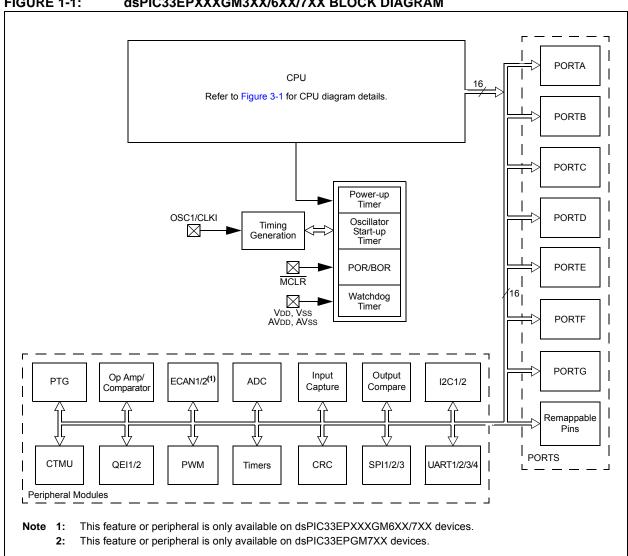


TABLE 1-1: PINOUT I/O DESCRIPTIONS

Pin Name	Pin Type	Buffer Type	PPS	Description		
AN0-AN49	ı	Analog	No	Analog Input Channels 0-49.		
CLKO	0	ST/ CMOS —	No No	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.		
OSC1	I	ST/	No	Always associated with OSC2 pin function. Oscillator crystal input. ST buffer when configured in RC mode; CMOS		
OSC2	I/O	CMOS —	No	otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.		
SOSCI	I	ST/ CMOS	No	32.768 kHz low-power oscillator crystal input; CMOS otherwise.		
SOSCO	0	_	No	32.768 kHz low-power oscillator crystal output.		
IC1-IC8	_	ST	Yes	Capture Inputs 1 through 8.		
OCFA OCFB OC1-OC8	 	ST ST —	Yes Yes Yes	Compare Fault A input (for compare channels). Compare Fault B input (for compare channels). Compare Outputs 1 through 8.		
INTO INT1 INT2 INT3	 	ST ST ST ST		External Interrupt 0. External Interrupt 1. External Interrupt 2. External Interrupt 3.		
INT4	i	ST		External Interrupt 4.		
RA0-RA4, RA7-RA12, RA14-RA15	I/O	ST	Yes	PORTA is a bidirectional I/O port.		
RB0-RB15	I/O	ST	Yes	PORTB is a bidirectional I/O port.		
RC0-RC13, RC15	I/O	ST	Yes	PORTC is a bidirectional I/O port.		
RD1-RD6, RD8, RD12-RD15	I/O	ST	Yes	PORTD is a bidirectional I/O port.		
RE0-RE1, RE8-RE9, RE12-RE15	I/O	ST	Yes	PORTE is a bidirectional I/O port.		
RF0-RF1, RF4-RF7, RF9-RF10, RF12-RF13	I/O	ST	No	PORTF is a bidirectional I/O port.		
RG0-RG3, RG6-RG15	I/O	ST	Yes	PORTG is a bidirectional I/O port.		
T1CK T2CK T3CK	 	ST ST ST	No Yes Yes	Timer1 external clock input. Timer2 external clock input. Timer3 external clock input.		
T4CK T5CK T6CK	 	ST ST ST	Yes Yes Yes	Timer4 external clock input. Timer5 external clock input. Timer6 external clock input.		
T7CK T8CK T9CK	 	ST ST ST	Yes Yes Yes	Timer7 external clock input. Timer8 external clock input. Timer9 external clock input. Timer9 external clock input.		

Legend:CMOS = CMOS compatible input or output
ST = Schmitt Trigger input with CMOS levelsAnalog = Analog input
O = OutputP = Power
I = Input

PPS = Peripheral Pin Select TTL = TTL input buffer

Note 1: This pin is not available on all devices. For more information, see the "Pin Diagrams" section for pin availability.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	PPS	Description
U1CTS	ı	ST	Yes	UART1 Clear-to-Send.
U1RTS	0	_	Yes	UART1 Ready-to-Send.
U1RX	I	ST	Yes	UART1 receive.
U1TX	0	_	Yes	UART1 transmit.
U2CTS	- 1	ST	Yes	UART2 Clear-to-Send.
U2RTS	0	_	Yes	UART2 Ready-to-Send.
U2RX		ST	Yes	UART2 receive.
U2TX	0		Yes	UART2 transmit.
U3CTS	I	ST	Yes	UART3 Clear-to-Send.
U3RTS	0	_	Yes	UART3 Ready-to-Send.
U3RX	1	ST	Yes	UART3 receive.
U3TX	0		Yes	UART3 transmit.
U4CTS	I	ST	Yes	UART4 Clear-to-Send.
U4RTS	0	_	Yes	UART4 Ready-to-Send.
U4RX	-	ST	Yes	UART4 receive.
U4TX	0	_	Yes	UART4 transmit.
SCK1	I/O	ST	Yes	Synchronous serial clock input/output for SPI1.
SDI1	-	ST	Yes	SPI1 data in.
SDO1 SS1	0	 CT	Yes	SPI1 data out.
	1/0	ST	Yes	SPI1 slave synchronization or frame pulse I/O.
SCK2	I/O	ST	No	Synchronous serial clock input/output for SPI2.
SDI2 SDO2	1	ST	No	SPI2 data in. SPI2 data out.
SS2	O 1/O	— ST	No Yes	SPI2 data out. SPI2 slave synchronization or frame pulse I/O.
	_			· · · · · · · · · · · · · · · · · · ·
SCK3 SDI3	1/0	ST ST	Yes Yes	Synchronous serial clock input/output for SPI3. SPI3 data in.
SD03	0	31	Yes	SPI3 data out.
SS3	1/0	ST	Yes	SPI3 slave synchronization or frame pulse I/O.
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.
SCL2	I/O	ST	No	Synchronous serial clock input/output for I2C2.
SDA2	I/O	ST	No	Synchronous serial data input/output for I2C2.
ASCL2	I/O	ST	No	Alternate synchronous serial clock input/output for I2C2.
ASDA2	I/O	ST	No	Alternate synchronous serial data input/output for I2C2.
TMS	- 1	ST	No	JTAG Test mode select pin.
TCK	1	ST	No	JTAG test clock input pin.
TDI	I	ST	No	JTAG test data input pin.
TDO	0	_	No	JTAG test data output pin.
INDX1 ⁽¹⁾	1	ST	Yes	Quadrature Encoder Index1 pulse input.
HOME1 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Home1 pulse input.
QEA1 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer
OFD4(1)	,	0.7	V.	external clock input in Timer mode.
QEB1 ⁽¹⁾	1	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary timer
CNTCMP1 ⁽¹⁾	0		Yes	external gate input in Timer mode. Quadrature Encoder Compare Output 1.
CIVICIVIE IV	U		168	Quadrature Encoder Compare Output 1.

PPS = Peripheral Pin Select TTL = TTL input buffer

Note 1: This pin is not available on all devices. For more information, see the "Pin Diagrams" section for pin availability.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	PPS	Description			
INDX2 ⁽¹⁾	ı	ST	Yes	Quadrature Encoder Index2 Pulse input.			
HOME2 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Home2 Pulse input.			
QEA2 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary timer external clock input in Timer mode.			
QEB2 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Phase B input in QEI2 mode. Auxiliary timer external gate input in Timer mode.			
CNTCMP2 ⁽¹⁾	0	_	Yes	Quadrature Encoder Compare Output 2.			
COFS	I/O	ST	Yes	Data Converter Interface frame synchronization pin.			
CSCK	I/O	ST	Yes	Data Converter Interface serial clock input/output pin.			
CSDI	I	ST	Yes	Data Converter Interface serial data input pin.			
CSDO	0		Yes	Data Converter Interface serial data output pin.			
C1RX	I	ST	Yes	ECAN1 bus receive pin.			
C1TX	0	_	Yes	ECAN1 bus transmit pin			
C2RX	ı	ST	Yes	ECAN2 bus receive pin.			
C2TX	0	_	Yes	ECAN2 bus transmit pin			
RTCC	0	_	No	Real-Time Clock and Calendar alarm output.			
CVREF	0	Analog	No	Comparator Voltage Reference output.			
C1IN1+, C1IN2-, C1IN1-, C1IN3-	I	Analog	No	Comparator 1 inputs.			
C1OUT	0	_	Yes	Comparator 1 output.			
C2IN1+, C2IN2-, C2IN1-, C2IN3-	I	Analog	No	Comparator 2 inputs.			
C2OUT	0	_	Yes	Comparator 2 output.			
C3IN1+, C3IN2-, C2IN1-, C3IN3-	I	Analog	No	Comparator 3 inputs.			
C3OUT	0		Yes	Comparator 3 output.			
C4IN1+, C4IN2-, C4IN1-, C4IN3-	I	Analog	No	Comparator 4 inputs.			
C4OUT	0	_	Yes	Comparator 4 output.			
C5IN1-, C5IN2-, C5IN3-, C5IN4-, C5IN1+	I	Analog	No	Comparator 5 inputs.			
C5OUT	0	—	Yes	Comparator 5 output.			
PMA0	I/O	TTL/ST	No	Parallel Master Port Address Bit 0 input (Buffered Slave modes) and output (Master modes).			
PMA1	I/O	TTL/ST	No	Parallel Master Port Address Bit 1 input (Buffered Slave modes) and output (Master modes).			
PMA2-PMA13	0	_	No	Parallel Master Port Address Bits 2-13 (Demultiplexed Master modes).			
PMBE	0		No	Parallel Master Port Byte Enable strobe.			
PMCS1, PMCS2	0		No	Parallel Master Port Chip Select 1 and 2 strobe.			
PMD0-PMD7	I/O	TTL/ST	No	Parallel Master Port Data (Demultiplexed Master mode) or			
				Address/Data (Multiplexed Master modes).			
PMRD	0	-	No	Parallel Master Port Read strobe.			
PMWR	0	_	No	Parallel Master Port Write strobe.			

Legend:CMOS = CMOS compatible input or output
ST = Schmitt Trigger input with CMOS levels
PPS = Peripheral Pin SelectAnalog = Analog input
O = Output
TTL = TTL input bufferP = Power
I = Input

Note 1: This pin is not available on all devices. For more information, see the "Pin Diagrams" section for pin availability.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Pin Name	Pin Type	Buffer Type	PPS	Description
FLT1-FLT7 ⁽¹⁾	I	ST	Yes	PWMx Fault Inputs 1 through 7.
DTCMP1-DTCMP6 ⁽¹⁾	- 1	ST	Yes	PWMx Dead-Time Compensation input.
PWM1L-PWM6L ⁽¹⁾	0	_		PWMx Low Outputs 1 through 7.
PWM1H-PWM6H ⁽¹⁾	0	_		PWMx High Outputs 1 through 7.
SYNCI1 ⁽¹⁾ , SYNCI2 ⁽¹⁾	I	ST		PWMx Synchronization Input 1.
SYNCO1, SYNCO2 ⁽¹⁾	0	_	Yes	PWMx Synchronization Outputs 1 and 2.
PGED1	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 1.
PGEC1	- 1	ST	No	Clock input pin for Programming/Debugging Communication Channel 1.
PGED2	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 2.
PGEC2	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 2.
PGED3	I/O	ST	No	Data I/O pin for Programming/Debugging Communication Channel 3.
PGEC3	I	ST	No	Clock input pin for Programming/Debugging Communication Channel 3.
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVDD ⁽²⁾	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	No	Ground reference for analog modules.
VDD	Р	_	No	Positive supply for peripheral logic and I/O pins.
VCAP	Р	_	No	CPU logic filter capacitor connection.
Vss	Р	_	No	Ground reference for logic and I/O pins.
VREF+	I	Analog	No	Analog voltage reference (high) input.
VREF-	ı	Analog	No	Analog voltage reference (low) input.

Legend:CMOS = CMOS compatible input or output
ST = Schmitt Trigger input with CMOS levels
PPS = Peripheral Pin SelectAnalog = Analog input
O = OutputP = Power
I = Input

Note 1: This pin is not available on all devices. For more information, see the "Pin Diagrams" section for pin availability.

		_	_^
N	. 1		- ~ .

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

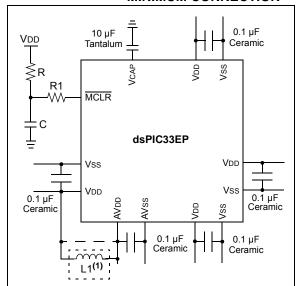
Getting started with the dsPIC33EPXXXGM3XX/6XX/7XX family requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSs pins (regardless if ADC module is not used)
 - (see Section 2.2 "Decoupling Capacitors")
- (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming™ (ICSP™) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

 VREF+/VREF- pins are used when external voltage reference for ADC module is implemented

Note: The AVDD and AVSS pins must be connected independent of the ADC voltage reference source.


2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVss is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μF (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high-frequency noise: If the board is experiencing high-frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μF to 0.001 μF. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μF in parallel with 0.001 μF.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

Note 1: As an option, instead of a hard-wired connection, an inductor (L1) can be substituted between VDD and AVDD to improve ADC noise rejection. The inductor impedance should be less than 1Ω and the inductor capacity greater than 10 mA.

Where

$$f = \frac{FCNV}{2} \qquad \text{(i.e., ADC Conversion Rate/2)}$$

$$f = \frac{1}{(2\pi\sqrt{LC})}$$

$$L = \left(\frac{1}{(2\pi f\sqrt{C})}\right)^2$$

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μF to 47 μF .

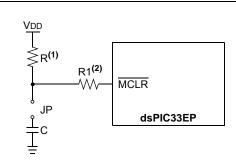
2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (<1 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), 16V connected to ground. The type can be ceramic or tantalum. See Section 33.0 "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP pin. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See Section 30.3 "On-Chip Voltage Regulator" for details.

2.4 Master Clear (MCLR) Pin

The $\overline{\text{MCLR}}$ pin provides two specific device functions:


- · Device Reset
- · Device Programming and Debugging.

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

- Note 1: $R \le 10 \text{ k}\Omega$ is recommended. A suggested starting value is $10 \text{ k}\Omega$. Ensure that the MCLR pin VIH and VIL specifications are met.
 - 2: $R1 \le 470\Omega$ will limit any current flowing into $\overline{\text{MCLR}}$ from the external capacitor, C, in the event of $\overline{\text{MCLR}}$ pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the $\overline{\text{MCLR}}$ pin VIH and VIL specifications are met.

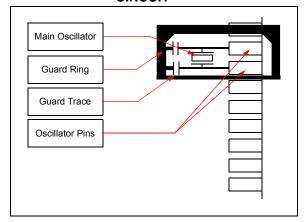
2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin Voltage Input High (VIH) and Voltage Input Low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB® PICkit™ 3, MPLAB ICD 3, or MPLAB REAL ICE™.

For more information on MPLAB ICD 2, ICD 3 and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site:


- "Using MPLAB® ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" DS51616
- "Using MPLAB[®] REAL ICE™ In-Circuit Emulator" (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see **Section 9.0** "Oscillator Configuration" for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

FIGURE 2-3: SUGGESTED PLACEMENT
OF THE OSCILLATOR
CIRCUIT

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < FIN < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins, and drive the output to logic low.

2.9 Application Examples

- · Induction heating
- · Uninterruptable Power Supplies (UPS)
- DC/AC inverters
- · Compressor motor control
- · Washing machine 3-phase motor control
- · BLDC motor control
- · Automotive HVAC, cooling fans, fuel pumps
- · Stepper motor control
- · Audio and fluid sensor monitoring
- · Camera lens focus and stability control
- Speech (playback, hands-free kits, answering machines, VoIP)
- · Consumer audio
- Industrial and building control (security systems and access control)
- · Barcode reading
- · Networking: LAN switches, gateways
- · Data storage device management
- · Smart cards and smart card readers
- · Dual motor control

Examples of typical application connections are shown in Figure 2-4 through Figure 2-8.

FIGURE 2-4: BOOST CONVERTER IMPLEMENTATION

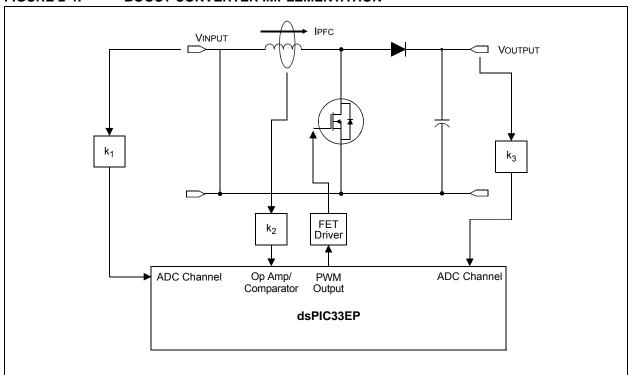


FIGURE 2-5: SINGLE-PHASE SYNCHRONOUS BUCK CONVERTER

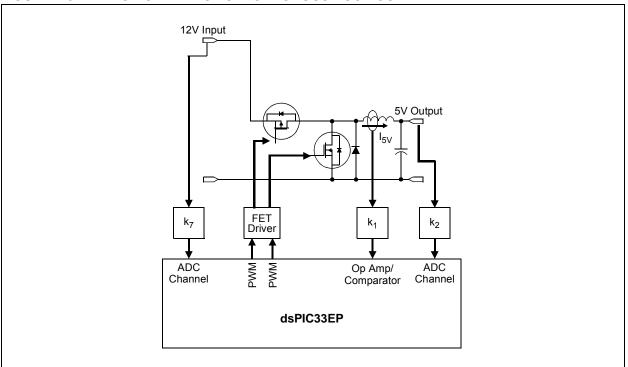


FIGURE 2-6: MULTI-PHASE SYNCHRONOUS BUCK CONVERTER

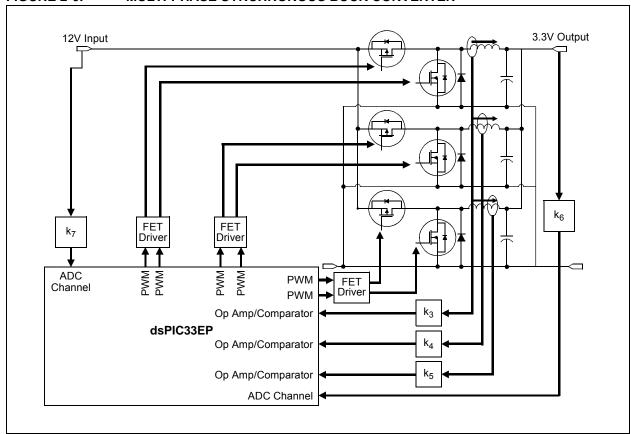


FIGURE 2-7: INTERLEAVED PFC

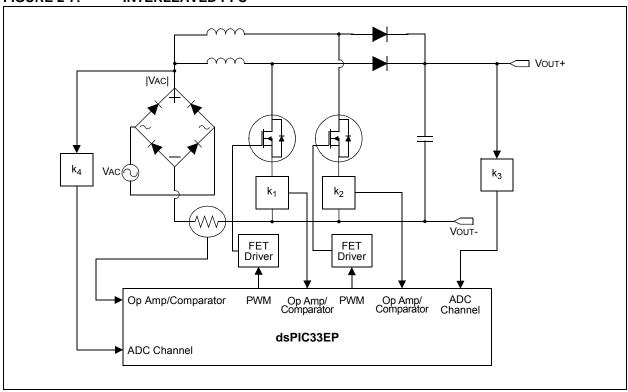
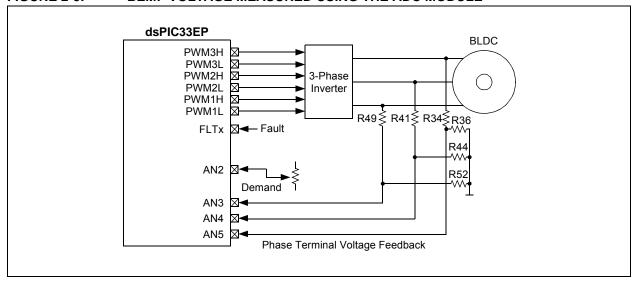



FIGURE 2-8: BEMF VOLTAGE MEASURED USING THE ADC MODULE

3.0 CPU

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "CPU" (DS70359), which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word, with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EPXXXGM3XX/6XX/7XX devices have sixteen 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a Software Stack Pointer for interrupts and calls.

3.2 Instruction Set

The device instruction set has two classes of instructions: the MCU class of instructions and the DSP class of instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The Base Data Space can be addressed as 4K words or 8 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operate solely through the X memory AGU, which accesses the entire memory map as one linear Data Space. On dsPIC33EP devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y Data Space boundary is device-specific.

The upper 32 Kbytes of the Data Space memory map can optionally be mapped into program space at any 16K program word boundary. The program-to-Data Space mapping feature, known as Program Space Visibility (PSV), lets any instruction access program space as if it were Data Space. Moreover, the Base Data Space address is used in conjunction with a Data Space Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8M words or 16 Mbytes. Refer to "Data Memory" (DS70595) and "Program Memory" (DS70613) in the "dsPIC33E/PIC24E Family Reference Manual" for more details on EDS, PSV and table accesses.

On dsPIC33EP devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. The X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reverse Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

3.4 Addressing Modes

The CPU supports these addressing modes:

- · Inherent (no operand)
- Relative
- Literal
- Memory Direct
- · Register Direct
- Register Indirect

Each instruction is associated with a predefined addressing mode group, depending upon its functional requirements. As many as six addressing modes are supported for each instruction.

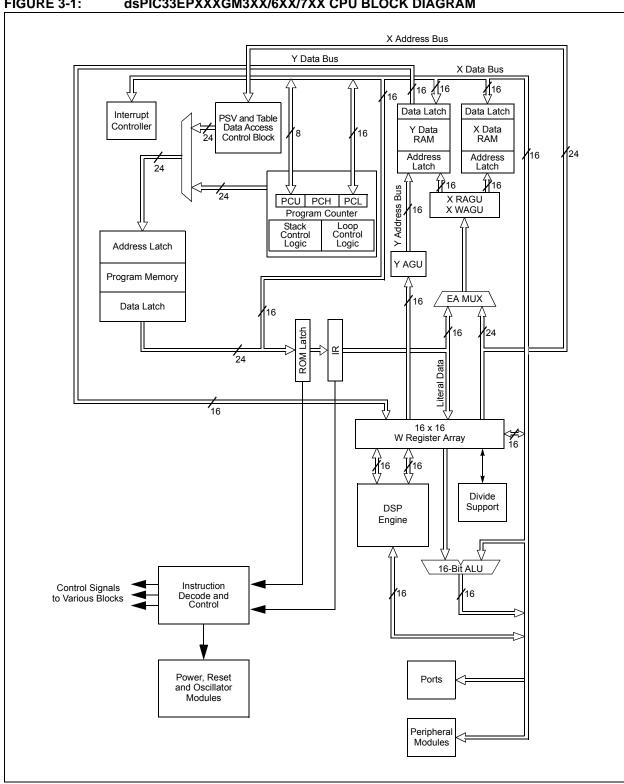
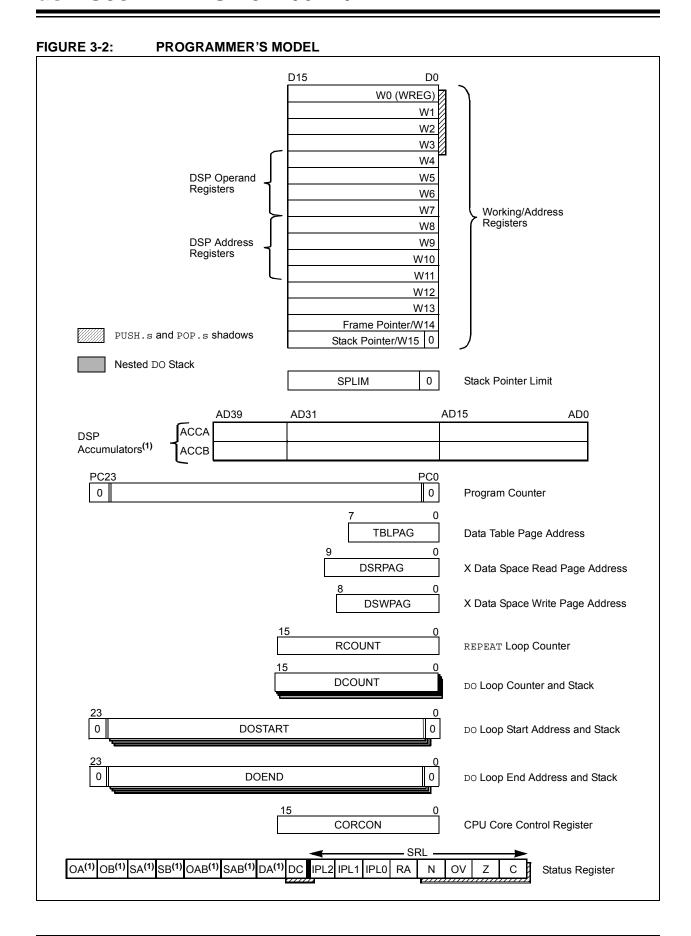


FIGURE 3-1: dsPIC33EPXXXGM3XX/6XX/7XX CPU BLOCK DIAGRAM

3.5 Programmer's Model

The programmer's model for the dsPIC33EPXXXGM3XX/6XX/7XX is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXXGM3XX/6XX/7XX devices contain control registers for Modulo


Addressing and Bit-Reversed Addressing, and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory mapped, as shown in Table 4-1.

TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Register(s) Name	Description
W0 through W15	Working Register Array
ACCA, ACCB	40-Bit DSP Accumulators
PC	23-Bit Program Counter
SR	ALU and DSP Engine Status register
SPLIM	Stack Pointer Limit Value register
TBLPAG	Table Memory Page Address register
DSRPAG	Extended Data Space (EDS) Read Page register
DSWPAG	Extended Data Space (EDS) Write Page register
RCOUNT	REPEAT Loop Count register
DCOUNT	DO Loop Count register
DOSTARTH ⁽¹⁾ , DOSTARTL ⁽¹⁾	DO Loop Start Address register (High and Low)
DOENDH, DOENDL	DO Loop End Address register (High and Low)
CORCON	Contains DSP Engine, DO Loop Control and Trap Status bits

Note 1: The DOSTARTH and DOSTARTL registers are read-only.

3.6 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	ОВ	SA ⁽³⁾	SB ⁽³⁾	OAB	SAB	DA	DC
bit 15							bit 8

R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R/W-0 ⁽²⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽¹⁾		RA	N	OV	Z	С
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 OA: Accumulator A Overflow Status bit 1 = Accumulator A has overflowed 0 = Accumulator A has not overflowed bit 14 **OB:** Accumulator B Overflow Status bit 1 = Accumulator B has overflowed 0 = Accumulator B has not overflowed SA: Accumulator A Saturation 'Sticky' Status bit (3) bit 13 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated bit 12 SB: Accumulator B Saturation 'Sticky' Status bit(3) 1 = Accumulator B is saturated or has been saturated at some time 0 = Accumulator B is not saturated bit 11 OAB: OA || OB Combined Accumulator Overflow Status bit 1 = Accumulator A or B has overflowed 0 = Neither Accumulator A or B has overflowed bit 10 SAB: SA | SB Combined Accumulator 'Sticky' Status bit 1 = Accumulator A or B is saturated or has been saturated at some time 0 = Neither Accumulator A or B is saturated bit 9 DA: DO Loop Active bit

1 = DO loop in progress 0 = DO loop not in progress bit 8 **DC:** MCU ALU Half Carry/Borrow bit

- 1 = A carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred
- 0 = No carry-out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred
- Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

IPL<2:0>: CPU Interrupt Priority Level Status bits(1,2) bit 7-5 111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8) bit 4 RA: REPEAT Loop Active bit 1 = REPEAT loop is in progress 0 = REPEAT loop is not in progress bit 3 N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive)

bit 2 **OV:** MCU ALU Overflow bit

This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state.

- 1 = Overflow occurred for signed arithmetic (in this arithmetic operation)
- 0 = No overflow occurred
- bit 1 **Z:** MCU ALU Zero bit
 - 1 = An operation that affects the Z bit has set it at some time in the past
 - 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
- bit 0 C: MCU ALU Carry/Borrow bit
 - 1 = A carry-out from the Most Significant bit (MSb) of the result occurred
 - 0 = No carry-out from the Most Significant bit of the result occurred
- Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - 2: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.
 - **3:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER⁽³⁾

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	_	US<	1:0>	EDT ⁽¹⁾		DL<2:0>	
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit

1 = Variable exception processing latency is enabled0 = Fixed exception processing latency is enabled

bit 14 **Unimplemented:** Read as '0'

bit 13-12 US<1:0>: DSP Multiply Unsigned/Signed Control bits

11 = Reserved

10 = DSP engine multiplies are mixed-sign01 = DSP engine multiplies are unsigned00 = DSP engine multiplies are signed

bit 11 EDT: Early DO Loop Termination Control bit (1)

1 = Terminates executing DO loop at end of current loop iteration

0 = No effect

bit 10-8 DL<2:0>: DO Loop Nesting Level Status bits

111 = 7 DO loops are active

001 = 1 DO loop is active 000 = 0 DO loops are active

bit 7 SATA: ACCA Saturation Enable bit

1 = Accumulator A saturation is enabled0 = Accumulator A saturation is disabled

bit 6 SATB: ACCB Saturation Enable bit

1 = Accumulator B saturation is enabled0 = Accumulator B saturation is disabled

bit 5 SATDW: Data Space Write from DSP Engine Saturation Enable bit

1 = Data Space write saturation is enabled0 = Data Space write saturation is disabled

bit 4 ACCSAT: Accumulator Saturation Mode Select bit

1 = 9.31 saturation (super saturation)0 = 1.31 saturation (normal saturation)

Note 1: This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

3: Refer to the "dsPIC33E/PIC24E Family Reference Manual", "CPU" (DS70359) for more detailed information.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER⁽³⁾ (CONTINUED)

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾
1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

bit 2 SFA: Stack Frame Active Status bit

1 = Stack frame is active; W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and

DSWPAG values

0 = Stack frame is not active; W14 and W15 address of EDS or Base Data Space

bit 1 RND: Rounding Mode Select bit

1 = Biased (conventional) rounding is enabled 0 = Unbiased (convergent) rounding is enabled

bit 0 IF: Integer or Fractional Multiplier Mode Select bit

1 = Integer mode is enabled for DSP multiply0 = Fractional mode is enabled for DSP multiply

Note 1: This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

3: Refer to the "dsPIC33E/PIC24E Family Reference Manual", "CPU" (DS70359) for more detailed information.

3.7 Arithmetic Logic Unit (ALU)

The dsPIC33EPXXXGM3XX/6XX/7XX ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.7.1 MULTIPLIER

Using the high-speed, 17-bit x 17-bit multiplier, the ALU supports unsigned, signed, or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- · 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- · 8-bit unsigned x 8-bit unsigned

3.7.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- · 32-bit unsigned/16-bit unsigned divide
- · 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.8 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- Signed, unsigned or mixed-sign DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- · Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

TABLE 3-2: DSP INSTRUCTIONS SUMMARY

Instruction	Algebraic Operation	ACC Write Back			
CLR	A = 0	Yes			
ED	$A = (x - y)^2$	No			
EDAC	$A = A + (x - y)^2$	No			
MAC	$A = A + (x \bullet y)$	Yes			
MAC	$A = A + x^2$	No			
MOVSAC	No change in A	Yes			
MPY	$A = x \cdot y$	No			
MPY	$A = x^2$	No			
MPY.N	$A = -x \bullet y$	No			
MSC	$A = A - x \bullet y$	Yes			

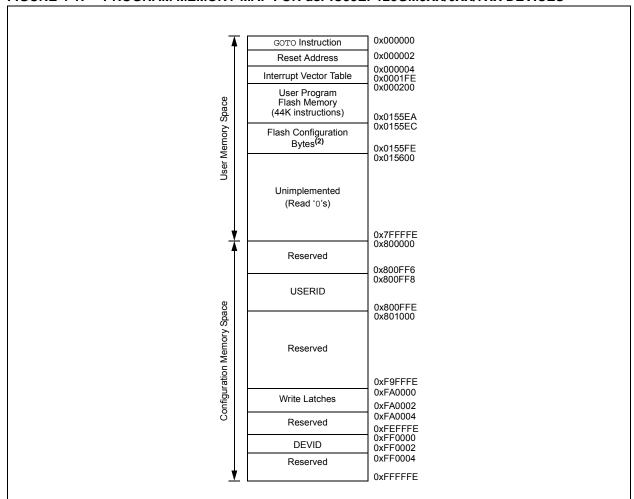
NOTES:

4.0 MEMORY ORGANIZATION

Note:

This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Program Memory" (DS70613), which is available from the Microchip web site (www.microchip.com).

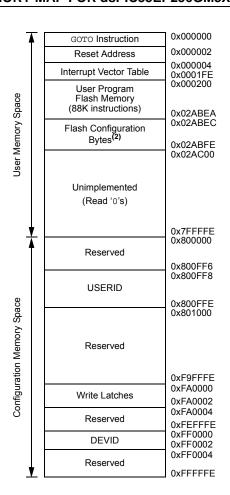
The dsPIC33EPXXXGM3XX/6XX/7XX architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the Data Space (DS) during code execution.


4.1 Program Address Space

The program address memory space of the dsPIC33EPXXXGM3XX/6XX/7XX devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or Data Space remapping as described in Section 4.7 "Interfacing Program and Data Memory Spaces".

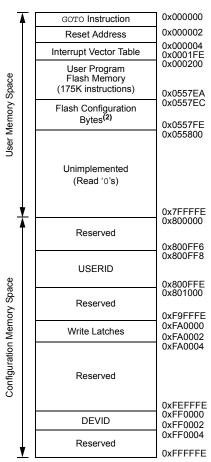
User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD operations, which use TBLPAG<7> to read Device ID sections of the configuration memory space.

The program memory maps, which are presented by device family and memory size, are shown in Figure 4-1 through Figure 4-3.


FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33EP128GM3XX/6XX/7XX DEVICES⁽¹⁾

Note 1: Memory areas are not shown to scale.

2: On Reset, these bits are automatically copied into the device Configuration Shadow registers.


FIGURE 4-2: PROGRAM MEMORY MAP FOR dsPIC33EP256GM3XX/6XX/7XX DEVICES⁽¹⁾

Note 1: Memory areas are not shown to scale.

2: On Reset, these bits are automatically copied into the device Configuration Shadow registers.

Note 1: Memory areas are not shown to scale.

2: On Reset, these bits are automatically copied into the device Configuration Shadow registers.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-4).


Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXXGM3XX/6XX/7XX devices reserve the addresses between 0x000000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address, 0x000000 of Flash memory, with the actual address for the start of code at address, 0x0000002 of Flash memory.

A more detailed discussion of the interrupt vector tables is provided in **Section 7.1** "Interrupt Vector Table".

FIGURE 4-4: PROGRAM MEMORY ORGANIZATION

4.2 Data Address Space

The dsPIC33EPXXXGM3XX/6XX/7XX CPU has a separate 16-bit wide data memory space. The Data Space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps, which are presented by device family and memory size, are shown in Figure 4-5 through Figure 4-7.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the Data Space. This arrangement gives a Base Data Space address range of 64 Kbytes or 32K words.

The Base Data Space address is used in conjunction with a Data Space Read or Write Page register (DSRPAG or DSWPAG) to form an Extended Data Space, which has a total address range of 16 Mbytes.

dsPIC33EPXXXGM3XX/6XX/7XX devices implement up to 52 Kbytes of data memory (4 Kbytes of data memory for Special Function Registers and up to 48 Kbytes of data memory for RAM). If an EA points to a location outside of this area, an all zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte-addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all Data Space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with PIC® MCU devices and improve Data Space memory usage efficiency, the dsPIC33EPXXXGM3XX/6XX/7XX instruction set supports both word and byte operations. As a consequence of byte accessibility, all Effective Address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSb of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A Sign-Extend (SE) instruction is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE

The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXXGM3XX/6XX/7XX core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note:

The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area, between 0x0000 and 0x1FFF, is referred to as the Near Data Space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole Data Space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

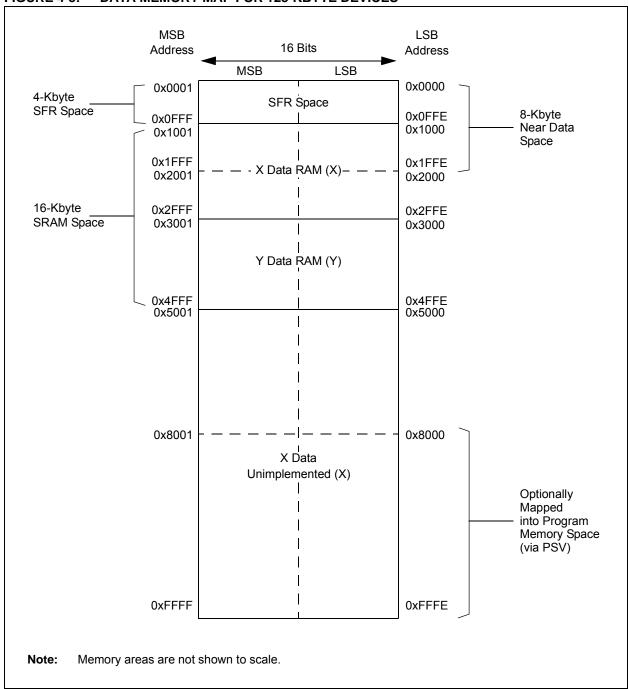


FIGURE 4-5: DATA MEMORY MAP FOR 128-KBYTE DEVICES

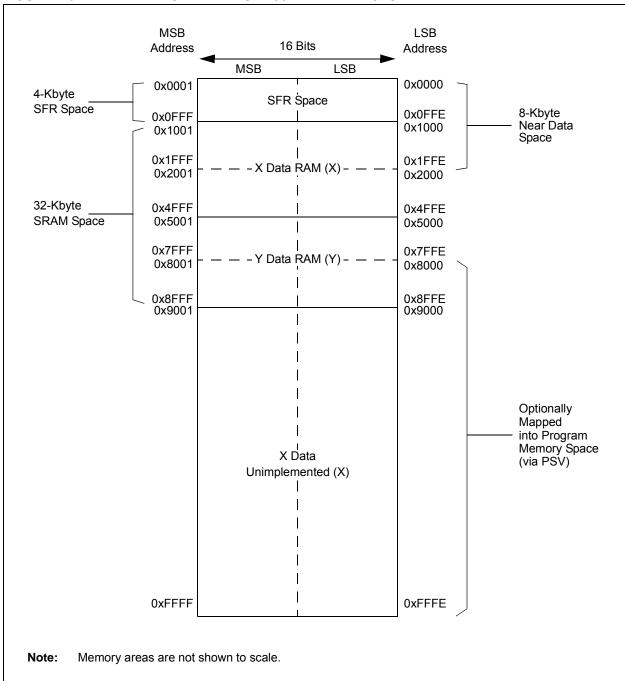


FIGURE 4-6: DATA MEMORY MAP FOR 256-KBYTE DEVICES

FIGURE 4-7: DATA MEMORY MAP FOR 512-KBYTE DEVICES

4.2.5 X AND Y DATA SPACES

The dsPIC33EP core has two Data Spaces: X and Y. These Data Spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The Data Spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms, such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X Data Space is used by all instructions and supports all addressing modes. The X Data Space has separate read and write data buses. The X read data bus is the read data path for all instructions that view Data Space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y Data Space is used in concert with the X Data Space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY . N and MSC) to provide two concurrent data read paths.

Both the X and Y Data Spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X Data Space.

All data memory writes, including in DSP instructions, view Data Space as combined X and Y address space. The boundary between the X and Y Data Spaces is device-dependent and is not user-programmable.

4.3 Special Function Register Maps

TABLE 4-1: CPU CORE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000								W0 (WR	EG)								xxxx
W1	0002								W1									xxxx
W2	0004								W2									xxxx
W3	0006								W3									xxxx
W4	8000								W4									xxxx
W5	000A								W5									xxxx
W6	000C								W6									xxxx
W7	000E								W7									xxxx
W8	0010								W8									xxxx
W9	0012								W9									xxxx
W10	0014								W10	1								xxxx
W11	0016								W11									xxxx
W12	0018								W12	!								xxxx
W13	001A								W13	l								xxxx
W14	001C								W14	•								xxxx
W15	001E								W15	i								xxxx
SPLIM	0020								SPLII	М								0000
ACCAL	0022								ACCA	۱L								0000
ACCAH	0024								ACCA	Н								0000
ACCAU	0026			Siç	gn Extensio	n of ACCA<	39>						AC	CAU				0000
ACCBL	0028								ACCE	BL								0000
ACCBH	002A								ACCE	Н								0000
ACCBU	002C			Siç	gn Extensio	n of ACCB<	39>						AC	CBU				0000
PCL	002E						Pr	ogram Cour	nter Low Wo	rd Register							_	0000
PCH	0030	_	_	_	_	_	_	_	_	_		Pr	ogram Co	unter High V	Vord Regist	ter		0000
DSRPAG	0032	_	_	_	_	_	_				Data S	pace Read	l Page Re	gister				0001
DSWPAG	0034	_	_	_	_	_	_	_				Data Space	Write Pag	ge Register				0001
RCOUNT	0036	Repeat Loop Count Register											0000					
DCOUNT	0038	DCOUNT<15:0>											0000					
DOSTARTL	003A							DOS	TARTL<15:	1>							_	0000
DOSTARTH	003C	_	-	_	_	_	_	_	_	_	_			DOSTAF	RTH<5:0>			0000
DOENDL	003E							DOI	ENDL<15:1	>							_	0000
DOENDH	0040		_						_					DOEN	DH<5:0>			0000

dsPIC33EPXXXGM3XX/6XX/7XX

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-1:	CPU CORE REGISTER	MAP (CONTINUED)
------------	--------------------------	-----------------

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SR	0042	OA	ОВ	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	VAR	_	US<	:1:0>	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	YMODEN													0000		
XMODSRT	0048		XMODSRT<15:0>											0000				
XMODEND	004A														0001			
YMODSRT	004C							YMC	DSRT<15:0	>							_	0000
YMODEND	004E							YMO	DEND<15:0	>							_	0001
XBREV	0050	BREN							XBF	REV<14:0>								0000
DISICNT	0052	_	_							DISICNT<	13:0>							0000
TBLPAG	0054	_	_	_	_	_	_	_	_				TBLPA	G<7:0>				0000
MSTRPR	0058								MSTRPR<	15:0>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2013 Microchip Technology Inc.

TABLE 4-2: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGM6XX/7XX DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	_	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
INTCON3	08C4		-	ı	_	ı	1	_	_	ı	ı	DAE	DOOVR	_	ı	_	_	0000
INTCON4	08C6		-	ı	_	ı	1	_	_	ı	ı	_	_	_	ı	_	SGHT	0000
IFS0	0800		DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMPIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	T6IF	I	PMPIF ⁽¹⁾	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	FLT1IF	RTCCIF	_	DCIIF	DCIEIF	QEI1IF	PSEMIF	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	8080	-	-	CTMUIF	FLT4IF	QEI2IF	FLT3IF	PSESMIF	_	C2TXIF	C1TXIF	_	_	CRCIF	U2EIF	U1EIF	FLT2IF	0000
IFS5	A080	PWM2IF	PWM1IF	_	_	SPI3IF	SPI3EIF	U4TXIF	U4RXIF	U4EIF	_	_	_	U3TXIF	U3RXIF	U3EIF	_	0000
IFS6	080C	-	-	_	_	_	_	_	_	-	_	_	_	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	_	_	_	_	_	_	-	_	_	_	_	_	_	_	0000
IFS9	0812	-	-	_	_	_	_	_	_	-	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
IEC0	0820	-	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMPIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	T6IE	-	PMPIE ⁽¹⁾	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	FLT1IE	RTCCIE	_	DCIIE	DCIEIE	QEI1IE	PSEMIE	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	0828	-	-	CTMUIE	FLT4IE	QEI2IE	FLT3IE	PSESMIE	_	C2TXIE	C1TXIE	_	_	CRCIE	U2EIE	U1EIE	FLT2IE	0000
IEC5	082A	PWM2IE	PWM1IE	_	_	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	_	_	_	U3TXIE	U3RXIE	U3EIE	_	0000
IEC6	082C	-	-	_	_	_	_	_	_	-	_	_	_	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
IEC9	0832	-	-	_	_	_	_	_	_	-	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	-		T1IP<2:0>	>	_	(OC1IP<2:0>	•	-		IC1IP<2:0>	•	_	ı	NT0IP<2:0>		4444
IPC1	0842	-		T2IP<2:0>	>	_	(OC2IP<2:0>	•	-		IC2IP<2:0>	•	_		MA0IP<2:0>		4444
IPC2	0844	_	l	J1RXIP<2:	0>	_	5	SPI1IP<2:0>	•	_		SPI1EIP<2:0)>	_		T3IP<2:0>		4444
IPC3	0846	_		_		_	D	MA1IP<2:0	>	_		AD1IP<2:0>	>	_	ι	J1TXIP<2:0>		4444
IPC4	0848	_		CNIP<2:0:	>	_	C	CMPIP<2:0>	•	_	!	MI2C1IP<2:0)>	_	S	SI2C1IP<2:0>		4444
IPC5	084A	_		IC8IP<2:0	>	_	IC7IP<2:0>			_		AD2IP<2:0>	>	_		NT1IP<2:0>		4444
IPC6	084C			T4IP<2:0>	>	1	OC4IP<2:0>			1		OC3IP<2:0	>		С	MA2IP<2:0>		4444
IPC7	084E		ı	J2TXIP<2:	0>	1	U2RXIP<2:0>			1		INT2IP<2:0	>			T5IP<2:0>		4444
IPC8	0850	_		C1IP<2:0	>	1	C1RXIP<2:0>			1		SPI2IP<2:0	>		S	PI2EIP<2:0>		4444
IPC9	0852	_		IC5IP<2:0	>	1	IC4IP<2:0>			1		IC3IP<2:0>	•		С	MA3IP<2:0>		4444
IPC10	0854			OC7IP<2:0)>	_	(DC6IP<2:0>	•	1		OC5IP<2:0	>			IC6IP<3:0>		4444

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-2: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGM6XX/7XX DEVICES (CONTINUED)

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC11	0856	_		T6IP<2:0	>	_		_		-	ı	PMPIP<2:0>	(1)	_		OC8IP<2:0>		4444
IPC12	0858	1		T8IP<2:0	>	_	М	12C2IP<2:0)>	_		SI2C2IP<2:0)>	_		T7IP<2:0>		4444
IPC13	085A	1	(C2RXIP<2:	0>	_	- 1	NT4IP<2:0:	>	_		INT3IP<2:0	>	_		T9IP<2:0>		4444
IPC14	085C	_		DCIEIP<2:	0>	_	C	QEI1IP<2:0	>	_		PCEPIP<2:0)>	_		C2IP<2:0>		4444
IPC15	085E	_		FLT1IP<2:)>	_	R	TCCIP<2:0)>	_		_		_		DCIIP<2:0>		0404
IPC16	0860	_		CRCIP<2:0)>	_	l	J2EIP<2:0>	>	_		U1EIP<2:0	>	_	ı	FLT2IP<2:0>		4440
IPC17	0862	_	(C2TXIP<2:	0>	_	C	1TXIP<2:0	 >	_		_		_		_		4400
IPC18	0864	_		QEI2IP<2:0>			F	LT3IP<2:0	>	_		PCESIP<2:0)>	_		_		4040
IPC19	0866	_		QEI2IP<2:0>				_		_		CTMUIP<2:0)>	_	ı	FLT4IP<2:0>		4000
IPC20	0868	_		U3TXIP<2:	0>	_	U	3RXIP<2:0)>	_		U3EIP<2:0	>	_		_		0000
IPC21	086A	_		U4EIP<2:0)>	_		_		_		_		_		_		0000
IPC22	086C	_		SPI3IP<2:)>	_	S	PI3EIP<2:0)>	_		U4TXIP<2:0	>	_	ι	J4RXIP<2:0>		0000
IPC23	086E	_	F	PGC2IP<2:	0>	_	P	WM1IP<2:0)>	_		_		_		_		4400
IPC24	0870	_	F	PWM6IP<2	:0>	_	P	WM5IP<2:0)>	_		PWM4IP<2:0)>	_	Р	WM3IP<2:0>		4444
IPC35	0886	_		JTAGIP<2:0>		_		CDIP<2:0>	>	_		_		_		_		4400
IPC36	0888	_	ı	PTG0IP<2:0>		_	PT	GWDTIP<2	2:0>	_	Р	TGSTEPIP<	2:0>	_		_		4440
IPC37	088A	_				_	Р	TG3IP<2:0)>	_		PTG2IP<2:0	>	_	F	PTG1IP<2:0>		0445
INTTREG							ILR<	3:0>					VECN	UM<7:0>	•			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2013 Microchip Technology Inc.

INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGM3XX DEVICES **TABLE 4-3:**

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	-	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	ı	-	_	ı	1		-	-	INT2EP	INT1EP	INT0EP	0000
INTCON3	08C4	_	I	-	_	_	ı	-	_	ı	1	DAE	DOOVR	-	_	_	-	0000
INTCON4	08C6	_	I	-	_	_	ı	-	_	ı	1		-	-	_	_	SGHT	0000
IFS0	0800	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMPIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	T6IF	-	PMPIF ⁽¹⁾	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	_	_	SPI2IF	SPI2EIF	0000
IFS3	0806	FLT1IF	RTCCIF	-	DCIIF	DCIEIF	QEI1IF	PSEMIF	_	_	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	8080	_	-	CTMUIF	FLT4IF	QEI2IF	FLT3IF	PSESMIF	_	_	_	-	_	CRCIF	U2EIF	U1EIF	FLT2IF	0000
IFS5	A080	PWM2IF	PWM1IF	_	_	SPI3IF	SPI3EIF	U4TXIF	U4RXIF	U4EIF	_	-	ı	U3TXIF	U3RXIF	U3EIF	-	0000
IFS6	080C	_	I	-	_	_	ı	-	_	ı	1		-	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS8	0810	JTAGIF	ICDIF	-	_	_		_	_	ı			-	-	_	_		0000
IFS9	0812	_	_	_	_	_	_	_	_	_	PTG3IF	PTG2IF	PTG1IF	PTG0IF	PTGWDTIF	PTGSTEPIF	_	0000
IEC0	0820	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMPIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	T6IE	_	PMPIE ⁽¹⁾	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	_	_	SPI2IE	SPI2EIE	0000
IEC3	0826	FLT1IE	RTCCIE	_	DCIIE	DCIEIE	QEI1IE	PSEMIE	_	_	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	0828	_	_	CTMUIE	FLT4IE	QEI2IE	FLT3IE	PSESMIE	_	_	_	_	_	CRCIE	U2EIE	U1EIE	FLT2IE	0000
IEC5	082A	PWM2IE	PWM1IE	_	_	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	_	_	_	U3TXIE	U3RXIE	U3EIE	_	0000
IEC6	082C	_	_	_	_	_		_	_	_	_	_	_	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC8	0830	JTAGIE	ICDIE	_	_	_		_	_	_	_	_	_	_	_	_	_	0000
IEC9	0832	_	_	_	_	_		_	_	_	PTG3IE	PTG2IE	PTG1IE	PTG0IE	PTGWDTIE	PTGSTEPIE	_	0000
IPC0	0840	_		T1IP<2:0>	>	_	(OC1IP<2:0>	•	_		IC1IP<2:0>		_	I	NT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>	>	_	(OC2IP<2:0>	•	_		IC2IP<2:0>		_	D	MA0IP<2:0>		4444
IPC2	0844	_	l	J1RXIP<2:	0>	_	9	SPI1IP<2:0>	•	_	,	SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	_		_		_	D	MA1IP<2:0	>	_		AD1IP<2:0>		_	U	11TXIP<2:0>		4444
IPC4	0848	_		CNIP<2:0	>	_	(MPIP<2:0>	•	_	ľ	MI2C1IP<2:0	>	_	S	I2C1IP<2:0>		4444
IPC5	084A	_		IC8IP<2:0	>	_	IC7IP<2:0>		_		AD2IP<2:0>		_	I	NT1IP<2:0>		4444	
IPC6	084C	_		T4IP<2:0>	>	_	OC4IP<2:0>			_		OC3IP<2:0>		_	D	MA2IP<2:0>		4444
IPC7	084E	_	ι	J2TXIP<2:()>	_	U2RXIP<2:0>			_		INT2IP<2:0>	•	_		T5IP<2:0>		4444
IPC8	0850	_		_		_	_			_		SPI2IP<2:0>	•	_	S	PI2EIP<2:0>		4444
IPC9	0852	_		IC5IP<2:0	>	_	IC4IP<2:0>		_		IC3IP<2:0>		_	D	MA3IP<2:0>		4444	
IPC10	0854	_	(OC7IP<2:0)>	_	(OC6IP<2:0>	•	_		OC5IP<2:0>		_		IC6IP<3:0>		4444

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXGM3XX DEVICES (CONTINUED)

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC11	0856	_		T6IP<2:0	>	_		_		_	-	PMPIP<2:0>(1)	_	(OC8IP<2:0>		4444
IPC12	0858	_		T8IP<2:0	>	_	М	I2C2IP<2:0)>	_		SI2C2IP<2:0	>	_		T7IP<2:0>		4444
IPC13	085A	_		_		_	II.	NT4IP<2:0>	>	_		INT3IP<2:0>	•	_		T9IP<2:0>		4444
IPC14	085C	_	I	DCIEIP<2:	0>	_	C	QEI1IP<2:0	>	_		PCEPIP<2:0	>	_		_		4444
IPC15	085E	_		FLT1IP<2:	0>	_	R	TCCIP<2:0	>	_		_		_		DCIIP<2:0>		0404
IPC16	0860	_	-	CRCIP<2:0	0>	_	ι	J2EIP<2:0>	•	_		U1EIP<2:0>	•	_	F	-LT2IP<2:0>		4440
IPC18	0864	_	(QEI2IP<2:0	0>	_	F	LT3IP<2:0	>	_		PCESIP<2:0	>	_		_		4040
IPC19	0866	_		QEI2IP<2:0> —				_		_		CTMUIP<2:0	>	_	F	-LT4IP<2:0>		0004
IPC20	0868	_	l	J3TXIP<2:	0>	_	U	3RXIP<2:0	>	_		U3EIP<2:0>	•	_		_		0000
IPC21	086A	_		U4EIP<2:0)>	_		_		_		_		_		_		0000
IPC22	086C	_		SPI3IP<2:0	0>	_	S	PI3EIP<2:0)>	_		U4TXIP<2:0	>	_	L	J4RXIP<2:0>		0000
IPC23	086E	_	F	PGC2IP<2:	:0>	_	P)	WM1IP<2:0)>	_		_		_		_		4400
IPC24	0870	_	P	PWM6IP<2	:0>	_	P)	WM5IP<2:0)>	_	!	PWM4IP<2:0	>	_	Р	WM3IP<2:0>		4444
IPC35	0886	_	·	JTAGIP<2:	0>	_	ı	CDIP<2:0>	•	_		_		_		_		4400
IPC36	0888	_	F	PTG0IP<2:	:0>	_	PT	GWDTIP<2	:0>	_	P	TGSTEPIP<2	:0>	_		_		4440
IPC37	088A	_		_		_	Р	TG3IP<2:0	>	_		PTG2IP<2:0	>	_	F	PTG1IP<2:0>		0444
INTTREG	08C8	_		_			ILR<	3:0>					VECN	UM<7:0>	•			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

2013	
Microchip	
\exists	
echnol	
ology I	
nc.	

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Tim	ner1 Registe	er							0000
PR1	0102								Peri	iod Register	· 1							FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	_	0000
TMR2	0106					•			Tim	ner2 Registe	er	•		•	•		•	0000
TMR3HLD	0108						Time	er3 Holdin	ng Register	r (For 32-bit	timer operat	ions only)						xxxx
TMR3	010A								Tim	ner3 Registe	er							0000
PR2	010C								Peri	iod Register	2							FFFF
PR3	010E								Peri	iod Register	. 3							FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000
TMR4	0114								Tim	ner4 Registe	er							0000
TMR5HLD	0116	Timer 5 Holding Register (For 32-bit timer operations only) Timer5 Register															xxxx	
TMR5	0118	Timer5 Register															0000	
PR4	011A	Period Register 4															FFFF	
PR5	011C								Peri	iod Register	5							FFFF
T4CON	011E	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP:	S<1:0>	T32	_	TCS	_	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000
TMR6	0122								Tim	ner6 Registe	er							0000
TMR7HLD	0124						Time	er 7 Holdir	ng Registe	r (For 32-bit	timer opera	tions only)						xxxx
TMR7	0126								Tim	ner7 Registe	er							0000
PR6	0128								Peri	iod Register	6							FFFF
PR7	012A								Peri	iod Register	7							FFFF
T6CON	012C	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS	_	0000
T7CON	012E	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP:	S<1:0>	_	_	TCS	_	0000
TMR8	0130								Tim	ner8 Registe	er							0000
TMR9HLD	0132						Time	er 9 Holdir	ng Registe	r (For 32-bit	timer opera	tions only)						xxxx
TMR9	0134								Tim	ner9 Registe	er							0000
PR8	0136								Peri	iod Register	8							FFFF
PR9	0138								Peri	iod Register	. 9							FFFF
T8CON	013A	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	_	TCS	_	0000
T9CON	013C	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-5:	INPUT CAPTURE 1	1 THROUGH INPUT CAPTURE 8 REGISTER MAP
IADEL TJ.	IN CICALIONE	I THINGOOTHING OF CALEONE ONEOLOGICA MIAI

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
IC1CON1	0140	_	_	ICSIDL	I	CTSEL<2:0	>	_	_	_	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC1CON2	0142	_	_	-	_	_		-	IC32	ICTRIG	TRIGSTAT	_		SY	/NCSEL<4	:0>		000D
IC1BUF	0144							Inpu	t Capture 1	Buffer Reg	ister							xxxx
IC1TMR	0146								Input Capti	ure 1 Timer								0000
IC2CON1	0148	_	_	ICSIDL	10	CTSEL<2:0	>	_	_	_	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2CON2	014A	_	_	-	_	-	_	1	IC32	ICTRIG	TRIGSTAT	_		SY	/NCSEL<4	:0>		000D
IC2BUF	014C							Inpu	t Capture 2	Buffer Reg	ister							xxxx
IC2TMR	014E								Input Capti	ure 2 Timer								0000
IC3CON1	0150	_	_	ICSIDL	10	CTSEL<2:0	>	_	_	_	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC3CON2	0152	_	_	_	_	_	_	_	IC32	ICTRIG	TRIGSTAT	_		SY	/NCSEL<4	:0>		000D
IC3BUF	0154							Inpu	t Capture 3	Buffer Reg	ister							xxxx
IC3TMR	0156								Input Capti	ure 3 Timer								0000
IC4CON1	0158										0000							
IC4CON2	015A												000D					
IC4BUF	015C							Inpu	t Capture 4	Buffer Reg	ister							xxxx
IC4TMR	015E								Input Capti	ure 4 Timer								0000
IC5CON1	0160	_	_	ICSIDL	10	CTSEL<2:0	>	_	_	_	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC5CON2	0162	_	_	_	_	_	_	_	IC32	ICTRIG	TRIGSTAT	_		SY	/NCSEL<4	:0>		000D
IC5BUF	0164							Inpu	t Capture 5	Buffer Reg	ister							xxxx
IC5TMR	0166								Input Capti	ure 5 Timer								0000
IC6CON1	0168	_	_	ICSIDL	10	CTSEL<2:0	>	_	_	_	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC6CON2	016A	_	_	_	_	_	_	_	IC32	ICTRIG	TRIGSTAT	_		SY	/NCSEL<4	:0>		000D
IC6BUF	016C							Inpu	t Capture 6	Buffer Reg	ister							xxxx
IC6TMR	016E								Input Capti	ure 6 Timer								0000
IC7CON1	0170	_	_	ICSIDL	10	CTSEL<2:0	>	_	_	_	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC7CON2	0172	_	_	_	_	_	_	_	IC32	ICTRIG	TRIGSTAT	_		SY	/NCSEL<4	:0>		000D
IC7BUF	0174		•		•			Inpu	t Capture 7	Buffer Reg	ister	•	•					xxxx
IC7TMR	0176								Input Capti	ure 7 Timer								0000
IC8CON1	0178														0000			
IC8CON2	017A	_	_	_	_	_	_	_	IC32	ICTRIG	TRIGSTAT	_		SY	/NCSEL<4	:0>		000D
IC8BUF	017C							Inpu	t Capture 8	Buffer Reg	ister		•					xxxx
IC8TMR	017E								Input Capti	ure 8 Timer								0000

IABLE 4	-6:	OUTP	OI COI	WPAKE	(EGISTE	RIVIAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
OC1CON1	0900	_	_	OCSIDL		OCTSEL<2:0	>	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	(OCM2<:0	>	0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SYNCS	SEL<4:0>	•		000C
OC1RS	0904						Ou	tput Comp	are 1 Seco	ndary Regi	ster							xxxx
OC1R	0906							Output (Compare 1	Register								xxxx
OC1TMR	0908						Out	tput Compa	are 1 Timer	Value Reg	ister							xxxx
OC2CON1	090A	_	_	OCSIDL		OCTSEL<2:0	>	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE		OCM2<:0	>	0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	ı	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SYNCS	SEL<4:0>	•		000C
OC2RS	090E						Ou	tput Comp	are 2 Seco	ndary Regi	ster							xxxx
OC2R	0910							Output	Compare 2	Register								xxxx
OC2TMR	0912						Out	tput Compa	are 2 Timer	Value Reg	ister							xxxx
OC3CON1	0914	_	_	OCSIDL OCTSEL<2:0> — ENFLTB ENFLTA — OCFLTB OCFLTA TRIGMODE OCM2<:0>									0000					
OC3CON2	0916	FLTMD	FLTOUT	FLTTRIEN OCINV — — OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL<4:0>								000C						
OC3RS	0918		Output Compare 3 Secondary Register										xxxx					
OC3R	091A							Output	Compare 3	Register								xxxx
OC3TMR	091C						Out	tput Compa	are 3 Timer	Value Reg	ister							xxxx
OC4CON1	091E	_	_	OCSIDL		OCTSEL<2:0	>	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE		DCM2<:0:	>	0000
OC4CON2	0920	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SYNCS	SEL<4:0>	>		000C
OC4RS	0922						Ou	tput Comp	are 4 Seco	ndary Regi	ster							xxxx
OC4R	0924							Output	Compare 4	Register								xxxx
OC4TMR	0926						Out	tput Compa	are 4 Timer	Value Reg	ister							xxxx
OC5CON1	0928	_	_	OCSIDL		OCTSEL<2:0	>	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE		DCM2<:0	>	0000
OC5CON2	092A	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SYNCS	SEL<4:0>	•		000C
OC5RS	092C						Ou	tput Comp	are 5 Seco	ndary Regi	ster							xxxx
OC5R	092E							Output	Compare 5	Register								xxxx
OC5TMR	0930						Out	tput Compa	are 5 Timer	Value Reg	ister							xxxx
OC6CON1	0932	_	_	OCSIDL		OCTSEL<2:0	>	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE		DCM2<:0:	>	0000
OC6CON2	0934	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32	OCTRIG	TRIGSTAT	OCTRIS		SYNCS	SEL<4:0>	•		000C
OC6RS	0936						Ou	tput Comp	are 6 Seco	ndary Regi	ster							xxxx
OC6R	0938							Output	Compare 6	Register								xxxx
OC6TMR	093A						Out	tput Compa	are 6 Timer	Value Reg	ister							xxxx

TABLE 4-6: OUTPUT COMPARE REGISTER MAP (CONTINUED)

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC7CON1	093C	_	_	OCSIDL	(OCTSEL<2:0	>	_	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	C)CM2<:0	>	0000
OC7CON2	093E	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	ı	1	OC32	OCTRIG	TRIGSTAT	OCTRIS		SYNCS		000C		
OC7RS	0940		Output Compare 7 Secondary Register												xxxx			
OC7R	0942	Output Compare 7 Register												xxxx				
OC7TMR	0944						Out	tput Compa	are 7 Timer	Value Reg	ister							xxxx
OC8CON1	0946	_	ı	OCSIDL	(OCTSEL<2:0	>	1	ENFLTB	ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE	C	CM2<:0	>	0000
OC8CON2	0948	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	ı	1	OC32	OCTRIG	TRIGSTAT	OCTRIS		SYNCS	SEL<4:0>			000C
OC8RS	094A						Ou	tput Comp	are 8 Seco	ndary Regi	ster							xxxx
OC8R	094C	•					•	Output	Compare 8	Register		•	•		•			xxxx
OC8TMR	094E						Out	tput Compa	are 8 Timer	Value Reg	ister							xxxx

TABLE 4-7: PTG REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTGCST	0AC0	PTGEN	_	PTGSIDL	PTGTOGL	1	PTGSWT	PTGSSEN	PTGIVIS	PTGSTRT	PTGWDTO	_	_	_	_	PTGIT	M<1:0>	0000
PTGCON	0AC2	P ⁻	TGCLK<2	2:0>		P	TGDIV<4:0	>			PTGPWD	<3:0>		_	P	TGWDT<2:	0>	0000
PTGBTE	0AC4		ADO	CTS<4:1>		IC4TSS	IC3TSS	IC2TSS	IC1TSS	OC4CS	OC3CS	OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS	0000
PTGHOLD	0AC6								PTGHOL	_D<15:0>								0000
PTGT0LIM	0AC8								PTGT0L	IM<15:0>								0000
PTGT1LIM	0ACA								PTGT1L	IM<15:0>								0000
PTGSDLIM	0ACC								PTGSDL	.IM<15:0>								0000
PTGC0LIM	0ACE								PTGC0L	IM<15:0>								0000
PTGC1LIM	0AD0								PTGC1L	IM<15:0>								0000
PTGADJ	0AD2		PTGADJ<15:0> PTGI 0<15:0>														0000	
PTGL0	0AD4		PTGL0<15:0>													0000		
PTGQPTR	0AD6	_													GQPTR<4	:0>		0000
PTGQUE0	0AD8				STER	21<7:0>							STEP0	<7:0>				0000
PTGQUE1	0ADA				STEF	23<7:0>							STEP2	<7:0>				0000
PTGQUE2	0ADC				STEF	P5<7:0>							STEP4	<7:0>				0000
PTGQUE3	0ADE				STEF	P7<7:0>							STEP6	<7:0>				0000
PTGQUE4	0AE0				STEF	9<7:0>							STEP8	<7:0>				0000
PTGQUE5	0AE2				STEP	11<7:0>							STEP10	<7:0>				0000
PTGQUE6	0AE4				STEP	13<7:0>							STEP12	<7:0>				0000
PTGQUE7	0AE6				STEP	15<7:0>							STEP14	<7:0>				0000
PTGQUE8	0x0AE8				STEP	17<7:0>							STEP16	<7:0>				0000
PTGQUE9	0x0AEA				STEP	19<7:0>							STEP18	<7:0>				0000
PTGQUE10	0x0AEC				STEP	21<7:0>							STEP20	<7:0>				0000
PTGQUE11	0x0AEE				STEP	23<7:0>							STEP22	<7:0>				0000
PTGQUE12	0x0AF0				STEP	25<7:0>							STEP24	<7:0>				0000
PTGQUE13	0x0AF2				STEP	27<7:0>							STEP26	<7:0>				0000
PTGQUE14	0x0AF4				STEP	29<7:0>							STEP28	<7:0>				0000
PTGQUE15	0x0AF6					31<7:0>			haranta da atau				STEP30	<7:0>				0000

 $\textbf{Legend:} \quad x = \text{unknown value on Reset,} \\ \textbf{_= unimplemented, read as '0'. Reset values are shown in hexadecimal.}$

TΔF	3LE	4-8 ·	PWM	REGISTER	МΔР
		T-U.	1 44141	ILCIOILI	IVICI

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
PTCON	0C00	PTEN	_	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SY	NCSRC<2	2:0>		SEV	TPS<3:0>		0000		
PTCON2	0C02	-	_	_	_	-	_	_	_	_	_	_	_	_	ı	PCLKDIV<2:0)>	0000		
PTPER	0C04								PTPER<15	:0>										
SEVTCMP	0C06								SEVTCMP<1	5:0>					0000					
MDC	0C0A								MDC<15:0)>					_					
STCON	0C0E	-	_	_	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SY	NCSRC<2	2:0>		SEV	TPS<3:0>		0000		
STCON2	0C10	-	_	_	_	-	_	_	_	_	_	_	_	_	ı	PCLKDIV<2:0)>	0000		
STPER	0C12								STPER<15	:0>								0000		
SSEVTCMP	0C14							5	SEVTCMP<	15:0>								0000		
CHOP	0C1A	CHPCLKEN	ı	_	_	_	ı			•	•	CHOPCL	K<9:0>		•			0000		
PWMKEY	0C1E								PWMKEY<1	5:0>								0000		

 $\textbf{Legend:} \quad \textbf{x} = \text{unknown value on Reset,} \\ \textbf{--} = \text{unimplemented, read as '0'}. \\ \textbf{Reset values are shown in hexadecimal.}$

TABLE 4-9: PWM GENERATOR 1 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	:1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	\T<1:0>	CLDA	T<1:0>	SWAP	OSYNC	C000
FCLCON1	0C24	IFLTMOD		(CLSRC<4:	0>		CLPOL	CLMOD		FL	TSRC<4:)>		FLTPOL	FLTMO	D<1:0>	0000
PDC1	0C26								PDC1<15:0)>								FFF8
PHASE1	0C28								PHASE1<15	:0>								0000
DTR1	0C2A	_	_				DTR1<13:0> 0000											0000
ALTDTR1	0C2C	_	_						А	LTDTR1<1	3:0>							0000
SDC1	0C2E								SDC1<15:0)>								0000
SPHASE1	0C30							5	SPHASE1<1	5:0>								0000
TRIG1	0C32								TRGCMP<1	5:0>								0000
TRGCON1	0C34		TRGDI	V<3:0>		_	_	_	_	_	_			TRG	STRT<5:0	>		0000
PWMCAP1	0C38							P	WMCAP1<1	5:0>								0000
LEBCON1	0C3A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	всн	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY1	0C3C	_	_	_	_						LEB<11	1:0>						0000
AUXCON1	0C3E	_	_	_	-		BLANKS	SEL<3:0>	•	_	_		CHOPC	LK<3:0>		CHOPHEN	CHOPLEN	0000

TABLE 4-10: PWM GENERATOR 2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
PWMCON2	0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	<1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON2	0C42	PENH	PENL	POLH	POLL	PMOD	>1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	T<1:0>	CLDA	\T<1:0>	SWAP	OSYNC	C000
FCLCON2	0C44	IFLTMOD		C	LSRC<4:0	>		CLPOL	CLMOD		FLT	SRC<4:0	>	•	FLTPOL	FLTMO	D<1:0>	00F8
PDC2	0C46								PDC2<15:0>									0000
PHASE2	0C48							Р	HASE2<15:0	>								0000
DTR2	0C4A	_	_													0000		
ALTDTR2	0C4C	_	_														0000	
SDC2	0C4E								SDC2<15:0>									0000
SPHASE2	0C50							SF	PHASE2<15:0)>								0000
TRIG2	0C52							TF	RGCMP<15:0)>								0000
TRGCON2	0C54		TRGDI	V<3:0>		_	_	_	_	_	_			TRO	SSTRT<5:0	>		0000
PWMCAP2	0C78							PW	VMCAP2<15:	0>								0000
LEBCON2	0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	всн	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY2	0C5C	_	_	_	_						LEB<11:0	>						0000
AUXCON2	0C5E	-	_	_	_		BLANK	SEL<3:0>		_	_		CHOPS	EL<3:0>		CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: PWM GENERATOR 3 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON3	0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	:1:0>	DTCP	1	MTBS	CAM	XPRES	IUE	0000
IOCON3	0C62	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	T<1:0>	CLDA	\T<1:0>	SWAP	OSYNC	C000
FCLCON3	0C64	IFLTMOD		C	LSRC<4:0	>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	00F8
PDC3	0C66								PDC3<15:0>									0000
PHASE3	0C68							Р	PHASE3<15:0	>								0000
DTR3	0C6A				DTR3<13:0> 000												0000	
ALTDTR3	0C6C																	0000
SDC3	0C6E								SDC3<15:0>									0000
SPHASE3	0C70							SI	PHASE3<15:	0>								0000
TRIG3	0C72							TI	RGCMP<15:0)>								0000
TRGCON3	0C74		TRGDI	V<3:0>		1	_	_	_	_	_			TRO	GSTRT<5:()>		0000
PWMCAP3	0C78							PV	VMCAP3<15:	0>								0000
LEBCON3	0C7A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	ВСН	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY3	0C7C	_	_	_	_						LEB<11:0)>						0000
AUXCON3	0C7E	_	_	_	_		BLANK	SEL<3:0>		_	_		CHOPS	EL<3:0>		CHOPHEN	CHOPLEN	0000

TARIF 1-12.	DW/M	CENERATOR	4 REGISTER MAP
IADLE 4-12.		ICIENERAICA	4 NEGIGIER WAF

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON4	0C80	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	:1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON4	0C82	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	T<1:0>	CLDA	AT<1:0>	SWAP	OSYNC	C000
FCLCON4	0C84	IFLTMOD		С	CLSRC<4:0	>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	00F8
PDC4	0C86								PDC3<15:0>									0000
PHASE4	0C88														0000			
DTR4	0C8A														0000			
ALTDTR4	0C8C	-														0000		
SDC4	0C8E								SDC4<15:0>									0000
SPHASE4	0C90							SI	PHASE4<15:	0>								0000
TRIG4	0C92							TI	RGCMP<15:0)>								0000
TRGCON4	0C94		TRGDI	V<3:0>		_	_	_	_	_	_			TRO	GSTRT<5:0)>		0000
PWMCAP4	0C98							PV	VMCAP4<15:	:0>								0000
LEBCON4	0C9A	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY4	0C9C	_	_	_	_						LEB<11:0)>						0000
AUXCON4	0C9E	_	_	_	_		BLANK	SEL<3:0>	•	_	_		CHOPS	SEL<3:0>		CHOPHEN	CHOPLEN	0000

 $\textbf{Legend:} \quad \textbf{x} = \text{unknown value on Reset,} \\ \textbf{--} = \text{unimplemented, read as '0'}. \\ \textbf{Reset values are shown in hexadecimal.}$

TABLE 4-13: PWM GENERATOR 5 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON5	0CA0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	:1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON5	0CA5	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	T<1:0>	CLDA	\T<1:0>	SWAP	OSYNC	C000
FCLCON5	0CA4	IFLTMOD		C	LSRC<4:0	>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	00F8
PDC5	0CA6								PDC5<15:0>									0000
PHASE5	0CA8							P	PHASE5<15:0	>								0000
DTR5	0CAA	_	_		DTR5<13:0> 000												0000	
ALTDTR5	0CAC	_	_															0000
SDC5	0CAE			•					SDC5<15:0>									0000
SPHASE5	0CB0							SI	PHASE5<15:0)>								0000
TRIG5	0CB2							Т	RGCMP<15:0)>								0000
TRGCON5	0CB4		TRGDI	V<3:0>		-	_	_	_	_	_			TRO	GSTRT<5:0)>		0000
PWMCAP5	0CB8							PV	VMCAP5<15:	0>								0000
LEBCON5	0CBA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_	_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
LEBDLY5	0CBC	_	_	_	_						LEB<11:0)>						0000
AUXCON5	0CBE	-	_	_	_		BLANK	SEL<3:0>			_		CHOPS	SEL<3:0>		CHOPHEN	CHOPLEN	0000

TABLE 4-14: PWM GENERATOR 6 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON6	0CC0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	:1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON6	0CC2	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	T<1:0>	CLDA	AT<1:0>	SWAP	OSYNC	C000
FCLCON6	0CC4	IFLTMOD		C	LSRC<4:0)>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	00F8
PDC6	0CC6								PDC6<15:0>									0000
PHASE6	0CC8							Р	PHASE6<15:0	>								0000
DTR6	0CCA	_	_			DTR6<13:0> 00									0000			
ALTDTR6	0CCC	_	_												0000			
SDC6	0CCE								SDC6<15:0>									0000
SPHASE6	0CD0							SI	PHASE6<15:	0>								0000
TRIG6	0CD2							TI	RGCMP<15:0)>								0000
TRGCON6	0CD4		TRGDI	V<3:0>		_	_	_	_	_	_			TRO	GSTRT<5:()>		0000
PWMCAP6	0CD8							PV	VMCAP6<15:	0>								0000
LEBCON6	0CDA	PHR	PHF	PLR	PLF	FLTLEBEN CLLEBEN BCH BCL BPHH BPHL BPLH BPLL 0000									0000			
LEBDLY6	0CDC	_	_	_	_						LEB<11:0)>				•	•	0000
AUXCON6	0CDE	_	_	_	_		BLANK	SEL<3:0>		_	_		CHOPS	EL<3:0>		CHOPHEN	CHOPLEN	0000

TABLE 4-15: QEI1 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
QEI1CON	01C0	QEIEN	_	QEISIDL		PIMOD<2:0>		IMV<	:1:0>	_		INTDIV<2:0	>	CNTPOL	GATEN	CCM-	<1:0>	0000
QEI1IOC	01C2	QCAPEN	FLTREN		QFDIV<2:0>		OUTFN	NC<1:0>	SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA	000x
QEI1STAT	01C4	_	_	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN	0000
POS1CNTL	01C6								POSCNT<15	0>								0000
POS1CNTH	01C8							F	OSCNT<31:	16>								0000
POS1HLD	01CA								POSHLD<15:	0>								0000
VEL1CNT	01CC							,	VELCNT<15:	0>								0000
INT1TMRL	01CE												0000					
INT1TMRH	01D0												0000					
INT1HLDL	01D2								INTHLD<15:0)>								0000
INT1HLDH	01D4							l	NTHLD<31:1	6>								0000
INDX1CNTL	01D6							I	NDXCNT<15	:0>								0000
INDX1CNTH	01D8							11	NDXCNT<31:	16>								0000
INDX1HLD	01DA							I	NDXHLD<15	:0>								0000
QEI1GECL	01DC								QEIGEC<15:	0>								0000
QEI1ICL	01DC								QEIIC<15:0	>								0000
QEI1GECH	01DE							(QEIGEC<31:1	6>								0000
QEI1ICH	01DE								QEIIC<31:16	>								0000
QEI1LECL	01E0								QEILEC<15:)>								0000
QEI1LECH	01E2							(QEILEC<31:1	6>								0000

TABLE 4-16: QEI2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
QEI2CON	05C0	QEIEN	_	QEISIDL		PIMOD<2:0>		IMV<	<1:0>	_		INTDIV<2:0	>	CNTPOL	GATEN	CCM-	<1:0>	0000
QEI2IOC	05C2	QCAPEN	FLTREN		QFDIV<2:0>		OUTF	NC<1:0>	SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA	000x
QEI2STAT	05C4	_	_	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN	0000
POS2CNTL	05C6							I	POSCNT<15:	0>								0000
POS2CNTH	05C8							F	OSCNT<31:1	6>								0000
POS2HLD	05CA							l	POSHLD<15:	0>								0000
VEL2CNT	05CC							,	VELCNT<15:0)>								0000
INT2TMRL	05CE												0000					
INT2TMRH	05D0		INTTMR<31:16> 00										0000					
INT2HLDL	05D2								INTHLD<15:0)>								0000
INT2HLDH	05D4								NTHLD<31:1	6>								0000
INDX2CNTL	05D6							l	NDXCNT<15:	0>								0000
INDX2CNTH	05D8							11	NDXCNT<31:	16>								0000
INDX2HLD	05DA							I	NDXHLD<15:	0>								0000
QEI2GECL	05DC								QEIGEC<15:0)>								0000
QEI2ICL	05DC								QEIIC<15:0	>								0000
QEI2GECH	05DE							(QEIGEC<31:1	6>								0000
QEI2ICH	05DE								QEIIC<31:16	>								0000
QEI2LECL	05E0								QEILEC<15:0)>								0000
QEI2LECH	05E2					-		(QEILEC<31:1	6>								0000

TABLE 4-17: I2C1 AND I2C2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	_	_	_	_	_	_	_				I2C1 Recei	ve Register				0000
I2C1TRN	0202	_	_	1	_	_		_	-				I2C1 Transr	nit Register				00FF
I2C1BRG	0204								Baud R	ate Genera	tor							0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	_	_	_	_	_	_	- I2C1 Address Register								0000		
I2C1MSK	020C	_	_	_	_	_	_					I2C1 Add	Iress Mask					0000
I2C2RCV	0210	_	-	-	_	_	_	_	_				I2C2 Recei	ve Register				0000
I2C2TRN	0212	_	-	-	_	_	_	_	_				I2C2 Transr	nit Register				00FF
I2C2BRG	0214								Baud R	ate Genera	tor							0000
I2C2CON	0216	I2CEN	-	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	DD10 IWCOL I2COV D_A P S R_W RBF TBF								0000
I2C2ADD	021A	_	_	_	_	_	_	I2C2 Address Register									0000	
I2C2MSK	021C	_	_	-	_	_	_					I2C2 Add	Iress Mask					0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2013 Microchip Technology Inc.

TABLE 4-18: UART1 AND UART2 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN<	1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	_				UART1	Transmit F	Register				xxxx
U1RXREG	0226	_	_	_	_	_	_	_	O/WYTT RESOLUTION							0000		
U1BRG	0228							Baud	aud Rate Generator Prescaler							0000		
U2MODE	0230	UARTEN	-	USIDL	IREN	RTSMD	-	UEN<	1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	_	_				UART2	2 Transmit F	Register				xxxx
U2RXREG	0236	_	-	_	_	_	-	1	UART2 Receive Register								0000	
U2BRG	0238						•	Baud	Rate Gen	erator Pres	scaler		•		•	•		0000

dsPIC33EPXXXGM3XX/6XX/7XX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-19: UART3 AND UART4 REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U3MODE	0250	UARTEN	_	USIDL	IREN	RTSMD	_	UEN<	:1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U3STA	0252	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U3TXREG	0254	_	_	_	_	_	_	_				UART	3 Transmit F	Register				xxxx
U3RXREG	0256	_	_	_	_	_	_	_	UART3 Receive Register							0000		
U3BRG	0258							Baud	Rate Gen	erator Pre	scaler							0000
U4MODE	02B0	UARTEN	ı	USIDL	IREN	RTSMD	_	UEN<	:1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U4STA	02B2	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U4TXREG	02B4	_	ı	_	_	_	_	_				UART4	Transmit F	Register				xxxx
U4RXREG	02B6	_	ı	_	_	_	_	_	UART4 Receive Register								0000	
U4BRG	02B8							Baud	Rate Gen	erator Pre	scaler							0000

TABLE 4-20:	SPI1	SPI2	AND SPI3	REGISTER	$M\Delta P$

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	_	SPISIDL	_	_	9	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI1CON1	0242	-	-	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	ı	_	_	_	-	_	_	FRMDLY	SPIBEN	0000
SPI1BUF	0248												0000					
SPI2STAT	0260	SPIEN	_	SPISIDL	_									0000				
SPI2CON1	0262	_	_	_	DISSCK								0000					
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	-	_	_	_	_	_	_	_	FRMDLY	SPIBEN	0000
SPI2BUF	0268							SPI2 Tra	nsmit and R	eceive Buf	fer Registe	r						0000
SPI3STAT	02A0	SPIEN	_	SPISIDL	_	_	5	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>	•	SPITBF	SPIRBF	0000
SPI3CON1	02A2	_	_	_	DISSCK	DISSDO								<1:0>	0000			
SPI3CON2	02A4	FRMEN	SPIFSD	FRMPOL	_	FRMDLY SPIBEN 0000								0000				
SPI3BUF	02A8							SPI3 Tra	nsmit and R	eceive Buf	fer Registe	r						0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-21: DCI REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DCICON1	0280	DCIEN	_	DCISIDL	_	DLOOP	CSCKD	CSCKE	COFSD	UNFM	CSDOM	DJST	_	_	_	COFS	M<1:0>	0000
DCICON2	0282	_	_	_	_	BLEN	<1:0>	_		COFS	G<3:0>		_		WS	<3:0>		0000
DCICON3	0284	_	-	_	_						BCG<1	l1:0>						0000
DCISTAT	0286	_	_	_	_		SLOT	<3:0>		-	_	ı	_	ROV	RFUL	TUNF	TMPTY	0000
TSCON	0288	TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8	TSE7	TSE6	TSE5	TSE4	TSE3	TSE2	TSE1	TSE0	0000
RSCON	028C	RSE15											0000					
RXBUF0	0290							F	Receive 0 Da	ata Registei	r							uuuu
RXBUF1	0292							F	Receive 1 Da	ata Registei	r							uuuu
RXBUF2	0294							F	Receive 2 Da	ata Registei	ſ							uuuu
RXBUF3	0296							F	Receive 3 Da	ata Registei	r							uuuu
TXBUF0	0298							Т	ransmit 0 D	ata Registe	r							0000
TXBUF1	029A													0000				
TXBUF2	029C							Т	ransmit 2 D	ata Registe	r							0000
TXBUF3	029E				·			Т	ransmit 3 D	ata Registe	r		·	·		·		0000

Legend: u = unchanged, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

20
≺
013
₹
ğ
≟
0
დ'
끍
Ξ
ğ
9
nc.

TABLE 4-22:	ADC1	AND	ADC2	REGISTER	MAP
-------------	------	-----	------	----------	-----

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC1 Data B	uffer 0								xxxx
ADC1BUF1	0302								ADC1 Data B	uffer 1								xxxx
ADC1BUF2	0304								ADC1 Data B	uffer 2								xxxx
ADC1BUF3	0306								ADC1 Data B	uffer 3								xxxx
ADC1BUF4	0308								ADC1 Data B	uffer 4								xxxx
ADC1BUF5	030A								ADC1 Data B	uffer 5								xxxx
ADC1BUF6	030C								ADC1 Data B	uffer 6								xxxx
ADC1BUF7	030E								ADC1 Data B	uffer 7								xxxx
ADC1BUF8	0310								ADC1 Data B	uffer 8								xxxx
ADC1BUF9	0312								ADC1 Data B	uffer 9								xxxx
ADC1BUFA	0314								ADC1 Data Bu	ıffer 10								xxxx
ADC1BUFB	0316								ADC1 Data Bu	ıffer 11								xxxx
ADC1BUFC	0318														xxxx			
ADC1BUFD	031A														xxxx			
ADC1BUFE	031C								ADC1 Data Bu	ıffer 14								xxxx
ADC1BUFF	031E								ADC1 Data Bu	ıffer 15								xxxx
AD1CON1	0320	ADON	_	ADSIDL	ADDMABM	_	AD12B	FOR	M<1:0>	S	SRC<2:0	>	SSRCG	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	\	/CFG<2:0>	>	OFFCAL	_	CSCNA	CHF	PS<1:0>	BUFS			SMPI<4:)>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	_			SAMC<4:0	>					ΑĽ	OCS<7:0>			•	0000
AD1CHS123	0326	_	_	_	CH123SE	3<2:1>	CH123N	IB<1:0>	CH123SB<0>	_	_	_	CH123	SA<2:1>	CH123N	A<1:0>	CH123SA<0>	0000
AD1CHS0	0328	CH0NB	_			CH0	SB<5:0>			CH0NA	_			CH	0SA<5:0>		•	0000
AD1CSSH	032E	CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24	CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16	0000
AD1CSSL	0330	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	_	_	_	_	_	_	_	ADDMAEN	_	_	_	_	_		DMABL<	2:0>	0000
ADC2BUF0	0340								ADC2 Data B	uffer 0								xxxx
ADC2BUF1	0342								ADC2 Data B	uffer 1								xxxx
ADC2BUF2	0344								ADC2 Data B	uffer 2								xxxx
ADC2BUF3	0346								ADC2 Data B	uffer 3								xxxx
ADC2BUF4	0348								ADC2 Data B	uffer 4								xxxx
ADC2BUF5	034A								ADC2 Data B	uffer 5								xxxx
ADC2BUF6	034C								ADC2 Data B	uffer 6								xxxx
ADC2BUF7	034E								ADC2 Data B	uffer 7								xxxx
ADC2BUF8	0350								ADC2 Data B	uffer 8								xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Bit 13 and bit 5 are unimplemented in the AD2CHS0 register, unlike the AD1CHS0 register.

TABLE 4-22: ADC1 AND ADC2 REGISTER MAP (CONTINUED)

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets			
ADC2BUF9	0352								ADC2 Data B	uffer 9								xxxx			
ADC2BUFA	0354								ADC2 Data Bu	ıffer 10								xxxx			
ADC2BUFB	0356								ADC2 Data Bu	ıffer 11								xxxx			
ADC2BUFC	0358								ADC2 Data Bu	ıffer 12								xxxx			
ADC2BUFD	035A						10000 1 0 % 11										xxxx				
ADC2BUFE	035C								ADC2 Data Buffer 14 xxxx												
ADC2BUFF	035E								ADC2 Data Bu	ıffer 15								xxxx			
AD2CON1	0360	ADON	_	ADSIDL	ADDMABM	_	AD12B	FOF	RM<1:0>	S	SRC<2:0	>	SSRCG	SIMSAM	ASAM	SAMP	DONE	0000			
AD2CON2	0362	\	/CFG<2:0>	>	OFFCAL	_	CSCNA	CHF	PS<1:0>	BUFS			SMPI<4:	0>		BUFM	AMP DONE SUFM ALTS 1:0> CH123SA<0> 0) SS17 CSS16 CSS1 CSS0				
AD2CON3	0364	ADRC	_	_			SAMC<4:0	>					ΑĽ	OCS<7:0>			0000				
AD2CHS123	0366	_	_	_	CH123SE	3<2:1>	CH123N	IB<1:0>	CH123SB<0>	_	_	_	CH123	SA<2:1>	CH123N	A<1:0>	CH123SA<0>	0000			
AD2CHS0	0368	CH0NB	_	_		(CH0SB<4:0	_{>} (1)		CH0NA	_	_			CH0SA<4:0	_{)>} (1)	•	0000			
AD2CSSH	036E	CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24	CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16	0000			
AD2CSSL	0370	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	3UFM ALTS 1:0> CH123SA<0> 1) SSS17 CSS16				
AD2CON4	0372	_		_	_	_	_	_	ADDMAEN		_	_	_			DMABL<2	2:0>	0000			

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Bit 13 and bit 5 are unimplemented in the AD2CHS0 register, unlike the AD1CHS0 register.

TABLE 4-2	3:	ECAN1	REGIST	ER MAF	WHEN	I WIN (C	1CTRL	<0>) = 0	OR 1	FOR dsP	IC33EP	XXXGI	M60X/7	XX DEV	ICES(1)	
																-

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	_	CSIDL	ABAT	CANCKS	RI	EQOP<2:0	>	OPN	/IODE<2:0	>	_	CANCAP	_	_	WIN	0480
C1CTRL2	0402	_	_	_	_	_	_	_	_	_	_	_		D	NCNT<4:0	>		0000
C1VEC	0404	_	_	_		F	ILHIT<4:0>			_				ICODE<6:0	>			0040
C1FCTRL	0406		MABS<2:0	>	-	_	_	_	_	_	_	_			FSA<4:0>			0000
C1FIFO	0408	_	_			FBP<	5:0>			_	_			FNRB	<5:0>			0000
C1INTF	040A	_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	_	_	_	-	_	_	_	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRON	T<7:0>							RERRCN	NT<7:0>				0000
C1CFG1	0410	_	_	_	_	_	_	_	_	SJW<1	1:0>			BRP	<5:0>			0000
C1CFG2	0412	_	WAKFIL	_	-	_	SE	G2PH<2:0)>	SEG2PHTS	SAM	S	EG1PH<2	:0>	Р	RSEG<2:0	>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MSI	<<1:0>	F6MSI	<<1:0>	F5MSI	<<1:0>	F4MSI	K<1:0>	F3MSK<	<1:0>	F2MSI	<<1:0>	F1MSk	<<1:0>	F0MSI	<<1:0>	0000
C1FMSKSEL2	041A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	K<1:0>	F12MS	K<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSk	<<1:0>	F8MSł	<<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal. **Note 1:** These registers are not present on dsPIC33EPXXXGM3XX devices.

TABLE 4-24: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾

								,										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							Se	e definition	when WIN =	×							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25 RXFUL24		RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	RI<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	RI<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	RI<1:0>	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7			TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C1RXD	0440							E	CAN1 Recei	ve Data Wo	rd							xxxx
C1TXD	0442		•		•	•		EC	CAN1 Trans	mit Data Wo	ord		•			•		xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E			•					See defini	tion when W	IN = x			•		•		
C1BUFPNT1	0420		F3BF	P<3:0>			F2BF	P<3:0>			F1BP	<3:0>			F0BP	<3:0>		0000
C1BUFPNT2	0422		F7BF	P<3:0>			F6BF	P<3:0>			F5BP	<3:0>			F4BP	<3:0>		0000
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15B	P<3:0>			F14B	P<3:0>			F13BF	P<3:0>			F12BF	P<3:0>		0000
C1RXM0SID	0430				SID<	:10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C1RXM0EID	0432				EID<	:15:8>							EID<	7:0>				xxxx
C1RXM1SID	0434				SID<	:10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C1RXM1EID	0436				EID<	:15:8>							EID<	7:0>				xxxx
C1RXM2SID	0438				SID<	:10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C1RXM2EID	043A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF0SID	0440				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF0EID	0442				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF1SID	0444				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF1EID	0446				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF2SID	0448				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF2EID	044A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF3SID	044C				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF3EID	044E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF4SID	0450				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF4EID	0452				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF5SID	0454				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF5EID	0456				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF6EID	045A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF7EID	045E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF8SID	0460				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF8EID	0462				EID<	:15:8>							EID<	7:0>			·	xxxx
C1RXF9SID	0464				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF9EID	0466				EID<	:15:8>							EID<	7:0>			·	xxxx
C1RXF10SID	0468		·	·	SID	:10:3>			·		SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF10EID	046A				EID<	:15:8>							EID<	7:0>				xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

TABLE 4-25: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾ (CONTINUED)

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11SID	046C				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF11EID	046E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF12SID	0470				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF12EID	0472				EID<	:15:8>							EID<	7:0>		•		xxxx
C1RXF13SID	0474				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF13EID	0476				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF14SID	0478				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF14EID	047A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF15SID	047C				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C1RXF15EID	047E				EID<	:15:8>							EID<	7:0>				xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

- IADEL 4-20 ECANZ NEGIGIEN WAS WITEN WINTO ICTNESUZT = 0 ON ± 1 ON USFICIBLE AAAGINUUA <i>T</i> AA DEVICEG	TABLE 4-26:	ECAN2 REGISTER MAP WHEN WIN	(C1CTRL<0>)) = 0 OR 1 FOR dsPIC33EPXXXGM60X/7XX
---	--------------------	-----------------------------	-------------	--------------------------------------

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2CTRL1	0500	_	_	CSIDL	ABAT	CANCKS	R	EQOP<2:0	>	OPN	/IODE<2:0	>	_	CANCAP	_	_	WIN	0480
C2CTRL2	0502	_	_	_	_	_	_	_	_	_	_	_		D	NCNT<4:0	>		0000
C2VEC	0504	_	_	_		F	ILHIT<4:0>			_				ICODE<6:0:	>			0040
C2FCTRL	0506		MABS<2:0	>	_	_	_	_	_	_	_	_			FSA<4:0>			0000
C2FIFO	0508	_	_			FBP<	5:0>			_	_			FNRB	<5:0>			0000
C2INTF	050A	_	-	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C2INTE	050C	_	_	_	_	_	_	_	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C2EC	050E				TERRON	T<7:0>							RERRCN	NT<7:0>				0000
C2CFG1	0510	_	_	_	_	_	_	_	_	SJW<1	1:0>			BRP<	<5:0>			0000
C2CFG2	0512	_	WAKFIL	_	_	_	SE	G2PH<2:0)>	SEG2PHTS	SAM	S	EG1PH<2	:0>	Р	RSEG<2:0)>	0000
C2FEN1	0514	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C2FMSKSEL1	0518	F7MSł	<<1:0>	F6MSI	<<1:0>	F5MSI	<<1:0>	F4MS	K<1:0>	F3MSK<	<1:0>	F2MSI	<<1:0>	F1MSk	<1:0>	F0MSI	K<1:0>	0000
C2FMSKSEL2	051A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	K<1:0>	F12MS	K<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSk	<1:0>	F8MSI	K<1:0>	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

TABLE 4-27: ECAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾

IADEL T	<u> </u>	LOAN	ZINLOR		~! **		RXFUL27 RXFUL26 RXFUL25 RXFUL24 RXFUL23 RXFUL22 RXFUL21 RXFUL20 RXFUL19 RXFUL18 RXFUL17 RXFUL16 0000 RXOVF11 RXOVF10 RXOVF9 RXOVF8 RXOVF7 RXOVF6 RXOVF5 RXOVF4 RXOVF3 RXOVF2 RXOVF1 RXOVF10 RXOVF25 RXOVF24 RXOVF24 RXOVF22 RXOVF21 RXOVF20 RXOVF19 RXOVF18 RXOVF17 RXOVF16 0000												
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
	0500- 051E							S	ee definition	when WIN =	= x								
C2RXFUL1	0520	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000	
C2RXFUL2	0522	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26			RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000	
C2RXOVF1	0528	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10			RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000	
C2RXOVF2	052A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000	
C2TR01CON	0530	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	RI<1:0>	0000	
C2TR23CON	0532	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	RI<1:0>	0000	
C2TR45CON	0534	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	RI<1:0>	0000	
C2TR67CON	0536	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PF	RI<1:0>	xxxx	
C2RXD	0540			•			•	Е	CAN2 Rece	ive Data Wo	rd	•	•			•		xxxx	
C2TXD	0542							E	CAN2 Trans	mit Data Wo	ord							xxxx	

 $\textbf{Legend:} \quad \mathbf{x} = \text{unknown value on Reset,} \\ \textbf{--} = \text{unimplemented, read as '0'}. \\ \textbf{Reset values are shown in hexadecimal.}$

TABLE 4-28: ECAN2 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 FOR dsPIC33EPXXXGM60X/7XX DEVICES⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E								See defini	tion when Wi	N = x							
C2BUFPNT1	0520		F3BF	P<3:0>			F2BI	P<3:0>			F1BP	<3:0>			F0BP	<3:0>		0000
C2BUFPNT2	0522		F7BF	P<3:0>			F6BI	P<3:0>			F5BP	<3:0>			F4BP	<3:0>		0000
C2BUFPNT3	0524		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C2BUFPNT4	0526		F15B	P<3:0>			F14B	P<3:0>			F13BF	P<3:0>			F12BP	2<3:0>		0000
C2RXM0SID	0530				SID<	:10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C2RXM0EID	0532				EID<	:15:8>							EID<	7:0>				xxxx
C2RXM1SID	0534				SID<	:10:3>					SID<2:0>		_	MIDE	_	EID<	17:16>	xxxx
C2RXM1EID	0536				EID<	:15:8>							EID<	7:0>				xxxx
C2RXM2SID	0538				SID<	:10:3>					SID<2:0>		_	MIDE	_	EID<1	17:16>	xxxx
C2RXM2EID	053A				EID<	:15:8>							EID<	7:0>				xxxx
C2RXF0SID	0540				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	17:16>	xxxx
C2RXF0EID	0542				EID<	:15:8>							EID<	7:0>	_			xxxx
C2RXF1SID	0544				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	17:16>	xxxx
C2RXF1EID	0546				EID<	:15:8>							EID<	7:0>	_			xxxx
C2RXF2SID	0548				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF2EID	054A				EID<	:15:8>							EID<	7:0>				xxxx
C2RXF3SID	054C				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF3EID	054E				EID<	:15:8>							EID<	7:0>				xxxx
C2RXF4SID	0550				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF4EID	0552				EID<	:15:8>							EID<	7:0>				xxxx
C2RXF5SID	0554				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF5EID	0556					:15:8>							EID<	7:0>				xxxx
C2RXF6SID	0558					:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF6EID	055A					:15:8>							EID<					xxxx
C2RXF7SID	055C					:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF7EID	055E					:15:8>							EID<					xxxx
C2RXF8SID	0560					:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF8EID	0562					:15:8>							EID<	1				xxxx
C2RXF9SID	0564					:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF9EID	0566					:15:8>							EID<	1		1		xxxx
C2RXF10SID	0568					:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C2RXF10EID	056A				EID<	:15:8>							EID<	7:0>				xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

INDLE 4-20. ECANZ REGISTER WAR WHEN WIN (CTCTRL <u2) (continue<="" 1="" =="" devices'="" for="" laa="" th="" u3f1033efaaagwoa=""><th>TABLE 4-28:</th><th>ECAN2 REGISTER MAP WHEN WIN</th><th>(C1CTRL<0>)</th><th>= 1 FOR dsPIC33EPXXXGM60X/7XX DEVICES(1)</th><th>CONTINUED</th></u2)>	TABLE 4-28:	ECAN2 REGISTER MAP WHEN WIN	(C1CTRL<0>)	= 1 FOR dsPIC33EPXXXGM60X/7XX DEVICES(1)	CONTINUED
---	--------------------	-----------------------------	-------------	--	-----------

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF11SID	056C				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C2RXF11EID	056E				EID<	:15:8>							EID<	7:0>				xxxx
C2RXF12SID	0570				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C2RXF12EID	0572				EID<	:15:8>							EID<	7:0>		•		xxxx
C2RXF13SID	0574				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C2RXF13EID	0576				EID<	:15:8>							EID<	7:0>				xxxx
C2RXF14SID	0578				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C2RXF14EID	057A				EID<	:15:8>							EID<	7:0>				xxxx
C2RXF15SID	057C				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx
C2RXF15EID	057E				EID<	:15:8>							EID<	7:0>				xxxx

 $\textbf{Legend:} \quad \mathbf{x} = \text{unknown value on Reset,} \\ \textbf{--} = \text{unimplemented, read as '0'}. \\ \textbf{Reset values are shown in hexadecimal.}$

Note 1: These registers are not present on dsPIC33EPXXXGM3XX devices.

TABLE 4-29: PROGRAMMABLE CRC REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN	_	CSIDL		V	WORD<4:0)>		CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	1	1	_	0000
CRCCON2	0642	_	_	1		ים	WIDTH<4:0)>		_	_	_		F	PLEN<4:0>			0000
CRCXORL	0644								X<15:1	>							1	0000
CRCXORH	0646		X<23:16>															0000
CRCDATL	0648								CRC Data	Input Low V	Nord							0000
CRCDATH	064A								CRC Data	Input High \	Word							0000
CRCWDATL	064C								CRC Re	sult Low Wo	ord							0000
CRCWDATH	064E	·	·	·			·		CRC Res	sult High Wo	ord				·	·	·	0000

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module.

TABLE 4-30: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGM304/604 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	_	_			RP35F	R<5:0>			_	1			RP20F	R<5:0>			0000
RPOR1	0682	_	_			RP37F	R<5:0>			_				RP36F	R<5:0>			0000
RPOR2	0684	_	_			RP39F	R<5:0>			_	_			RP38F	R<5:0>			0000
RPOR3	0686	_	_			RP41F	R<5:0>			_				RP40F	R<5:0>			0000
RPOR4	0688	_	_			RP43F	R<5:0>			_				RP42F	R<5:0>			0000
RPOR5	068A	_	_			RP49F	R<5:0>			_	_			RP48F	R<5:0>			0000
RPOR6	068C	_	_			RP55F	R<5:0>			_	_			RP54F	R<5:0>			0000
RPOR7	068E	_	_		•	RP57F	R<5:0>	•	•	_	_		•	RP56F	R<5:0>	•	•	0000

dsPIC33EPXXXGM3XX/6XX/7XX

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-31: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	_	_			RP35F	R<5:0>			_	_			RP20F	R<5:0>			0000
RPOR1	0682	_	_			RP37F	R<5:0>			_	_			RP36F	R<5:0>			0000
RPOR2	0684	_	_			RP39F	R<5:0>			_	_			RP38F	R<5:0>			0000
RPOR3	0686	_	_			RP41F	R<5:0>			_	_			RP40F	R<5:0>			0000
RPOR4	0688	_	_			RP43F	R<5:0>			_	_			RP42F	R<5:0>			0000
RPOR5	068A	_	_			RP49F	R<5:0>			_	_			RP48F	R<5:0>			0000
RPOR6	068C	_	_			RP55F	R<5:0>			_	_			RP54F	R<5:0>			0000
RPOR7	068E	ı	_			RP57F	R<5:0>			_	_			RP56F	R<5:0>			0000
RPOR8	0690	ı	_			RP70F	R<5:0>			_	_		•	RP69F	R<5:0>	•		0000
RPOR9	0692	_	_			RP97F	R<5:0>			_	_	_	_	_	_	_	_	0000

TABLE 4-32: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	_	_			RP35F	R<5:0>			_	_			RP20I	R<5:0>			0000
RPOR1	0682	1	1			RP37F	R<5:0>			_	_			RP36I	R<5:0>			0000
RPOR2	0684	-	-			RP39F	R<5:0>			_	_			RP38I	R<5:0>			0000
RPOR3	0686	1	1			RP41F	R<5:0>			_	_			RP40I	R<5:0>			0000
RPOR4	0688	_	_			RP43F	R<5:0>			_	_			RP42I	R<5:0>			0000
RPOR5	068A	_	_			RP49F	R<5:0>			_	_			RP48I	R<5:0>			0000
RPOR6	068C	_	_			RP55F	R<5:0>			_	_			RP54I	R<5:0>			0000
RPOR7	068E	_	_			RP57F	R<5:0>			_	_			RP56I	R<5:0>			0000
RPOR8	0690	1	1			RP70F	R<5:0>			_	_			RP69I	R<5:0>			0000
RPOR9	0692	_	_			RP97F	R<5:0>			_	_			RP81I	R<5:0>			0000
RPOR10	0694	_	_			RP118	R<5:0>			_	_			RP113	R<5:0>			0000
RPOR11	0696	_	_			RPR12	5R<5:0>			_	_			RPR12	0R<5:0>			0000
RPOR12	0698	-	-			RPR127	7R<5:0>			_	_			RPR12	6R<5:0>			0000

TABLE 4-33: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXGM60X/7XX DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	-				INT1R<6:0>	>			_	_	_	_	_	_	_	-	0000
RPINR1	06A2	ı	_	_	_	_	_	_	-	_				INT2R<6:0>	•			0000
RPINR2	06A4	-	_	_	_	1	_		1	_	_	_	_	_	_	_	_	0000
RPINR3	06A6	ı	_	_	-	_	_	_	ı	-			7	Γ2CKR<6:0	>			0000
RPINR7	06AE	1				IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0	ı				IC4R<6:0>				-				IC3R<6:0>				0000
RPINR9	06B2	ı				IC6R<6:0>				-				IC5R<6:0>				0000
RPINR10	06B4	-				IC8R<6:0>				_				IC7R<6:0>				0000
RPINR11	06B6	-	_	_	_	_	_	_	_	_			(OCFAR<6:0	>			0000
RPINR12	06B8	-				FLT2R<6:0>	>			_			ļ	FLT1R<6:0>	>			0000
RPINR14	06BC	_			(QEB1R<6:0	>			_			(QEA1R<6:0	>			0000
RPINR15	06BE	_			Н	OME1R<6:0	0>			_			II	NDX1R<6:0	>			0000
RPINR16	06C0	_			(QEB2R<6:0	>			_			(QEA2R<6:0	>			0000
RPINR17	06C2	_			Н	OME2R<6:0	0>			_			II	NDX2R<6:0	>			0000
RPINR18	06C4	-	_	_	_	_	_	_	_	_			Į	J1RXR<6:0	>			0000
RPINR19	06C6	_	_	_	_	-	-		1	_			ι	J2RXR<6:0	>			0000
RPINR22	06CC	_			;	SCK2R<6:0	>			_				SDI2R<6:0>	>			0000
RPINR23	06CE	_	_	_	_	-	-		1	_				SS2R<6:0>	•			0000
RPINR24	06D0	-			(CSCKR<6:0	>			_			(CSDIR<6:0	>			0000
RPINR25	06D2	-	_	_	_	_	_	_	_	_			(COFSR<6:0	>			0000
RPINR26	06D4	_			(C2RXR<6:0	>			_			(C1RXR<6:0	>			0000
RPINR27	06D6	_			L	3CTSR<6:0)>			_			l	J3RXR<6:0	>			0000
RPINR28	06D8	_			L	14CTSR<6:0)>			_			l	J4RXR<6:0	>			0000
RPINR29	06DA	_			;	SCK3R<6:0	>			_				SDI3R<6:0>	>			0000
RPINR30	06DC	_	_	_	_	_	_	_	_	_				SS3R<6:0>				0000
RPINR37	06EA				S	YNCI1R<6:	0>			_	_	_	_	_	_	_	_	0000
RPINR38	06EC	_			D ⁻	ΓCMP1R<6:	:0>			_	_	_	_	_	_	_	_	0000
RPINR39	06EE	_			D ⁻	CMP3R<6:	:0>			_			D	CMP2R<6:	:0>			0000
RPINR40	06F0	_			D.	TCMP5R<6:	:0>			_			Dī	CMP4R<6:	:0>			0000
RPINR41	06F2	_	_	_	_	_	_	_	_	_			Dī	CMP6R<6:	:0>			0000

TARI F 4-34.	PERIPHERAL PIN	I SELECT INPLIT	REGISTER MAP FOR	dsPIC33EPXXXGM3XX DEVICES
IADLE 4-34.	PENIFHENAL FII	N SELECT INFUT	REGISTER WAF FUR	USFIGSSEFAAAGIVISAA DEVIGES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
RPINR0	06A0	_				NT1R<6:0	>			_	_	_	_	_	_	_	_	0000
RPINR1	06A2	_	_	_	_	_	_	_	_	_				INT2R<6:0>	•			0000
RPINR2	06A4	-	_	_	ı	_	_	-	1	-	1	_	_	_	1	_	_	0000
RPINR3	06A6	_	_	_	-			-	_				-	T2CKR<6:0	>			0000
RPINR7	06AE					IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0					IC4R<6:0>				_				IC3R<6:0>				0000
RPINR9	06B2					IC6R<6:0>				_				IC5R<6:0>				0000
RPINR10	06B4	_				IC8R<6:0>				_				IC7R<6:0>				0000
RPINR11	06B6	_	_	_	_	_	_	_	_	_			(OCFAR<6:0	>			0000
RPINR12	06B8				l	FLT2R<6:0	>			_				FLT1R<6:0>	•			0000
RPINR14	06BC	_			(QEB1R<6:0	>			_			(QEA1R<6:0	>			0000
RPINR15	06BE	_			H	OME1R<6:	0>						I	NDX1R<6:0	>			0000
RPINR16	06C0	_			(QEB2R<6:0	>			_			(QEA2R<6:0	>			0000
RPINR17	06C2	_			H	OME2R<6:	0>						I	NDX2R<6:0	>			0000
RPINR18	06C4	_	_	_	-			-	_				l	J1RXR<6:0	>			0000
RPINR19	06C6	_	_	_	-	_	_	_	_	_			l	J2RXR<6:0	>			0000
RPINR22	06CC	_			5	SCK2R<6:0	>							SDI2R<6:0>	•			0000
RPINR23	06CE	_	_	_	-	_	_	_	_	_				SS2R<6:0>				0000
RPINR24	06D0	_			(SCKR<6:0)>			ı				CSDIR<6:0	>			0000
RPINR25	06D2	_	_	_	-			-	_				(COFSR<6:0	>			0000
RPINR27	06D6	-			U	3CTSR<6:0	0>			1			ı	U3RXR<6:0	>			0000
RPINR28	06D8	_			U	4CTSR<6:0	0>			ı			ı	U4RXR<6:0	>			0000
RPINR29	06DA	_			5	SCK3R<6:0	>			-				SDI3R<6:0>	•			0000
RPINR30	06DC	_	_	_	_	_	_	_	_	_				SS3R<6:0>				0000
RPINR37	06EA	_			S'	YNCI1R<6:	0>			-		_	_				_	0000
RPINR38	06EC	-			DI	CMP1R<6	:0>			-	1	_	_	_	1	_	_	0000
RPINR39	06EE	_			DI	CMP3R<6	:0>			-			D	TCMP2R<6:	0>			0000
RPINR40	06F0	_			Dī	CMP5R<6	:0>			_			D.	TCMP4R<6:	0>			0000
RPINR41	06F2	_	_	_	_	_	_	_		_			D ⁻	TCMP6R<6:	0>			0000

TABLE 4-35: NVM REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets				
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	1	_	_	_	_	_	_	_		NVMC	P<3:0>		0000				
NVMADR	072A								NVMAD	NVMADRU<23:16>												
NVMADRU	072C	_	_	_	_	_	_	_	_	AN (MA DDILL (OC. 4C)												
NVMKEY	072E	_	ı	_	_	ı	_	_	-				NVMk	(EY<7:0>				0000				
NVMSRCADRL	0730							NVMS	RCADR<	CADR<15:1> 0												
NVMSRCADRH	0732		·							TOTAL TOTAL												

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-36: SYSTEM CONTROL REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	-	1	VREGSF	_	СМ	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	_	(COSC<2:0>		_		NOSC<2:0>		CLKLOCK	IOLOCK	LOCK	_	CF	_	LPOSCEN	OSWEN	Note 2
CLKDIV	0744	ROI	[OOZE<2:0>		DOZEN	F	RCDIV<2:0	>	PLLPOS	T<1:0>	_		F	PLLPRE	<4:0>		0030
PLLFBD	0746	_	_	_	_	_	_	_				PLLDI	V<8:0>					0030
OSCTUN	0748	_	-	1	_	_	_	_	_	_	_			TUN	<5:0>			0000

dsPIC33EPXXXGM3XX/6XX/7XX

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values are dependent on the type of Reset.

OSCCON register Reset values are dependent on the configuration fuses.

TABLE 4-37: REFERENCE CLOCK REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON	1	ROSSLP	ROSEL		RODI	V<3:0>		1		1	I	_	_	-		0000

			(2)
TADIE 1 20.		MASTER/SLAVE PORT REGISTER N	// A D(_/)
IADLE 4-30.	PARALLEL	- WASTER/SLAVE PURT REGISTER N	//AP\

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMCON	0600	PMPEN	_	PSIDL	ADRMU	IX<1:0>	PTBEEN	PTWREN	PTRDEN	CSF	<1:0>	ALP	CS2P	CS1P	BEP	WRSP	RDSP	0000
PMMODE	0602											0000						
PMADDR ⁽¹⁾	0604												0000					
PMDOUT1 ⁽¹⁾	0604											0000						
PMDOUT2	0606						Pa	rallel Port D	ata Out Re	gister 2 (Bu	iffers Level 2	and 3)						0000
PMDIN1	0608						Р	arallel Port [Data In Reg	ister 1 (Buf	fers Level 0	and 1)						0000
PMDIN2	060A						Р	arallel Port [Data In Reg	ister 2 (Buf	fers Level 2	and 3)						0000
PMAEN	060C	PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8	PTEN7	PTEN6	PTEN5	PTEN4	PTEN3	PTEN2	PTEN1	PTEN0	0000
PMSTAT	060E	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E	008F

Legend: — = unimplemented, read as '0'. Shaded bits are not used in the operation of the PMP module.

Note 1: PMADDR and PMDOUT1 are the same physical register, but are defined differently depending on the module's operating mode.

2: PMP is not present on 44-pin devices.

© 2013 Microchip Technology Inc.

TABLE 4-39: PMD REGISTER MAP FOR dsPIC33EPXXXGM6XX/7XX DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEIMD	PWMMD	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	T9MD	T8MD	T7MD	T6MD	_	CMPMD	RTCCMD	PMPMD	CRCMD	DACMD	QEI2MD	PWM2MD	U3MD	I2C3MD	I2C2MD	ADC2MD	0000
PMD4	0766	-	_	_	_	_	_	_	_	_	_	U4MD	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	-	_	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	_	_	_	_	_	_	_	SPI3MD	0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD				0000
PIVID7	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	PIGND	_	_	_	0000
													DMA3MD					

dsPIC33EPXXXGM3XX/6XX/7XX

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-40: PMD REGISTER MAP FOR dsPIC33EPXXXGM3XX DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEIMD	PWMMD	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	1	_	AD1MD	0000
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	T9MD	T8MD	T7MD	T6MD	_	CMPMD	RTCCMD	PMPMD	CRCMD	_	QEI2MD	_	U3MD	_	I2C2MD	ADC2MD	0000
PMD4	0766	_	_	_	_	_	_	_	_	1	_	U4MD	_	REFOMD	CTMUMD	_	_	0000
PMD6	076A	_	_	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	1	_	_	_	_	_	_	SPI3MD	0000
													DMA0MD					
PMD7	076C												DMA1MD	PTGMD			_	0000
FIVIDI	0760	_	_	_	_	_	_	_	_	_	_	_	DMA2MD	FIGNID	_	_	_	0000
													DMA3MD					

TABLE 4-41: OP AMP/COMPARATOR REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
CMSTAT	0A80	PSIDL	_	_	C5EVT	C4EVT	C3EVT	C2EVT	C1EVT	_	_	_	C5OUT	C4OUT	C3OUT	C2OUT	C1OUT	0000
CVR1CON	0A82	_	_	_	_	CVRR1	VREFSEL	_	_	CVREN	CVROE	CVRR0	CVRSS		CVR<	3:0>		0000
CM1CON	0A84	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	ССН	<1:0>	0000
CM1MSKSRC	0A86	_	_	_	_		SELSRO	CC<3:0>			SELSRO	B<3:0>			SELSRO	A<3:0>		0000
CM1MSKCON	0A88	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	A8A0	-	_	_	_	_	_	_	_	_	(FSEL<2:0	>	CFLTREN		CFDIV<2:0	>	0000
CM2CON	0A8C	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM2MSKSRC	0A8E	-	_	_	_		SELSRO	CC<3:0>			SELSRO	CB<3:0>			SELSRO	CA<3:0>		0000
CM2MSKCON	0A90	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92	-	_	_	_	_	_	_	_	_	(FSEL<2:0	>	CFLTREN		CFDIV<2:0	>	0000
CM3CON	0A94	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM3MSKSRC	0A96	_	ı	_			SELSRO	CC<3:0>			SELSRO	CB<3:0>			SELSRO	CA<3:0>		0000
CM3MSKCON	0A98	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR	0A9A	-	_	_	_	_	_	_	_	_	(FSEL<2:0	>	CFLTREN		CFDIV<2:0	>	0000
CM4CON	0A9C	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM4MSKSRC	0A9E	-	_	_	_		SELSRO	CC<3:0>			SELSRO	CB<3:0>			SELSRO	CA<3:0>		0000
CM4MSKCON	0AA0	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM4FLTR	0AA2	-	_	_	_	_	_	_	_	_	(FSEL<2:0	>	CFLTREN		CFDIV<2:0	>	0000
CM5CON	0AA4	CON	COE	CPOL	_	_	OPMODE	CEVT	COUT	EVPOL	_<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM5MSKSRC	0AA6	-	_	_	_		SELSRO	CC<3:0>			SELSRO	CB<3:0>			SELSRO	CA<3:0>		0000
CM5MSKCON	0AA8	HLMS	1	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM5FLTR	0AAA	_	1	_	_	ı	_	_	_	_		FSEL<2:0	>	CFLTREN		CFDIV<2:0	>	0000
CVR2CON	0AB4	_	1	_	_	CVRR1	VREFSEL	_	_	CVREN	CVROE	CVRR0	CVRSS		CVR<	:3:0>		0000

TABLE 4-42: CTMU REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON1	033A	CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	_	_	_	_	_	_	_	_	0000
CTMUCON2	033C	EDG1MOD	EDG1POL		EDG1S	SEL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL		EDG2SE	L<3:0>		_	_	0000
CTMUICON	033E			ITRIM<3	3:0>			IRNG	<1:0>	-	_	_	_	_	_	_	-	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-43: JTAG INTERFACE REGISTER MAP

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
JDATAH	0FF0	_	_	_	_	JDATAH<27:16> xxxx										xxxx		
JDATAL	0FF2	•																0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-44: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620		Alarm Value Register Window Based on ALRMPTR<1:0>										xxxx					
ALCFGRPT	0622	ALRMEN	CHIME		AMASK	<3:0>		ALRMP ⁻	ΓR<1:0>				ARPT	·<7:0>				0000
RTCVAL	0624						RTCC Value	Register W	/indow Bas	ed on RTC	PTR<1:0>							xxxx
RCFGCAL	0626	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPT	R<1:0>				CAL	<7:0>				0000

TABLE 4-	45:	DMA C	ONTRO	LLER R	EGISTE	R MAP
OFF N		D': 45	D: 44	D: 10	D: 10	D:: 44

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0B00	CHEN	SIZE	DIR	HALF	NULLW	-	_	1	_	-	AMOD	E<1:0>	_	_	MODE	E<1:0>	0000
DMA0REQ	0B02	FORCE	_	_	_	_	_	_	_				IRQSEL	_<7:0>				00FF
DMA0STAL	0B04								STA<1	5:0>								0000
DMA0STAH	0B06	-	-	_	ı	_	-	_	ı				STA<2	3:16>				0000
DMA0STBL	0B08								STB<1	5:0>								0000
DMA0STBH	0B0A	_	_	_	ı	_	_	_	1				STB<2	3:16>				0000
DMA0PAD	0B0C								PAD<1	5:0>								0000
DMA0CNT	0B0E	-	ı							CNT<1	3:0>							0000
DMA1CON	0B10	CHEN	SIZE	DIR	HALF	NULLW	_	_	1	_		AMOD	E<1:0>	_	_	MODE	E<1:0>	0000
DMA1REQ	0B12	FORCE	ı	_	ı	_	ı	_	ı				IRQSEL	_<7:0>				00FF
DMA1STAL	0B14								STA<1	5:0>								0000
DMA1STAH	0B16	1	_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA1STBL	0B18								STB<1	5:0>								0000
DMA1STBH	0B1A		_	_	_	_	_	_	_				STB<2	3:16>				0000
DMA1PAD	0B1C								PAD<1	5:0>								0000
DMA1CNT	0B1E	_	_							CNT<1	3:0>							0000
DMA2CON	0B20	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA2REQ	0B22	FORCE	_	_	_	_	_	_	_				IRQSEL	<7:0>				00FF
DMA2STAL	0B24								STA<1	5:0>								0000
DMA2STAH	0B26	1	_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA2STBL	0B28								STB<1	5:0>								0000
DMA2STBH	0B2A	-	-	_	ı	_	-	_	ı				STB<2	3:16>				0000
DMA2PAD	0B2C								PAD<1	5:0>								0000
DMA2CNT	0B2E	_	_							CNT<1	3:0>							0000
DMA3CON	0B30	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MODE	E<1:0>	0000
DMA3REQ	0B32	FORCE	_	_	_	_	_	_	_				IRQSEL	_<7:0>				00FF
DMA3STAL	0B34								STA<1	5:0>								0000
DMA3STAH	0B36	_	_	_	_	_	_	_	_				STA<2	3:16>				0000
DMA3STBL	0B38								STB<1	5:0>								0000
DMA3STBH	0B3A	_	_	_	_	_	_	_	_				STB<2	3:16>				0000
DMA3PAD	0B3C								PAD<1	5:0>								0000
DMA3CNT	0B3E		_							CNT<1	3:0>							0000
DMAPWC	0BF0	_	_	_	_	_	_	_	_	_	_	_	_	PWCOL3	PWCOL2	PWCOL1	PWCOL0	0000
DMARQC	0BF2	_	_	_		_	_	_	-	_	_	_	_	RQCOL3	RQCOL2	RQCOL1	RQCOL0	0000
DMAPPS	0BF4	_	_	_	_	_	_	_	_	_	_	_	_	PPST3	PPST2	PPST1	PPST0	0000
DMALCA	0BF6	_	_	_		_	_	_		_	_	_	_		LSTCH	<3:0>	•	000F
DSADRL	0BF8								DSADR<	15:0>								0000
DSADRH	0BFA	_	_	_	_	_	_	_	_				DSADR<	:23:16>				0000

TABLE 4-46: PORTA REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
TRISA	0E00	TRISA15	TRISA14	_	TRISA12	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	_	_	TRISA4	_	_	TRISA1	TRISA0	DF9F
PORTA	0E02	RA15	RA14	_	RA12	RA11	RA10	RA9	RA8	RA7	_	_	RA4	_	-	RA1	RA0	0000
LATA	0E04	LATA15	LATA14	-	LATA12	LATA11	LATA10	LATA9	LATA8	LATA7	-	-	LATA4	1	ı	LA1TA1	LA0TA0	0000
ODCA	0E06	ODCA15	ODCA14	_	ODCA12	ODCA11	ODCA10	ODCA9	ODCA8	ODCA7	_	_	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08	CNIEA15	CNIEA14	_	CNIEA12	CNIEA11	CNIEA10	CNIEA9	CNIEA8	CNIEA7	_	_	CNIEA4	_	-	CNIEA1	CNIEA0	0000
CNPUA	0E0A	CNPUA15	CNPUA14	-	CNPUA12	CNPUA11	CNPUA10	CNPUA9	CNPUA8	CNPUA7	-	-	CNPUA4	1	ı	CNPUA1	CNPUA0	0000
CNPDA	0E0C	CNPDA15	CNPDA14	_	CNPDA12	CNPDA11	CNPDA10	CNPDA9	CNPDA8	CNPDA7	_	_	CNPDA4	1	1	CNPDA1	CNPDA0	0000
ANSELA	0E0E	ANSA15	ANSA14	_	ANSA12	ANSA11	_	ANSA9	_	_	_	_	ANSA4	_	_	ANSA1	ANSA0	1813

dsPIC33EPXXXGM3XX/6XX/7XX

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-47: PORTA REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
TRISA	0E00	_	_	-	TRISA12	TRISA11	TRISA10	TRISA9	TRISA8	TRISA7	_	_	TRISA4	_	_	TRISA1	TRISA0	DF9F
PORTA	0E02	_	_	I	RA12	RA11	RA10	RA9	RA8	RA7	ı	_	RA4	_	_	RA1	RA0	0000
LATA	0E04	-	_	ı	LATA12	LATA11	LATA10	LATA9	LATA8	LATA7	ı	_	LATA4	-	1	LA1TA1	LA0TA0	0000
ODCA	0E06		_	-	ODCA12	ODCA11	ODCA10	ODCA9	ODCA8	ODCA7	-	_	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08		_	ı	CNIEA12	CNIEA11	CNIEA10	CNIEA9	CNIEA8	CNIEA7	1	_	CNIEA4	_	1	CNIEA1	CNIEA0	0000
CNPUA	0E0A	-	_	ı	CNPUA12	CNPUA11	CNPUA10	CNPUA9	CNPUA8	CNPUA7	ı	_	CNPUA4	-	1	CNPUA1	CNPUA0	0000
CNPDA	0E0C		_	-	CNPDA12	CNPDA11	CNPDA10	CNPDA9	CNPDA8	CNPDA7	-	_	CNPDA4	_	-	CNPDA1	CNPDA0	0000
ANSELA	0E0E	-	_	_	ANSA12	ANSA11	_	ANSA9	_	_	_	_	ANSA4	_	_	ANSA1	ANSA0	1813

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-48: PORTA REGISTER MAP FOR dsPIC33EPXXXGM304/604 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
TRISA	0E00	_	_	_	_	_	TRISA10	TRISA9	TRISA8	TRISA7		_	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	DF9F
PORTA	0E02		_	_	_	_	RA10	RA9	RA8	RA7	_	_	RA4	RA3	RA2	RA1	RA0	0000
LATA	0E04	_	_	_	_	ı	LATA10	LATA9	LATA8	LATA7	ı	_	LATA4	LATA3	LATA2	LA1TA1	LA0TA0	0000
ODCA	0E06	-	_	_	_	ı	ODCA10	ODCA9	ODCA8	ODCA7	ı	1	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08		_	_	_	I	CNIEA10	CNIEA9	CNIEA8	CNIEA7	ı	-	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A		_	_	_	I	CNPUA10	CNPUA9	CNPUA8	CNPUA7	I		CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C	_	_	_	_	I	CNPDA10	CNPDA9	CNPDA8	CNPDA7	I	_	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E		_	_	_	-	_	ANSA9	_	_	-	-	ANSA4	_	ANSA2	ANSA1	ANSA0	1813

TABLE 4-49: PORTB REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	DF9F
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	-	_	_	_	_	_	ANSB9	ANSB8	ANSB7	_	_	_	ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-50: PORTB REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	DF9F
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	_	_	_	_	_	_	ANSB9	ANSB8	ANSB7	_	_	_	ANSB3	ANSB2	ANSB1	ANSB0	010F

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-51: PORTB REGISTER MAP FOR dsPIC33EPXXXGM304/604 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	_	_	_	_	_	_	ANSB9	ANSB8	ANSB7	_	_	_	ANSB3	ANSB2	ANSB1	ANSB0	010F

TARIF 1-52.	PORTC REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
TRISC	0E20	TRISC15	-	TRISC13	TRISC12	TRISC11	TRISC10	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	BFFF
PORTC	0E22	RC15	-	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATC	0E24	LATC15	_	LATC13	LATC12	LATC11	LATC10	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	0E26	ODCC15	_	ODCC13	ODCC12	ODCC11	ODCC10	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000
CNENC	0E28	CNIEC15	_	CNIEC13	CNIEC12	CNIEC11	CNIEC10	CNIEC9	CNIEC8	CNIEC7	CNIEC6	CNIEC5	CNIEC4	CNIEC3	CNIEC2	CNIEC1	CNIEC0	0000
CNPUC	0E2A	CNPUC15	_	CNPUC13	CNPUC12	CNPUC11	CNPUC10	CNPUC9	CNPUC8	CNPUC7	CNPUC6	CNPUC5	CNPUC4	CNPUC3	CNPUC2	CNPUC1	CNPUC0	0000
CNPDC	0E2C	CNPDC15	-	CNPDC13	CNPDC12	CNPDC11	CNPDC10	CNPDC9	CNPDC8	CNPDC7	CNPDC6	CNPDC5	CNPDC4	CNPDC3	CNPDC2	CNPDC1	CNPDC0	0000
ANSELC	0E2E	-	_	ı	ANSC12	ANSC11	ANSC10			_	ı	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	0807

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-53: PORTC REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	TRISC15	-	TRISC13	TRISC12	TRISC11	TRISC10	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	BFFF
PORTC	0E22	RC15	ı	RC13	RC12	RC11	RC10	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATC	0E24	LATC15	ı	LATC13	LATC12	LATC11	LATC10	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	0E26	ODCC15	ı	ODCC13	ODCC12	ODCC11	ODCC10	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000
CNENC	0E28	CNIEC15	ı	CNIEC13	CNIEC12	CNIEC11	CNIEC10	CNIEC9	CNIEC8	CNIEC7	CNIEC6	CNIEC5	CNIEC4	CNIEC3	CNIEC2	CNIEC1	CNIEC0	0000
CNPUC	0E2A	CNPUC15	1	CNPUC13	CNPUC12	CNPUC11	CNPUC10	CNPUC9	CNPUC8	CNPUC7	CNPUC6	CNPUC5	CNPUC4	CNPUC3	CNPUC2	CNPUC1	CNPUC0	0000
CNPDC	0E2C	CNPDC15	-	CNPDC13	CNPDC12	CNPDC11	CNPDC10	CNPDC9	CNPDC8	CNPDC7	CNPDC6	CNPDC5	CNPDC4	CNPDC3	CNPDC2	CNPDC1	CNPDC0	0000
ANSELC	0E2E	_	_	_	ANSC12	ANSC11	ANSC10	_	_	_	_	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	0807

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-54: PORTC REGISTER MAP FOR dsPIC33EPXXXGM304/604 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	_	_	_	1	_	_	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	BFFF
PORTC	0E22	1	_	-	-	-	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
LATC	0E24		_	-	ı	_	ı	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
ODCC	0E26	1	_	-	-	-	_	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000
CNENC	0E28		_	-	ı	_	ı	CNIEC9	CNIEC8	CNIEC7	CNIEC6	CNIEC5	CNIEC4	CNIEC3	CNIEC2	CNIEC1	CNIEC0	0000
CNPUC	0E2A	1	_	-	-	-	_	CNPUC9	CNPUC8	CNPUC7	CNPUC6	CNPUC5	CNPUC4	CNPUC3	CNPUC2	CNPUC1	CNPUC0	0000
CNPDC	0E2C	1	_	-	-	-	_	CNPDC9	CNPDC8	CNPDC7	CNPDC6	CNPDC5	CNPDC4	CNPDC3	CNPDC2	CNPDC1	CNPDC0	0000
ANSELC	0E2E		_	-	ı	_	ı	1	_	ı	_	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	0807

TABLE 4-55: PORTD REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
TRISD	0E30	TRISD15	TRISD14	TRISD13	TRISD12		_	1	TRISD8	_	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	_	0160
PORTD	0E32	RD15	RD14	RD13	RD12	-	-	_	RD8	_	RD6	RD5	RD4	RD3	RD2	RD1	_	xxxx
LATD	0E34	LATD15	LATD14	LATD13	LATD12	_	_	ı	LATD8	_	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	-	xxxx
ODCD	0E36	ODCD15	ODCD14	ODCD13	ODCD12	-	-	_	ODCD8	_	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	_	0000
CNEND	0E38	CNIED15	CNIED14	CNIED13	CNIED12			ı	CNIED8	_	CNIED6	CNIED5	CNIED4	CNIED3	CNIED2	CNIED1	_	0000
CNPUD	0E3A	CNPUD15	CNPUD14	CNPUD13	CNPUD12	-	-	_	CNPUD8	_	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	_	0000
CNPDD	0E3C	CNPDD15	CNPDD14	CNPDD13	CNPDD12	-	-	_	CNPDD8	_	CNPDD6	CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	_	0000
ANSELD	0E3E	ANSD15	ANSD14	1	_	_	_		_	_	_	_			_	_	-	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-56: PORTD REGISTER MAP FOR dsPIC33EPXXXGM306/706DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	AII Resets
TRISD	0E30	_	_	_	-	-	1	1	TRISD8	_	TRISD6	TRISD5	_	_	1	1	_	0160
PORTD	0E32	-	_	1	_	_	_	_	RD8	_	RD6	RD5	_	_	-	_	_	xxxx
LATD	0E34	-	_	1	_	_	_	_	LATD8	_	LATD6	LATD5	_	_	-	_	_	xxxx
ODCD	0E36	-	_	1	_	_	_	_	ODCD8	_	ODCD6	ODCD5	_	_	-	_	_	0000
CNEND	0E38	-	_	1	_	_	_	_	CNIED8	_	CNIED6	CNIED5	_	_	-	_	_	0000
CNPUD	0E3A	-	_	1	_	_	_	_	CNPUD8	_	CNPUD6	CNPUD5	_	_	-	_	_	0000
CNPDD	0E3C	-	_	1	_	_	_	_	_		_	_		_	1	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-57: PORTE REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	0E40	TRISE15	TRISE14	TRISE13	TRISE12	_	_	TRISE9	TRISE8	_	_	_	_	_	_	TRISE1	TRISE0	F303
PORTE	0E42	RE15	RE14	RE13	RE12	_	_	RE9	RE8	_	-	-	_	_	_	RE1	RE0	xxxx
LATE	0E44	LATE15	LATE14	LATE13	LATE12	_	_	LATE9	LATE8	_	-	-	_	_	_	LATE1	LATE0	xxxx
ODCE	0E46	ODCE15	ODCE14	ODCE13	ODCE12	_	_	ODCE9	ODCE8	_	-	-	_	_	_	ODCE1	ODCE0	0000
CNENE	0E48	CNIEE15	CNIEE14	CNIEE13	CNIEE12	_	_	CNIEE9	CNIEE8	_	-	-	_	_	_	CNIEE1	CNIEE0	0000
CNPUE	0E4A	CNPUE15	CNPUE14	CNPUE13	CNPUE12	_	_	CNPUE9	CNPUE8	_	-	-	_	_	_	CNPUE1	CNPUE0	0000
CNPDE	0E4C	CNPDE15	CNPDE14	CNPDE13	CNPDE12	_	_	CNPDE9	CNPDE8	_	-	-	_	_	_	CNPDE1	CNPDE0	0000
ANSELE	0E4E	ANSE15	ANSE14	ANSE13	ANSE12	_	_	ANSE9	ANSE8	_	-	-	_	_	_	ANSE1	ANSE0	0000

© 2013 Microchip Technology Inc.

TABLE 4-58: PORTE REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	0E40	TRISE15	TRISE14	TRISE13	TRISE12	_	_	_	_	_	_	_	_	_	_	_	_	F000
PORTE	0E42	RE15	RE14	RE13	RE12	-	_	ı	ı	_	_	_	_	_	_	-	-	xxxx
LATE	0E44	LATE15	LATE14	LATE13	LATE12	-		I	ı	_			_	_	_	-	-	xxxx
ODCE	0E46	ODCE15	ODCE14	ODCE13	ODCE12	-		I	ı	_			_	_	_	-	-	0000
CNENE	0E48	CNIEE15	CNIEE14	CNIEE13	CNIEE12	-		I	ı	_			_	_	_	-	-	0000
CNPUE	0E4A	CNPUE15	CNPUE14	CNPUE13	CNPUE12	_	_	_	_	_	_	_	_	_	_	_	_	0000
CNPDE	0E4C	CNPDE15	CNPDE14	CNPDE13	CNPDE12	-	_			_	_	_	_	_	_	-	_	0000
ANSELE	0E4E	ANSE15	ANSE14	ANSE13	ANSE12	_	_	_	_	_	_	_	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-59: PORTF REGISTER MAP FOR dsPIC33EPXXXGM310/710 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	0E50	_	_	TRISF13	TRISF12	_	TRISF10	TRISF9	_	TRISF7	TRISF6	TRISF5	TRISF4		_	TRISF1	TRISF0	F303
PORTF	0E52	_	_	RF13	RF12	_	RF10	RF9	ı	RF7	RF6	RF5	RF4	ı	-	RF1	RF0	xxxx
LATF	0E54	_		LATF13	LATF12	_	LATF10	LATF9	1	LATF7	LATF6	LATF5	LATF4	1		LATF1	LATF0	xxxx
ODCF	0E56	_		ODCF13	ODCF12	_	ODCF10	ODCF9	1	ODCF7	ODCF6	ODCF5	ODCF4	1		ODCF1	ODCF0	0000
CNENF	0E58	_		CNIEF13	CNIEF12	_	CNIEF10	CNIEF9	1	CNIEF7	CNIEF6	CNIEF5	CNIEF4	1		CNIEF1	CNIEF0	0000
CNPUF	0E5A	_		CNPUF13	CNPUF12	_	CNPUF10	CNPUF9	1	CNPUF7	CNPUF6	CNPUF5	CNPUF4	1		CNPUF1	CNPUF0	0000
CNPDF	0E5C	_	_	CNPDF13	CNPDF12	_	CNPDF10	CNPDF9	ı	CNPDF7	CNPDF6	CNPDF5	CNPDF4	ı	-	CNPDF1	CNPDF0	0000
ANSELF	0E4E	_	_	ANSF13	ANSF12	_	ANSF10	ANSG9	_	_	_	ANSF5	ANSG4	-	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-60: PORTF REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	0E50	_	_	-	-	_	-	_	1	_	_	_	_	_	_	TRISF1	TRISF0	0003
PORTF	0E52	_	_	_	_	_	_	_	-	_	_	_	_	_	_	RF1	RF0	xxxx
LATF	0E54	_	_	_	_	_	_	_	-	_	_	_	_	_	_	LATF1	LATF0	xxxx
ODCF	0E56	_	_	_	_	_	_	_	-	_	_	_	_	_	_	ODCF1	ODCF0	0000
CNENF	0E58	_	_	_	_	_	_	_	-	_	_	_	_	_	_	CNIEF1	CNIEF0	0000
CNPUF	0E5A	_	_	_	_	_	_	_	-	_	_	_	_	_	_	CNPUF1	CNPUF0	0000
CNPDF	0E5C	_	_	ı	ı	-	ı	-	ı	ı	_	1	-	_	_	_	_	0000

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60	TRISG15	TRISG14	TRISG13	TRISG12	TRISG11	TRISG10	TRISG9	TRISG8	TRISG7	TRISG6	1	_	TRISG3	TRISG2	TRISG1	TRISG0	03C0
PORTG	0E62	RG15	RG14	RG13	RG12	RG11	RG10	RG9	RG8	RG7	RG6	_	_	RG3	RG2	RG1	RG0	xxxx
LATG	0E64	LATG15	LATG14	LATG13	LATG12	LATG11	LATG10	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1	LATG0	xxxx
ODCG	0E66	ODCG15	ODCG14	ODCG13	ODCG12	ODCG11	ODCG10	ODCG9	ODCG8	ODCG7	ODCG6	_	_	ODCG3	ODCG2	ODCG1	ODCG0	0000
CNENG	0E68	CNIEG15	CNIEG14	CNIEG13	CNIEG12	CNIEG11	CNIEG10	CNIEG9	CNIEG8	CNIEG7	CNIEG6	_	_	CNIEG3	CNIEG2	CNIEG1	CNIEG0	0000
CNPUG	0E6A	CNPUG15	CNPUG14	CNPUG13	CNPUG12	CNPUG11	CNPUG10	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	_	CNPUG3	CNPUG2	CNPUG1	CNPUG0	0000
CNPDG	0E6C	CNPDG15	CNPDG14	CNPDG13	CNPDG12	CNPDG11	CNPDG10	CNPDG9	CNPDG8	CNPDG7	CNPDG6	_	_	CNPDG3	CNPDG2	CNPDG1	CNPDG0	0000
ANSELG	0E6E	ANSG15	_	_	_	ANSG11	ANSG10	ANSG9	ANSG8	ANSG7	ANSG6	_	_	ANSG3	ANSG2	_	_	0000

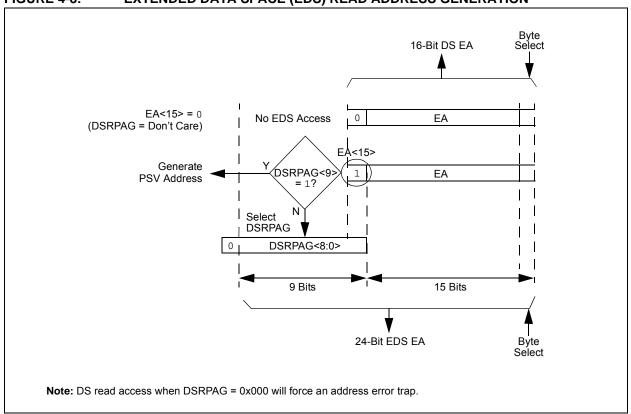
Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-62: PORTG REGISTER MAP FOR dsPIC33EPXXXGM306/706 DEVICES

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60	_	-	1	_	-	1	TRISG9	TRISG8	TRISG7	TRISG6	1	1	_	-	_	_	03C0
PORTG	0E62	_	-	ı	ı	_	ı	RG9	RG8	RG7	RG6	-	ı	_	-	_	_	xxxx
LATG	0E64	_	-	ı	ı	_	ı	LATG9	LATG8	LATG7	LATG6	-	ı	_	-	_	_	xxxx
ODCG	0E66	_	-	ı	ı	_	ı	ODCG9	ODCG8	ODCG7	ODCG6	-	ı	_	-	_	_	0000
CNENG	0E68		1	ı	ı	1	ı	CNIEG9	CNIEG8	CNIEG7	CNIEG6	ı	ı	_		_	_	0000
CNPUG	0E6A		1	ı	ı	1	ı	CNPUG9	CNPUG8	CNPUG7	CNPUG6	ı	ı	_		_	_	0000
CNPDG	0E6C		1	ı	ı	1	ı	CNPDG9	CNPDG8	CNPDG7	CNPDG6	ı	ı	_		_	_	0000
ANSELG	0E6E	_	_	_	_		-	ANSG9	ANSG8	ANSG7	ANSG6		_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-63: PAD CONFIGURATION REGISTER MAP


File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	0EFE	_	_	_	_	_	_	_	_			_	_		_	RTSECSEL	PMPTTL	0000

4.3.1 PAGED MEMORY SCHEME

The dsPIC33EPXXXGM3XX/6XX/7XX architecture extends the available Data Space through a paging scheme, which allows the available Data Space to be accessed using MOV instructions in a linear fashion for pre- and post-modified Effective Addresses (EA). The upper half of the Base Data Space address is used in conjunction with the Data Space Page registers, the 10-bit Data Space Read Page register (DSRPAG) or the 9-bit Data Space Write Page register (DSWPAG), to form an Extended Data Space (EDS) address, or Program Space Visibility (PSV) address. The Data Space Page registers are located in the SFR space.

Construction of the EDS address is shown in Figure 4-8. When DSRPAG<9> = 0 and the base address bit, EA<15> = 1, the DSRPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly, when the base address bit, EA<15> =1, the DSWPAG<8:0> bits are concatenated onto EA<14:0> to form the 24-bit EDS write address.

FIGURE 4-8: EXTENDED DATA SPACE (EDS) READ ADDRESS GENERATION

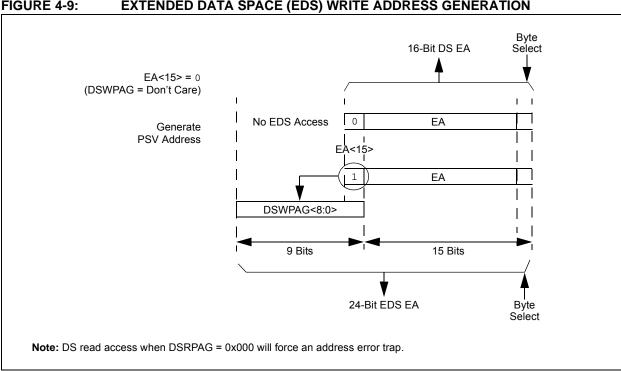
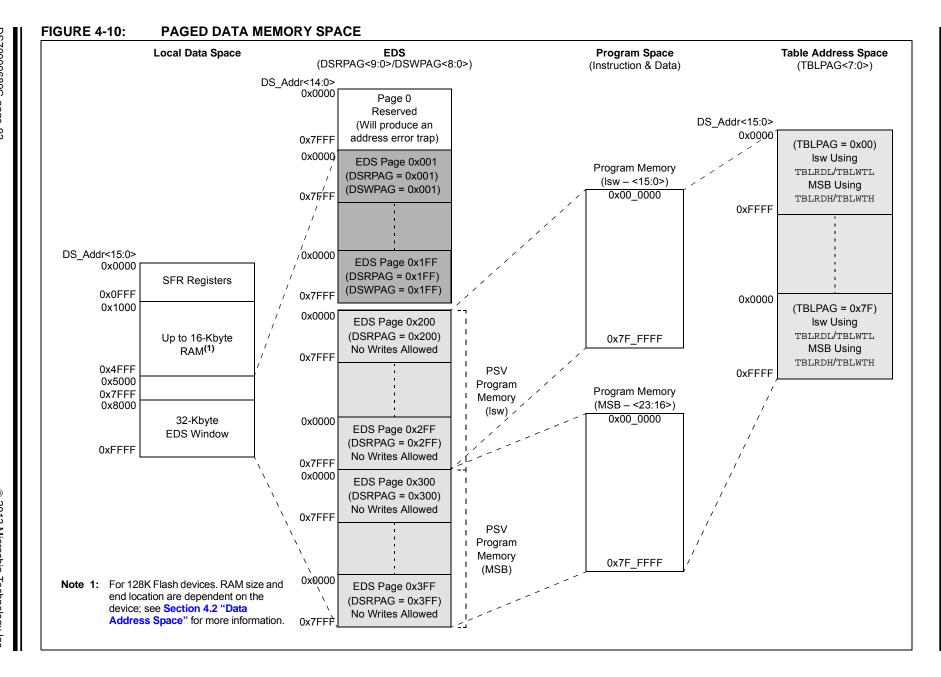



FIGURE 4-9: **EXTENDED DATA SPACE (EDS) WRITE ADDRESS GENERATION**

The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The Data Space Page registers, DSxPAG, in combination with the upper half of the Data Space address, can provide up to 16 Mbytes of additional address space in the EDS and 8 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Figure 4-10.

The Program Space (PS) can be accessed with a DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, so DSWPAG is dedicated to DS, including EDS only. The Data Space and EDS can be read from and written to using DSRPAG and DSWPAG, respectively.

Allocating different Page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses an EDS or PSV page
- The EA calculation uses Pre- or Post-Modified Register Indirect Addressing. However, this does not include Register Offset Addressing

In general, when an overflow is detected, the DSxPAG register is incremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of Page 0, EDS and PSV spaces. Table 4-64 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- · Register Indirect with Register Offset Addressing
- · Modulo Addressing
- · Bit-Reversed Addressing

TABLE 4-64: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS AND PSV SPACE BOUNDARIES^(2,3,4)

O/U.			Before			After	
R/W	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description
O, Read		DSRPAG = 0x1FF	1	EDS: Last Page	DSRPAG = 0x1FF	0	See Note 1
O, Read	[++Wn]	DSRPAG = 0x2FF	1	PSV: Last Isw Page	DSRPAG = 0x300	1	PSV: First MSB Page
O, Read	or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB Page	DSRPAG = 0x3FF	0	See Note 1
O, Write		DSWPAG = 0x1FF	1	EDS: Last Page	DSWPAG = 0x1FF	0	See Note 1
U, Read		DSRPAG = 0x001	1	PSV Page	DSRPAG = 0x001	0	See Note 1
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw Page	DSRPAG = 0x200	0	See Note 1
U, Read	[Wn]	DSRPAG = 0x300	1	PSV: First MSB Page	DSRPAG = 0x2FF	1	PSV: Last Isw Page

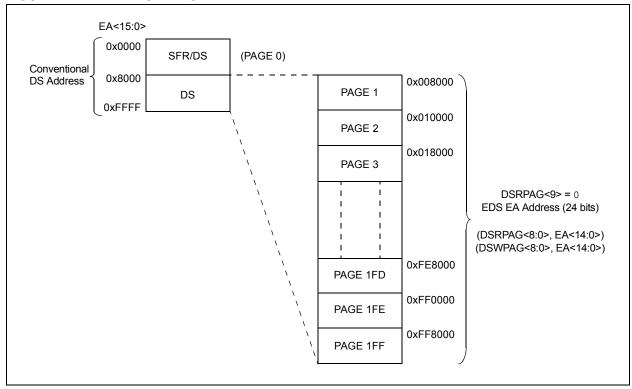
Legend: O = Overflow, U = Underflow, R = Read, W = Write

- Note 1: The Register Indirect Addressing now addresses a location in the Base Data Space (0x0000-0x8000).
 - 2: An EDS access with DSxPAG = 0x000 will generate an address error trap.
 - **3:** Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.
 - 4: Pseudo Linear Addressing is not supported for large offsets.

4.3.2 EXTENDED X DATA SPACE

The lower portion of the base address space range, between 0x0000 and 0x7FFF, is always accessible regardless of the contents of the Data Space Page registers. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS Page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit, EA<15> = 0, for this address range). However, Page 0 cannot be accessed through the upper 32 Kbytes, 0x8000 to 0xFFFF, of Base Data Space, in combination with DSRPAG = 0x000 or DSWPAG = 0x000. Consequently, DSRPAG and DSWPAG are initialized to 0x001 at Reset.

Note 1: DSxPAG should not be used to access Page 0. An EDS access with DSxPAG set to 0x000 will generate an address error trap.


2: Clearing the DSxPAG in software has no effect.

The remaining pages, including both EDS and PSV pages, are only accessible using the DSRPAG or DSWPAG registers, in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit, EA<15> = 1.

For example, when DSRPAG = 0x001 or DSWPAG = 0x001, accesses to the upper 32 Kbytes, 0x8000 to 0xFFFF, of the Data Space will map to the EDS address range of 0x008000 to 0x00FFFF. When DSRPAG = 0x002 or DSWPAG = 0x002, accesses to the upper 32 Kbytes of the Data Space will map to the EDS address range of 0x010000 to 0x017FFF and so on, as shown in the EDS memory map in Figure 4-11.

For more information on the PSV page access, using Data Space Page registers, refer to the "Program Space Visibility from Data Space" section in "Program Memory" (DS70613) of the "dsPIC33E/PIC24E Family Reference Manual".

FIGURE 4-11: EDS MEMORY MAP

4.3.3 DATA MEMORY ARBITRATION AND BUS MASTER PRIORITY

EDS accesses from bus masters in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA and the ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

By default, the CPU is Bus Master 0 (M0) with the highest priority and the ICD is Bus Master 4 (M4) with the lowest priority. The remaining bus master (DMA controller) is allocated to M3 (M1 and M2 are reserved and cannot be used). The user application may raise or lower the priority of the DMA controller to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest with M2 in between). Also, all the bus masters with priorities below

that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are tabulated in Table 4-65.

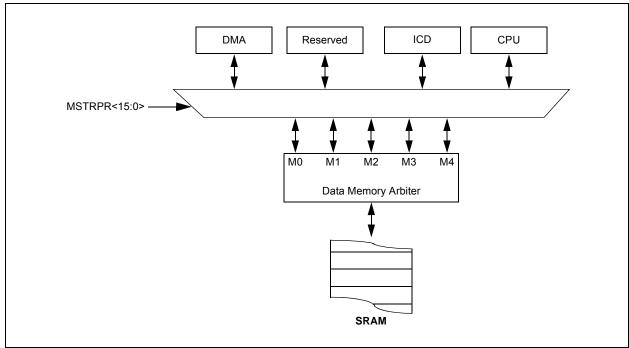

This bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization or dynamically in response to real-time events.

TABLE 4-65: DATA MEMORY BUS ARBITER PRIORITY

Priority	MSTRPR<15:0	> Bit Setting ⁽¹⁾
Priority	0x0000	0x0020
M0 (highest)	CPU	DMA
M1	Reserved	CPU
M2	Reserved	Reserved
M3	DMA	Reserved
M4 (lowest)	ICD	ICD

Note 1: All other values of MSTRPR<15:0> are reserved.

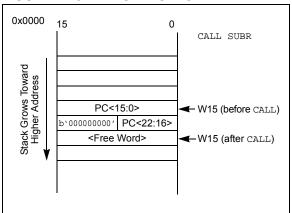
FIGURE 4-12: ARBITER ARCHITECTURE

© 2013 Microchip Technology Inc.

4.3.4 SOFTWARE STACK

The W15 register serves as a dedicated Software Stack Pointer (SSP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note: To protect against misaligned stack accesses, W15<0> is fixed to '0' by the hardware.


W15 is initialized to 0x1000 during all Resets. This address ensures that the SP points to valid RAM in all dsPIC33EPXXXGM3XX/6XX/7XX devices and permits stack availability for non-maskable trap exceptions. These can occur before the SP is initialized by the user software. You can reprogram the SP during initialization to any location within Data Space.

The Stack Pointer always points to the first available free word and fills the software stack, working from lower toward higher addresses. Figure 4-13 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> are pushed onto the first available stack word, then PC<22:16> are pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-13. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS Register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- Note 1: To maintain the system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore, restricted to an address range of 0x0000 to 0xFFFF. The same applies to the W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in and can access X and Y spaces, care must be taken regarding its use, particularly with regard to local automatic variables in a 'C' development environment

FIGURE 4-13: CALL STACK FRAME

4.4 Instruction Addressing Modes

The addressing modes shown in Table 4-66 form the basis of the addressing modes optimized to support the specific features of the individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.4.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (Near Data Space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire Data Space.

4.4.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- · Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- · Register Indirect Pre-Modified
- 5-Bit or 10-Bit Literal

Note: Not all instructions support all of the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

TABLE 4-66: FUNDAMENTAL ADDRESSING MODES SUPPORTED

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn form the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn form the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

4.4.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note: For the MOV instructions, the addressing mode specified in the instruction can differ for the source and destination EA. However, the 4-bit Wb (Register Offset) field is shared by both source and destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- · Register Direct
- · Register Indirect
- · Register Indirect Post-modified
- Register Indirect Pre-modified
- · Register Indirect with Register Offset (Indexed)
- · Register Indirect with Literal Offset
- · 8-Bit Literal
- 16-Bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.4.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the Data Pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The Effective Addresses generated (before and after modification) must, therefore, be valid addresses within X Data Space for W8 and W9, and Y Data Space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the MAC class of instructions:

- · Register Indirect
- · Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- · Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.4.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.5 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or Program Space (since the Data Pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into Program Space) and Y Data Spaces. Modulo Addressing can operate on any W Register Pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction, as there are certain restrictions on the buffer start address (for incrementing buffers) or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

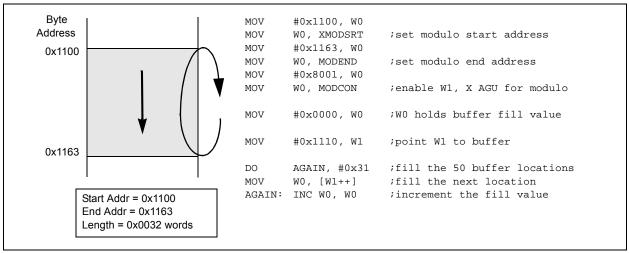
4.5.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.5.2 W ADDRESS REGISTER SELECTION


The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 1111, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 1111, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X Data Space when XWM is set to any value other than '1111' and the XMODEN bit is set (MODCON<15>).

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y Data Space when YWM is set to any value other than '1111' and the YMODEN bit is set (MODCON<14>).

FIGURE 4-14: MODULO ADDRESSING OPERATION EXAMPLE

4.5.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note:

The modulo corrected Effective Address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the Effective Address. When an address offset (such as [W7 + W2]) is used, Modulo Addressing correction is performed, but the contents of the register remain unchanged.

4.6 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.6.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled when all of these conditions are met:

- BWM bits (W register selection) in the MODCON register are any value other than '1111' (the stack cannot be accessed using Bit-Reversed Addressing)
- · The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Addressing modifier, or 'pivot point', which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:

All bit-reversed EA calculations assume word-sized data (LSb of every EA is always clear). The XB value is scaled accordingly to generate compatible (byte) addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB) and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:

Modulo Addressing and Bit-Reversed Addressing can be enabled simultaneously using the same W register, but Bit-Reversed Addressing operation will always take precedence for data writes when enabled.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the Bit-Reversed Pointer.

FIGURE 4-15: BIT-REVERSED ADDRESSING EXAMPLE

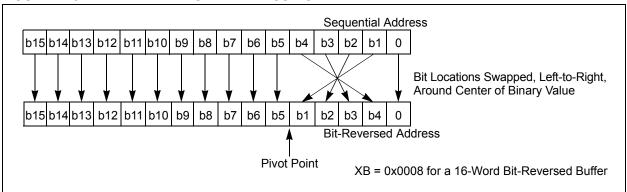


TABLE 4-67: BIT-REVERSED ADDRESSING SEQUENCE (16-ENTRY)

		Norma	al Addres	SS			Bit-Rev	ersed Ac	Idress
А3	A2	A 1	Α0	Decimal	А3	A2	A 1	Α0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

4.7 Interfacing Program and Data Memory Spaces

The dsPIC33EPXXXGM3XX/6XX/7XX architecture uses a 24-bit-wide Program Space and a 16-bit-wide Data Space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the Program Space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the architecture of the dsPIC33EPXXXGM3XX/6XX/7XX devices provides two methods by which Program Space can be accessed during operation:

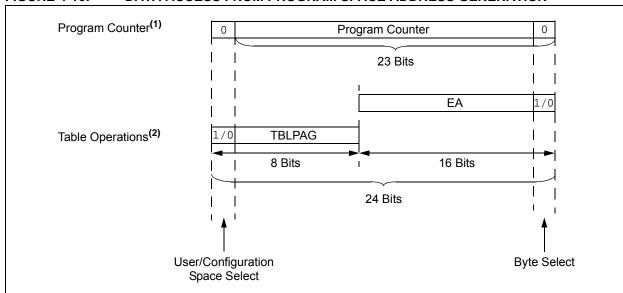

- Using table instructions to access individual bytes or words anywhere in the Program Space
- Remapping a portion of the Program Space into the Data Space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-68: PROGRAM SPACE ADDRESS CONSTRUCTION

Access Type	Access		Progra	m Space A	ddress			
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>		
Instruction Access	User	0		PC<22:1>		0		
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxxx						
TBLRD/TBLWT	BLRD/TBLWT User TBLPAG<7:0> Data EA<15:							
(Byte/Word Read/Write)		0	xxx xxxx	xxxx xxx	x xxxx xxxx			
	Configuration	ТВ	LPAG<7:0>		Data EA<15:0>			
		xxx xxxx	xxxx xx	xx xxxx xxxx				

FIGURE 4-16: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

- **Note 1:** The Least Significant bit (LSb) of Program Space addresses is always fixed as '0' to maintain word alignment of data in the Program and Data Spaces.
 - **2:** Table operations are not required to be word-aligned. Table read operations are permitted in the configuration memory space.

4.7.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the Program Space without going through Data Space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a Program Space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to Data Space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from Program Space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the Program Space location (P<15:0>) to a data address (D<15:0>)

- In Byte mode, either the upper or lower byte
 of the lower program word is mapped to the
 lower byte of a data address. The upper byte
 is selected when Byte Select is '1'; the lower
 byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>) is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a Program Space address. The details of their operation are explained in **Section 5.0** "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

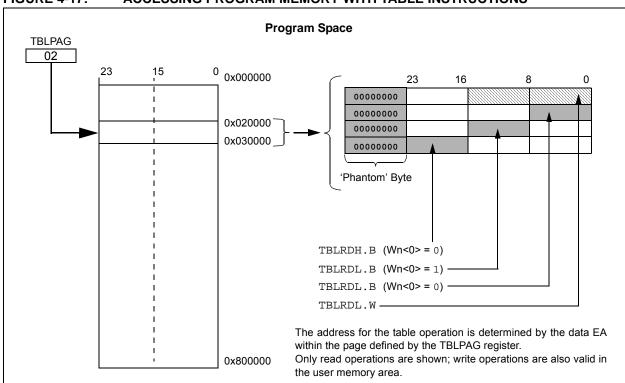


FIGURE 4-17: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

5.0 FLASH PROGRAM MEMORY

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Flash Programming" (DS70609), which is available from the Microchip web site (www.microchip.com).

> 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

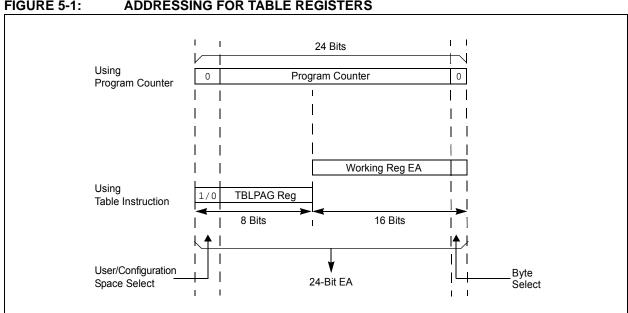
The dsPIC33EPXXXGM3XX/6XX/7XX devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming™ (ICSP™)
- Run-Time Self-Programming (RTSP)

ICSP allows for a dsPIC33EPXXXGM3XX/6XX/7XX device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and

Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.


RTSP is accomplished using TBLRD (Table Read) and TBLWT (Table Write) instructions. With RTSP, the user application can write program memory data as a double program memory word, a row of 64 instructions (192 bytes), and erase program memory in blocks of 512 instruction words (1536 bytes) at a time.

5.1 **Table Instructions and Flash Programming**

The Flash memory read and the double-word programming operations make use of the TBLRD and TBLWT instructions, respectively. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register, specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

ADDRESSING FOR TABLE REGISTERS FIGURE 5-1:

5.2 RTSP Operation

RTSP allows the user application to erase a single page of memory, program a row and to program two instruction words at a time. See Table 1 in the "dsPIC33EPXXXGM3XX/6XX/7XX Product Family" section for the page sizes of each device.

The Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of program memory, which consists of eight rows (512 instructions) at a time, and to program one row or two adjacent words at a time. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

For more information on erasing and programming Flash memory, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Flash Programming" (DS70609).

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

For erase and program times, refer to Parameters D137a and D137b (Page Erase Time), and D138a and D138b (Word Write Cycle Time), in Table 33-13.

Setting the WR bit (NVMCON<15>) starts the operation and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program two adjacent words (24 bits x 2) of program Flash memory at a time on every other word address boundary (0x000002, 0x000006, 0x00000A, etc.). To do this, it is necessary to erase the page that contains the desired address of the location the user wants to change. Programmers can also program a row of data (64 instruction words/192 bytes) at a time using the row programming feature present in these devices. For row programming, the source data is fetched directly from the data memory (RAM) on these devices. Two new registers have been provided to point to the RAM location where the source data resides. The page that has the row to be programmed must first be erased before the programming operation.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Refer to the "dsPIC33E/PIC24E Family Reference Manual", "Flash Programming" (DS70609) for details and code examples on programming using RTSP.

5.4 Control Registers

Six SFRs are used to read and write the program Flash memory: NVMCON, NVMKEY, NVMADR, NVMADRU, NVMSRCADRL and NVMSRCADRH.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register.

There are two NVM Address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit Effective Address (EA) of the selected word for programming operations, or the selected page for erase operations.

The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

The NVMSRCADRH and NVMSRCADRL registers are used to hold the source address of the data in the data memory that needs to be written to Flash memory.

REGISTER 5-1: NVMCON: NONVOLATILE MEMORY (NVM) CONTROL REGISTER

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	NVMSIDL ⁽²⁾	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
_	_	_	_		NVMOP	<3:0> ^(3,4)	
bit 7							bit 0

Legend:	SO = Settable Only bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

- bit 15 WR: NVM Write Control bit⁽¹⁾
 - 1 = Initiates a Flash memory program or erase operation; the operation is self-timed and the bit is cleared by hardware once the operation is complete
 - 0 = Program or erase operation is complete and inactive
- bit 14 WREN: NVM Write Enable bit⁽¹⁾
 - 1 = Enables Flash program/erase operations
 - 0 = Inhibits Flash program/erase operations
- bit 13 WRERR: NVM Write Sequence Error Flag bit(1)
 - 1 = An improper program or erase sequence attempt, or termination has occurred (bit is set automatically on any set attempt of the WR bit)
 - 0 = The program or erase operation completed normally
- bit 12 **NVMSIDL:** NVM Stop in Idle Control bit⁽²⁾
 - 1 = Flash voltage regulator goes into Standby mode during Idle mode
 - 0 = Flash voltage regulator is active during Idle mode
- bit 11-4 **Unimplemented:** Read as '0'
- bit 3-0 **NVMOP<3:0>:** NVM Operation Select bits^(1,3,4)
 - 1111 = Reserved
 - 1110 = Reserved
 - 1101 = Bulk erase primary program Flash memory
 - 1100 = Reserved
 - 1011 = Reserved
 - 1010 = Reserved
 - 0011 = Memory page erase operation
 - 0010 = Memory row program operation with source data from RAM
 - 0001 = Memory double-word program operation⁽⁵⁾
 - 0000 = Reserved
- Note 1: These bits can only be reset on POR.
 - 2: If this bit is set, there will be minimal power savings (IIDLE), and upon exiting Idle mode, there is a delay (TVREG) before Flash memory becomes operational.
 - **3:** All other combinations of NVMOP<3:0> are unimplemented.
 - 4: Execution of the PWRSAV instruction is ignored while any of the NVM operations are in progress.
 - 5: Two adjacent words on a 4-word boundary are programmed during execution of this operation.

REGISTER 5-2: NVMADRU: NONVOLATILE MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	_	_	NVMADR	U<23:16>	_		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 NVMADRU<23:16>: Nonvolatile Memory Upper Write Address bits

Selects the upper 8 bits of the location to program or erase in program Flash memory. This register

may be read or written to by the user application.

REGISTER 5-3: NVMADR: NONVOLATILE MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
NVMADR<15:8>							
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
	NVMADR<7:0>								
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 NVMADR<15:0>: Nonvolatile Memory Lower Write Address bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register

may be read or written to by the user application.

REGISTER 5-4: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_		_	_
bit 15							bit 8

W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
NVMKEY<7:0>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

REGISTER 5-5: NVMSRCADRH: NONVOLATILE DATA MEMORY UPPER ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
NVMSRCADRH<23:16>							
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

bit 7-0 **NVMSRCADRH<23:16>:** Nonvolatile Data Memory Upper Address bits

REGISTER 5-6: NVMSRCADRL: NONVOLATILE DATA MEMORY LOWER ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
NVMSRCADRL<15:8>							
bit 15 bit							

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	r-0
NVMSRCADRL<7:1>						0	
bit 7							bit 0

Legend: r = Reserved bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-1 **NVMSRCADRL<15:1>:** Nonvolatile Data Memory Lower Address bits

bit 0 Reserved: Maintain as '0'

NOTES:

6.0 RESETS

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Reset" (DS70602), which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

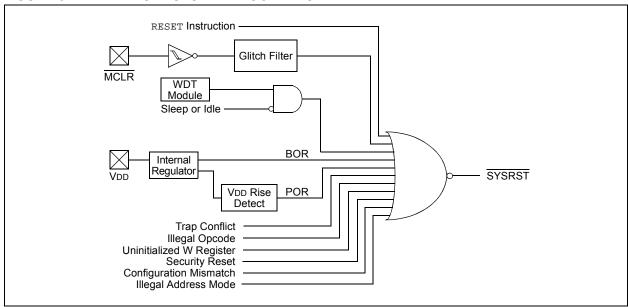
- · POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- · WDTO: Watchdog Timer Time-out Reset
- · CM: Configuration Mismatch Reset
- · TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Illegal Address Mode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).


A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>) that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

Note: In all types of Resets, to select the device clock source, the contents of OSCCON are initialized from the FNOSCx Configuration bits in the FOSCSEL Configuration register.

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

RCON: RESET CONTROL REGISTER(1) **REGISTER 6-1:**

R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR	_	_	VREGSF	_	CM	VREGS
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'0' = Bit is cleared -n = Value at POR '1' = Bit is set x = Bit is unknown

bit 15 TRAPR: Trap Reset Flag bit

1 = A Trap Conflict Reset has occurred

0 = A Trap Conflict Reset has not occurred

bit 14 IOPUWR: Illegal Opcode or Uninitialized W Access Reset Flag bit

1 = An illegal opcode detection, an illegal address mode or Uninitialized W register used as an

Address Pointer caused a Reset

0 = An illegal opcode or Uninitialized W Register Reset has not occurred

Unimplemented: Read as '0' bit 13-12

bit 11 VREGSF: Flash Voltage Regulator Standby During Sleep bit

1 = Flash Voltage regulator is active during Sleep

0 = Flash Voltage regulator goes into Standby mode during Sleep

bit 10 Unimplemented: Read as '0'

bit 9 CM: Configuration Mismatch Flag bit

> 1 = A Configuration Mismatch Reset has occurred. 0 = A Configuration Mismatch Reset has NOT occurred

bit 8 **VREGS:** Voltage Regulator Standby During Sleep bit

1 = Voltage regulator is active during Sleep

0 = Voltage regulator goes into Standby mode during Sleep

bit 7 **EXTR:** External Reset (MCLR) Pin bit

1 = A Master Clear (pin) Reset has occurred

0 = A Master Clear (pin) Reset has not occurred

bit 6 **SWR:** Software RESET (Instruction) Flag bit

1 = A RESET instruction has been executed

0 = A RESET instruction has not been executed

bit 5 **SWDTEN:** Software Enable/Disable of WDT bit⁽²⁾

1 = WDT is enabled

0 = WDT is disabled

bit 4 WDTO: Watchdog Timer Time-out Flag bit

1 = WDT time-out has occurred

0 = WDT time-out has not occurred

Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 3 SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode bit 2 IDLE: Wake-up from Idle Flag bit 1 = Device was in Idle mode 0 = Device was not in Idle mode bit 1 BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred bit 0 POR: Power-on Reset Flag bit 1 = A Power-on Reset has occurred 0 = A Power-on Reset has not occurred

Note 1: All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

	_	_	_^
NI	, 1		

7.0 INTERRUPT CONTROLLER

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Interrupts" (DS70600), which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33EPXXXGM3XX/6XX/7XX CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- · Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with a unique vector for each interrupt or exception source
- · Fixed priority within a specified user priority level
- · Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The dsPIC33EPXXXGM3XX/6XX/7XX Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location 000004h. The IVT contains seven non-maskable trap vectors and up to 151 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with Vector 0 takes priority over interrupts at any other vector address.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXXGM3XX/6XX/7XX devices clear their registers in response to a Reset, which forces the PC to zero. The device then begins program execution at location 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note:

Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

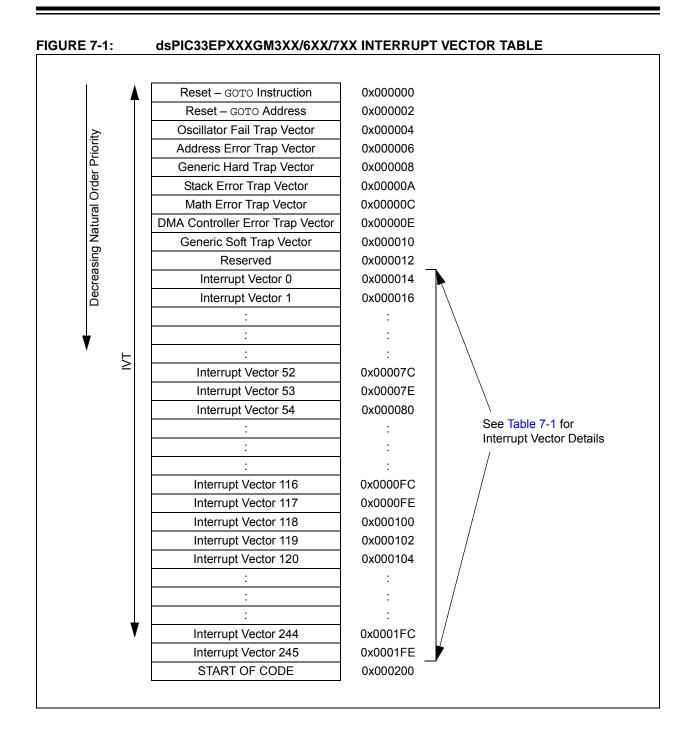


TABLE 7-1: INTERRUPT VECTOR DETAILS

1.1	Vector	IRQ	N/T A LL	Inte	errupt Bit L	ocation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
	Highe	est Natura	I Order Priority			
INT0 – External Interrupt 0	8	0	0x000014	IFS0<0>	IEC0<0>	IPC0<2:0>
IC1 – Input Capture 1	9	1	0x000016	IFS0<1>	IEC0<1>	IPC0<6:4>
OC1 – Output Compare 1	10	2	0x000018	IFS0<2>	IEC0<2>	IPC0<10:8>
T1 – Timer1	11	3	0x00001A	IFS0<3>	IEC0<3>	IPC0<14:12>
DMA0 – DMA Channel 0	12	4	0x00001C	IFS0<4>	IEC0<4>	IPC1<2:0>
IC2 – Input Capture 2	13	5	0x00001E	IFS0<5>	IEC0<5>	IPC1<6:4>
OC2 – Output Compare 2	14	6	0x000020	IFS0<6>	IEC0<6>	IPC1<10:8>
T2 – Timer2	15	7	0x000022	IFS0<7>	IEC0<7>	IPC1<14:12>
T3 – Timer3	16	8	0x000024	IFS0<8>	IEC0<8>	IPC2<2:0>
SPI1E – SPI1 Error	17	9	0x000026	IFS0<9>	IEC0<9>	IPC2<6:4>
SPI1 – SPI1 Transfer Done	18	10	0x000028	IFS0<10>	IEC0<10>	IPC2<10:8>
U1RX – UART1 Receiver	19	11	0x00002A	IFS0<11>	IEC0<11>	IPC2<14:12>
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0<12>	IEC0<12>	IPC3<2:0>
AD1 – ADC1 Convert Done	21	13	0x00002E	IFS0<13>	IEC0<13>	IPC3<6:4>
DMA1 – DMA Channel 1	22	14	0x000030	IFS0<14>	IEC0<14>	IPC3<10:8>
Reserved	23	15	0x000032	_	_	
SI2C1 – I2C1 Slave Event	24	16	0x000034	IFS1<0>	IEC1<0>	IPC4<2:0>
MI2C1 – I2C1 Master Event	25	17	0x000036	IFS1<1>	IEC1<1>	IPC4<6:4>
CMP1 – Comparator Combined Event	26	18	0x000038	IFS1<2>	IEC1<2>	IPC4<10:8>
CN – Input Change Interrupt	27	19	0x00003A	IFS1<3>	IEC1<3>	IPC4<14:12>
INT1 – External Interrupt 1	28	20	0x00003C	IFS1<4>	IEC1<4>	IPC5<2:0>
AD2 – ADC2 Convert Done	29	21	0x00003E	IFS1<5>	IEC1<5>	IPC5<6:4>
IC7 – Input Capture 7	30	22	0x000040	IFS1<6>	IEC1<6>	IPC5<10:8>
IC8 – Input Capture 8	31	23	0x000042	IFS1<7>	IEC1<7>	IPC5<14:12>
DMA2 – DMA Channel 2	32	24	0x000044	IFS1<8>	IEC1<8>	IPC6<2:0>
OC3 – Output Compare 3	33	25	0x000046	IFS1<9>	IEC1<9>	IPC6<6:4>
OC4 – Output Compare 4	34	26	0x000048	IFS1<10>	IEC1<10>	IPC6<10:8>
T4 – Timer4	35	27	0x00004A	IFS1<11>	IEC1<11>	IPC6<14:12>
T5 – Timer5	36	28	0x00004C	IFS1<12>	IEC1<12>	IPC7<2:0>
INT2 – External Interrupt 2	37	29	0x00004E	IFS1<13>	IEC1<13>	IPC7<6:4>
U2RX – UART2 Receiver	38	30	0x000050	IFS1<14>	IEC1<14>	IPC7<10:8>
U2TX – UART2 Transmitter	39	31	0x000052	IFS1<15>	IEC1<15>	IPC7<14:12>
SPI2E – SPI2 Error	40	32	0x000054	IFS2<0>	IEC2<0>	IPC8<2:0>
SPI2 – SPI2 Transfer Done	41	33	0x000056	IFS2<1>	IEC2<1>	IPC8<6:4>
C1RX – CAN1 RX Data Ready(1)	42	34	0x000058	IFS2<2>	IEC2<2>	IPC8<10:8>
C1 – CAN1 Event ⁽¹⁾	43	35	0x00005A	IFS2<3>	IEC2<3>	IPC8<14:12>
DMA3 - DMA Channel 3	44	36	0x00005C	IFS2<4>	IEC2<4>	IPC9<2:0>
IC3 – Input Capture 3	45	37	0x00005E	IFS2<5>	IEC2<5>	IPC9<6:4>
IC4 – Input Capture 4	46	38	0x000060	IFS2<6>	IEC2<6>	IPC9<10:8>
IC5 – Input Capture 5	47	39	0x000062	IFS2<7>	IEC2<7>	IPC9<14:12>
IC6 – Input Capture 6	48	40	0x000064	IFS2<8>	IEC2<8>	IPC10<2:0>

Note 1: This interrupt source is available on dsPIC33EPXXXGM6XX/7XX devices only.

^{2:} This interrupt source is not available on 44-pin devices.

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

	Vector	IRQ	DATINOLD)	Inte	errupt Bit L	ocation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
OC5 – Output Compare 5	49	41	0x000066	IFS2<9>	IEC2<9>	IPC10<6:4>
OC6 – Output Compare 6	50	42	0x000068	IFS2<10>	IEC2<10>	IPC10<10:8>
OC7 – Output Compare 7	51	43	0x00006A	IFS2<11>	IEC2<11>	IPC10<14:12>
OC8 – Output Compare 8	52	44	0x00006C	IFS2<12>	IEC2<12>	IPC11<2:0>
PMP – Parallel Master Port ⁽²⁾	53	45	0x00006E	IFS2<13>	IEC2<13>	IPC11<6:4>
Reserved	54	46	0x000070	_	_	_
T6 – Timer6	55	47	0x000072	IFS2<15>	IEC2<15>	IPC11<14:12>
T7 – Timer7	56	48	0x000074	IFS3<0>	IEC3<0>	IPC12<2:0>
SI2C2 - I2C2 Slave Event	57	49	0x000076	IFS3<1>	IEC3<1>	IPC12<6:4>
MI2C2 – I2C2 Master Event	58	50	0x000078	IFS3<2>	IEC3<2>	IPC12<10:8>
T8 – Timer8	59	51	0x00007A	IFS3<3>	IEC3<3>	IPC12<14:12>
T9 – Timer9	60	52	0x00007C	IFS3<4>	IEC3<4>	IPC13<2:0>
INT3 – External Interrupt 3	61	53	0x00007E	IFS3<5>	IEC3<5>	IPC13<6:4>
INT4 – External Interrupt 4	62	54	0x000080	IFS3<6>	IEC3<6>	IPC13<10:8>
C2RX – CAN2 RX Data Ready ⁽¹⁾	63	55	0x000082	IFS3<7>	IEC3<7>	IPC13<14:12>
C2 – CAN2 Event ⁽¹⁾	64	56	0x000084	IFS3<8>	IEC3<8>	IPC14<2:0>
PSEM – PCPWM Primary Event	65	57	0x000086 IFS3<9>		IEC3<9>	IPC14<6:4>
QEI1 – QEI1 Position Counter Compare	66	58	0x000088	0x000088 IFS3<10> IEC		IPC14<10:8>
DCIE – DCI Fault Interrupt	67	59	0x00008A	IFS3<11>	IEC3<11>	IPC14<14:12>
DCI – DCI Transfer Done	68	60	0x00008C	IFS3<12>	IEC3<12>	IPC15<2:0>
Reserved	69	61	0x00008E	_	_	_
RTCC – Real-Time Clock and Calendar	70	62	0x000090	IFS3<14>	IEC3<14>	IPC15<10:8>
Reserved	71-72	63-64	0x000092-0x000094	_	_	_
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>
Reserved	76-77	68-69	0x00009C-0x00009E	_	_	_
C1TX – CAN1 TX Data Request ⁽¹⁾	78	70	0x0000A0	IFS4<6>	IEC4<6>	IPC17<10:8>
C2TX – CAN2 TX Data Request (1)	79	71	0x0000A2	IFS4<7>	IEC4<7>	IPC17<14:12>
Reserved	80	72	0x0000A4	_	_	_
PSESM – PCPWM Secondary Event	81	73	0x0000A6	IFS4<9>	IEC4<9>	IPC18<6:4>
Reserved	82	74	0x0000A8	_	_	_
QEI2 – QEI2 Position Counter Compare	83	75	0x0000AA	IFS4<11>	IEC4<11>	IPC18<14:12>
Reserved	84	76	0x0000AC	_	_	_
CTMU – CTMU Interrupt	85	77	0x0000AE	IFS4<13>	IEC4<13>	IPC19<6:4>
Reserved	86-88	78-80	0x0000B0-0x0000B4	_	_	_
U3E – UART3 Error Interrupt	89	81	0x0000B6	IFS5<1>	IEC5<1>	IPC20<6:4>
U3RX – UART3 Receiver	90	82	0x0000B8	IFS5<2>	IEC5<2>	IPC20<10:8>
U3TX – UART3 Transmitter	91	83	0x0000BA	IFS5<3>	IEC5<3>	IPC20<14:12>
Reserved	92-94	84-86	0x0000BC-0x0000C0	_	_	_
U4E – UART4 Error Interrupt	95	87	0x0000C2	IFS5<7>	IEC5<7>	IPC21<14:12>
U4RX – UART4 Receiver	96	88	0x0000C4	IFS5<8>	IEC5<8>	IPC22<2:0>
U4TX – UART4 Transmitter	97	89	0x0000C6	IFS5<9>	IEC5<9>	IPC22<6:4>

Note 1: This interrupt source is available on dsPIC33EPXXXGM6XX/7XX devices only.

^{2:} This interrupt source is not available on 44-pin devices.

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

	Vector	IRQ	N/T A LLease	Inte	errupt Bit L	ocation
Interrupt Source	#	#	IVT Address	Flag	Enable	Priority
SPI3E – SPI3 Error 98 9		90	0x0000C8	IFS5<10>	IEC5<10>	IPC22<10:8>
SPI3 – SPI3 Transfer Done	99	91	0x0000CA	IFS5<11>	IEC5<11>	IPC22<14:12>
Reserved	100-101	92-93	0x0000CC-0x0000CE	_	_	_
PWM1 – PWM Generator 1	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
PWM2 – PWM Generator 2	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12>
PWM3 – PWM Generator 3	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
PWM4 – PWM Generator 4	105	97	0x0000D6	IFS6<1>	IEC6<1>	IPC24<6:4>
PWM5 – PWM Generator 5	106	98	0x0000D8	IFS6<2>	IEC6<2>	IPC24<10:8>
PWM6 – PWM Generator 6	107	99	0x0000DA	IFS6<3>	IEC6<3>	IPC24<14:12>
Reserved	108-149	100-141	0x0000DC-0x00012E	_	_	_
ICD – ICD Application	150	142	0x000142	IFS8<14>	IEC8<14>	IPC35<10:8>
JTAG – JTAG Programming	151	143	0x000130	IFS8<15>	IEC8<15>	IPC35<14:12>
Reserved	152	144	0x000134	_	_	_
PTGSTEP – PTG Step	153	145	0x000136	IFS9<1>	IEC9<1>	IPC36<6:4>
PTGWDT – PTG Watchdog Time-out	154	146	0x000138	IFS9<2>	IEC9<2>	IPC36<10:8>
PTG0 – PTG Interrupt 0	155	147	0x00013A	IFS9<3>	IEC9<3>	IPC36<14:12>
PTG1 – PTG Interrupt 1	156	148	0x00013C	IFS9<4>	IEC9<4>	IPC37<2:0>
PTG2 – PTG Interrupt 2	157	149	0x00013E	IFS9<5>	IEC9<5>	IPC37<6:4>
PTG3 – PTG Interrupt 3	158	150	0x000140	IFS9<6>	IEC9<6>	IPC37<10:8>
Reserved	159-245	151-245	0x000142-0x0001FE	_	_	
	Lowe	st Natura	Order Priority			_

Note 1: This interrupt source is available on dsPIC33EPXXXGM6XX/7XX devices only.

^{2:} This interrupt source is not available on 44-pin devices.

7.3 Interrupt Control and Status Registers

dsPIC33EPXXXGM3XX/6XX/7XX devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- IFSx
- IECx
- IPCx
- INTTREG

7.3.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS) as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and also contains the Global Interrupt Enable bit (GIE).

INTCON3 contains the status flags for the DMA and DO stack overflow status trap sources.

The INTCON4 register contains the Software Generated Hard Trap (SGHT) status bit.

7.3.2 IFSx

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPCx registers are used to set the Interrupt Priority Level (IPL) for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU Interrupt Priority Level, which are latched into Vector Number (VECNUM<7:0>) and Interrupt Level bit (ILR<3:0>) fields in the INTTREG register. The new Interrupt Priority Level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having Vector Number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers, refer to the "dsPIC33E/PIC24E Family Reference Manual", "CPU" (DS70359).

- The CPU STATUS Register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU Interrupt Priority Level. The user software can change the current CPU Interrupt Priority Level by writing to the IPLx bits.
- The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU Interrupt Priority Level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R-0	R/W-0
OA	ОВ	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8

R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С
bit 7							bit 0

Legend:	C = Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3)

111 = CPU Interrupt Priority Level is 7 (15); user interrupts are disabled

110 = CPU Interrupt Priority Level is 6 (14)

101 = CPU Interrupt Priority Level is 5 (13)

100 = CPU Interrupt Priority Level is 4 (12)

011 = CPU Interrupt Priority Level is 3 (11)

010 = CPU Interrupt Priority Level is 2 (10)

001 = CPU Interrupt Priority Level is 1 (9)

000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0
VAR	_	US<1:0>		EDT		DL<2:0>	
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 VAR: Variable Exception Processing Latency Control bit

1 = Variable exception processing latency is enabled

0 = Fixed exception processing latency is enabled

bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾

1 = CPU Interrupt Priority Level is greater than 7

0 = CPU Interrupt Priority Level is 7 or less

Note 1: For complete register details, see Register 3-2.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	
bit 7							bit 0

Legend:						
R = Readable bit	bit W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	NSTDIS: Interrupt Nesting Disable bit
	1 = Interrupt nesting is disabled
	0 = Interrupt nesting is enabled
bit 14	OVAERR: Accumulator A Overflow Trap Flag bit
	1 = Trap was caused by overflow of Accumulator A
	0 = Trap was not caused by overflow of Accumulator A
bit 13	OVBERR: Accumulator B Overflow Trap Flag bit
	1 = Trap was caused by overflow of Accumulator B
	0 = Trap was not caused by overflow of Accumulator B
bit 12	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit
	1 = Trap was caused by catastrophic overflow of Accumulator A
	0 = Trap was not caused by catastrophic overflow of Accumulator A
bit 11	COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit
	1 = Trap was caused by catastrophic overflow of Accumulator B
	0 = Trap was not caused by catastrophic overflow of Accumulator B
bit 10	OVATE: Accumulator A Overflow Trap Enable bit
	1 = Trap overflow of Accumulator A
	0 = Trap is disabled
bit 9	OVBTE: Accumulator B Overflow Trap Enable bit
	1 = Trap overflow of Accumulator B
	0 = Trap is disabled
bit 8	COVTE: Catastrophic Overflow Trap Enable bit
	1 = Trap on catastrophic overflow of Accumulator A or B is enabled
	0 = Trap is disabled
bit 7	SFTACERR: Shift Accumulator Error Status bit
	1 = Math error trap was caused by an invalid accumulator shift
	0 = Math error trap was not caused by an invalid accumulator shift
bit 6	DIV0ERR: Divide-by-Zero Error Status bit
	1 = Math error trap was caused by a divide-by-zero
	0 = Math error trap was not caused by a divide-by-zero
bit 5	DMACERR: DMA Controller Trap Flag bit
	1 = DMA Controller trap has occurred
	0 = DMA Controller trap has not occurred
bit 4	MATHERR: Math Error Status bit
	1 = Math error trap has occurred
	0 = Math error trap has not occurred

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3

ADDRERR: Address Error Trap Status bit

1 = Address error trap has occurred

0 = Address error trap has not occurred

bit 2

STKERR: Stack Error Trap Status bit

1 = Stack error trap has occurred

0 = Stack error trap has not occurred

bit 1

OSCFAIL: Oscillator Failure Trap Status bit

1 = Oscillator failure trap has occurred

0 = Oscillator failure trap has not occurred

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
GIE	DISI	SWTRAP	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_	INT2EP	INT1EP	INT0EP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 GIE: Global Interrupt Enable bit

1 = Interrupts and associated IECx bits are enabled 0 = Interrupts are disabled, but traps are still enabled

bit 14 DISI: DISI Instruction Status bit

1 = DISI instruction is active 0 = DISI instruction is not active

bit 13 SWTRAP: Software Trap Status bit

1 = Software trap is enabled 0 = Software trap is disabled

bit 12-3 **Unimplemented:** Read as '0'

bit 2 INT2EP: External Interrupt 2 Edge Detect Polarity Select bit

1 = Interrupt on negative edge0 = Interrupt on positive edge

bit 1 INT1EP: External Interrupt 1 Edge Detect Polarity Select bit

1 = Interrupt on negative edge0 = Interrupt on positive edge

bit 0 INT0EP: External Interrupt 0 Edge Detect Polarity Select bit

1 = Interrupt on negative edge0 = Interrupt on positive edge

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	_	DAE	DOOVR	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5 DAE: DMA Address Error Soft Trap Status bit

1 = DMA Address error soft trap has occurred 0 = DMA Address error soft trap has not occurred

bit 4 DOOVR: DO Stack Overflow Soft Trap Status bit

1 = DO stack overflow soft trap has occurred 0 = DO stack overflow soft trap has not occurred

bit 3-0 **Unimplemented:** Read as '0'

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_		_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	_		_	_	_	SGHT
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-1 **Unimplemented:** Read as '0'

bit 0 SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	_	_	_		ILR<	3:0>	
bit 15		_		_			bit 8

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
	VECNUM<7:0>								
bit 7 bit									

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0'

bit 11-8 ILR<3:0>: New CPU Interrupt Priority Level bits

1111 = CPU Interrupt Priority Level is 15

•

•

0001 = CPU Interrupt Priority Level is 1

0000 = CPU Interrupt Priority Level is 0

bit 7-0 **VECNUM<7:0>:** Vector Number of Pending Interrupt bits

11111111 = 255, Reserved; do not use

•

•

.

00001001 = 9, IC1 - Input Capture 1

00001000 = 8, INT0 – External Interrupt 0

00000111 = 7, Reserved; do not use

00000110 = 6, Generic soft error trap

00000101 = 5, DMA Controller error trap

00000100 = 4, Math error trap

00000011 = 3, Stack error trap

00000010 = 2, Generic hard trap

00000001 = 1, Address error trap

00000000 = 0, Oscillator fail trap

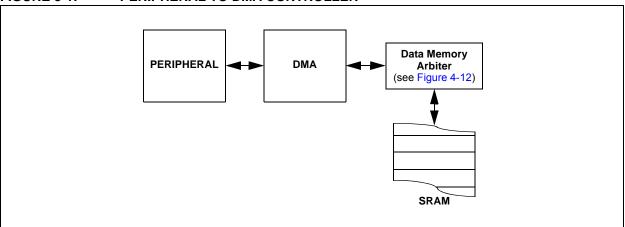
	_	_	-
NI	, 1		

8.0 DIRECT MEMORY ACCESS (DMA)

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Direct Memory Access (DMA)" (DS70348), which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The DMA controller transfers data between Peripheral Data registers and Data Space SRAM


In addition, DMA can access the entire data memory space. The Data Memory Bus Arbiter is utilized when either the CPU or DMA attempts to access SRAM, resulting in potential DMA or CPU stalls.

The DMA controller supports 4 independent channels. Each channel can be configured for transfers to or from selected peripherals. The peripherals supported by the DMA controller include:

- ECAN™
- Analog-to-Digital Converter (ADC)
- · Serial Peripheral Interface (SPI)
- UART
- · Input Capture
- · Output Compare
- DCI
- PMP
- Timers

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: PERIPHERAL TO DMA CONTROLLER

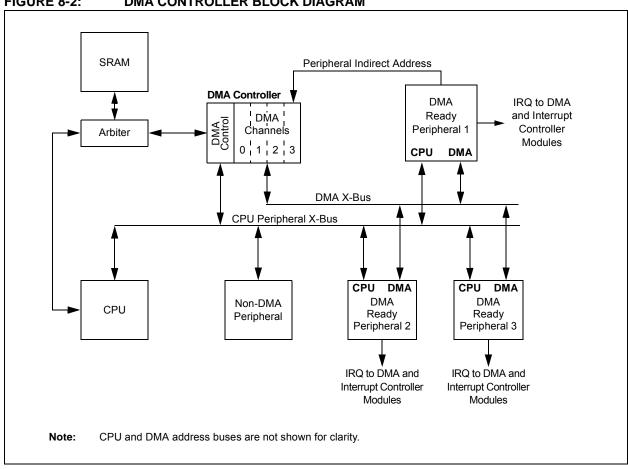
In addition, DMA transfers can be triggered by timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receives a request to transfer data, a simple fixed priority scheme, based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which, it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA controller provides these functional capabilities:

- · Four DMA channels
- Register Indirect with Post-increment Addressing mode
- Register Indirect without Post-increment Addressing mode

- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full block transfer complete
- · Byte or word transfers
- Fixed priority channel arbitration
- Manual (software) or automatic (peripheral DMA requests) transfer initiation
- · One-Shot or Auto-Repeat Block Transfer modes
- Ping-Pong mode (automatic switch between two SRAM start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source
- Debug support features

The peripherals that can utilize DMA are listed in Table 8-1.


TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
INT0 – External Interrupt 0	0000000	_	_
IC1 – Input Capture 1	0000001	0x0144 (IC1BUF)	_
IC2 – Input Capture 2	00000101	0x014C (IC2BUF)	_
IC3 – Input Capture 3	00100101	0x0154 (IC3BUF)	_
IC4 – Input Capture 4	00100110	0x015C (IC4BUF)	_
OC1 – Output Compare 1	0000010	_	0x0906 (OC1R) 0x0904 (OC1RS)
OC2 – Output Compare 2	00000110	_	0x0910 (OC2R) 0x090E (OC2RS)
OC3 – Output Compare 3	00011001	_	0x091A (OC3R) 0x0918 (OC3RS)
OC4 – Output Compare 4	00011010	_	0x0924 (OC4R) 0x0922 (OC4RS)
TMR2 – Timer2	00000111	_	_
TMR3 – Timer3	00001000	_	_
TMR4 – Timer4	00011011	_	_
TMR5 – Timer5	00011100	_	_
SPI1 Transfer Done	00001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
SPI2 Transfer Done	00100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
SPI3 Transfer Done	01011011	0x02A8(SPI3BUF)	0x02A8(SPI3BUF)
UART1RX – UART1 Receiver	00001011	0x0226 (U1RXREG)	_
UART1TX – UART1 Transmitter	00001100	_	0x0224 (U1TXREG)
UART2RX – UART2 Receiver	00011110	0x0236 (U2RXREG)	
UART2TX – UART2 Transmitter	00011111	_	0x0234 (U2TXREG)
UART3RX – UART3 Receiver	01010010	0X0256(U3RXREG)	_
UART3TX – UART3 Transmitter	01010011	_	0X0254(U3TXREG)
UART4RX – UART4 Receiver	01011000	0X02B6(U4RXREG)	
UART4TX – UART4 Transmitter	01011001	_	0X02B4(U4TXREG)

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS (CONTINUED)

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
ECAN1 – RX Data Ready	00100010	0x0440 (C1RXD)	_
ECAN1 – TX Data Request	01000110	_	0x0442 (C1TXD)
ECAN2 – RX Data Ready	00110111	0X0540(C2RXD)	_
ECAN2 – TX Data Request	01000111	_	0X0542(C2TXD)
DCI – Codec Transfer done	00111100	0X0290(RXBUF0)	0X0298(TXBUF0)
ADC1 – ADC1 Convert Done	00001101	0x0300 (ADC1BUF0)	_
ADC2 – ADC2 Convert Done	00010101	0X0340(ADC2BUF0)	_
PMP – PMP Data Move	00101101	0X0608(PMPDAT1)	0X0608(PMPDAT1)

FIGURE 8-2: **DMA CONTROLLER BLOCK DIAGRAM**

8.1 DMA Controller Registers

Each DMA Controller Channel x (where x = 0 through 3) contains the following registers:

- 16-bit DMA Channel x Control Register (DMAxCON)
- 16-bit DMA Channel x IRQ Select Register (DMAxREQ)
- 32-bit DMA Channel x Start Address Register A (DMAxSTA)
- 32-bit DMA Channel x Start Address Register B (DMAxSTB)
- 16-bit DMA Channel x Peripheral Address Register (DMAxPAD)
- 14-bit DMA Channel x Transfer Count Register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA and DSADR) are common to all DMA Controller channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

REGISTER 8-1: DMAXCON: DMA CHANNEL x CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW	_	_	_
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
_	_	AMODE<1:0>		_	_	MODE<1:0>	
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

1 = Channel is enabled

0 = Channel is disabled

bit 14 SIZE: Data Transfer Size bit

1 = Byte

0 = Word

bit 13 **DIR:** Transfer Direction bit (source/destination bus select)

1 = Reads from RAM address, writes to peripheral address

0 = Reads from peripheral address, writes to RAM address

bit 12 HALF: Block Transfer Interrupt Select bit

1 = Initiates interrupt when half of the data has been moved

0 = Initiates interrupt when all of the data has been moved

bit 11 **NULLW:** Null Data Peripheral Write Mode Select bit

1 = Null data write to peripheral in addition to RAM write (DIR bit must also be clear)

0 = Normal operation

bit 10-6 **Unimplemented:** Read as '0'

bit 5-4 AMODE<1:0>: DMA Channel Addressing Mode Select bits

11 = Reserved

10 = Peripheral Indirect mode

01 = Register Indirect without Post-Increment mode

00 = Register Indirect with Post-Increment mode

bit 3-2 Unimplemented: Read as '0'

bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits

11 = One-Shot, Ping-Pong modes are enabled (one block transfer from/to each DMA buffer)

10 = Continuous, Ping-Pong modes are enabled

01 = One-Shot, Ping-Pong modes are disabled

00 = Continuous, Ping-Pong modes are disabled

REGISTER 8-2: DMAXREQ: DMA CHANNEL x IRQ SELECT REGISTER

R/S-0	U-0						
FORCE ⁽¹⁾	_	_	_	_	_	_	_
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
IRQSEL<7:0>								
bit 7							bit 0	

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 FORCE: Force DMA Transfer bit(1)

1 = Forces a single DMA transfer (Manual mode)

0 = Automatic DMA transfer initiation by DMA request

bit 14-8 Unimplemented: Read as '0'

bit 7-0 IRQSEL<7:0>: DMA Peripheral IRQ Number Select bits

01011011 = SPI3 - Transfer done

01011001 = UART4TX - UART4 transmitter

01011000 = UART4RX - UART4 receiver

01010011 = UART3TX - UART3 transmitter

01010010 = UART3RX - UART3 receiver

01000111 = ECAN2 - TX data request

01000110 = ECAN1 – TX data request

00111100 = DCI – Codec transfer done

00110111 = ECAN2 - RX data ready

00101101 = PMP - PMP data move

00100110 = IC4 - Input Capture 4

00100101 = IC3 - Input Capture 3

00100010 = ECAN1 – RX data ready

00100001 = SPI2 – SPI2 transfer done

00011111 = UART2TX - UART2 transmitter

00011110 = UART2RX - UART2 receiver

00011100 = TMR5 - Timer5

00011011 = TMR4 - Timer4

00011010 = OC4 - Output Compare 4

00011001 = OC3 – Output Compare 3

00010101 = ADC2 - ADC2 convert done

00001101 = ADC1 - ADC1 convert done

00001100 = UART1TX - UART1 transmitter

00001011 = UART1RX - UART1 receiver

00001010 = SPI1 - SPI1 transfer done

00001000 = TMR3 - Timer3

00000111 = TMR2 - Timer2

00000110 = OC2 - Output Compare 2

00000101 = IC2 - Input Capture 2

00000010 = OC1 - Output Compare 1

00000001 = IC1 - Input Capture 1

00000000 = INT0 - External Interrupt 0

Note 1: The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).

REGISTER 8-3: DMAXSTAH: DMA CHANNEL X START ADDRESS REGISTER A (HIGH)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
STA<23:16>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

bit 7-0 STA<23:16>: Primary Start Address bits (source or destination)

REGISTER 8-4: DMAXSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
STA<15:8>								
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
STA<7:0>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **STA<15:0>:** Primary Start Address bits (source or destination)

REGISTER 8-5: DMAXSTBH: DMA CHANNEL x START ADDRESS REGISTER B (HIGH)

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
STB<23:16>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STB<23:16>: Secondary Start Address bits (source or destination)

REGISTER 8-6: DMAXSTBL: DMA CHANNEL x START ADDRESS REGISTER B (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
STB<15:8>								
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
STB<7:0>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **STB<15:0>:** Secondary Start Address bits (source or destination)

REGISTER 8-7: DMAXPAD: DMA CHANNEL X PERIPHERAL ADDRESS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PAD<15:8>								
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PAD<7:0>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAXCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			CNT<	13:8> ⁽²⁾		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
CNT<7:0> ⁽²⁾									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: The number of DMA transfers = CNT<13:0> + 1.

REGISTER 8-9: DSADRH: DMA MOST RECENT RAM HIGH ADDRESS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15		_		_	_		bit 8

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
DSADR<23:16>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits

REGISTER 8-10: DSADRL: DMA MOST RECENT RAM LOW ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
DSADR<15:8>									
bit 15									

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
DSADR<7:0>									
bit 7									

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits

REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	ı	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	_	_	_	PWCOL3	PWCOL2	PWCOL1	PWCOL0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-4 **Unimplemented:** Read as '0'

bit 3 **PWCOL3:** Channel 3 Peripheral Write Collision Flag bit

1 = Write collision is detected0 = No write collision is detected

bit 2 PWCOL2: Channel 2 Peripheral Write Collision Flag bit

1 = Write collision is detected0 = No write collision is detected

bit 1 PWCOL1: Channel 1 Peripheral Write Collision Flag bit

1 = Write collision is detected0 = No write collision is detected

bit 0 PWCOL0: Channel 0 Peripheral Write Collision Flag bit

1 = Write collision is detected0 = No write collision is detected

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	_	_	_	RQCOL3	RQCOL2	RQCOL1	RQCOL0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

bit 3 RQCOL3: Channel 3 Transfer Request Collision Flag bit

1 = User FORCE and interrupt-based request collision are detected

0 = No request collision is detected

bit 2 RQCOL2: Channel 2 Transfer Request Collision Flag bit

1 = User FORCE and interrupt-based request collision are detected

0 = No request collision is detected

bit 1 RQCOL1: Channel 1 Transfer Request Collision Flag bit

1 = User FORCE and interrupt-based request collision are detected

0 = No request collision is detected

bit 0 RQCOL0: Channel 0 Transfer Request Collision Flag bit

1 = User FORCE and interrupt-based request collision are detected

0 = No request collision is detected

REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
_	_	_	_	LSTCH<3:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-4 **Unimplemented:** Read as '0'

bit 3-0 LSTCH<3:0>: Last DMA Controller Channel Active Status bits

1111 = No DMA transfer has occurred since system Reset

1110 = Reserved

•

•

•

0100 = Reserved

0011 = Last data transfer was handled by Channel 3

0010 = Last data transfer was handled by Channel 2

0001 = Last data transfer was handled by Channel 1

0000 = Last data transfer was handled by Channel 0

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	_	_	_	PPST3	PPST2	PPST1	PPST0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

bit 3 PPST3: Channel 3 Ping-Pong Mode Status Flag bit

1 = DMASTB3 register is selected0 = DMASTA3 register is selected

bit 2 PPST2: Channel 2 Ping-Pong Mode Status Flag bit

1 = DMASTB2 register is selected0 = DMASTA2 register is selected

bit 1 PPST1: Channel 1 Ping-Pong Mode Status Flag bit

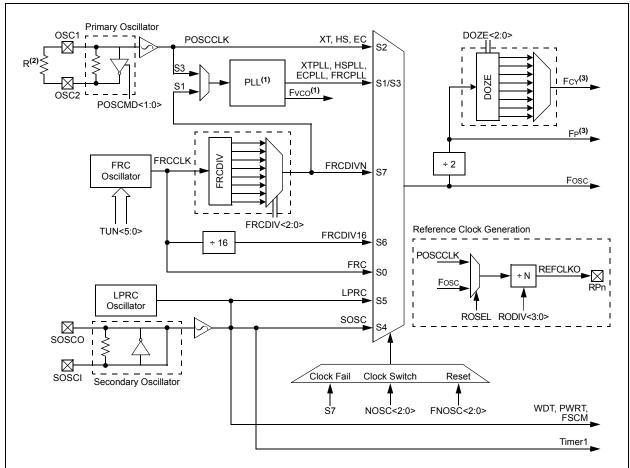
1 = DMASTB1 register is selected0 = DMASTA1 register is selected

bit 0 PPST0: Channel 0 Ping-Pong Mode Status Flag bit

1 = DMASTB0 register is selected0 = DMASTA0 register is selected

N	0	Т	_ (٠.
IV	u		_3	Э.

9.0 OSCILLATOR CONFIGURATION


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Oscillator" (DS70580), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX oscillator system provides:

- On-chip Phase Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources
- On-the-fly clock switching between various clock sources
- · Doze mode for system power savings
- Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- · Configuration bits for clock source selection

A simplified diagram of the oscillator system is shown in Figure 9-1.

FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

- Note 1: See Figure 9-2 for PLL and Fvco details.
 - 2: If the oscillator is used with XT or HS modes, an external parallel resistor with the value of 1 M Ω must be connected.
 - 3: The term, FP, refers to the clock source for all peripherals, while FCY refers to the clock source for the CPU. Throughout this document, FCY and FP are used interchangeably, except in the case of Doze mode. FP and FCY will be different when Doze mode is used with a doze ratio of 1:2 or lower.

9.1 **CPU Clocking System**

The dsPIC33EPXXXGM3XX/6XX/7XX devices provides seven system clock options:

- · Fast RC (FRC) Oscillator
- FRC Oscillator with Phase Locked Loop (PLL)
- · FRC Oscillator with Postscaler
- · Primary (XT, HS or EC) Oscillator
- · Primary Oscillator with PLL
- · Low-Power RC (LPRC) Oscillator
- · Secondary (LP) Oscillator

Instruction execution speed or device operating frequency, Fcy, is given by Equation 9-1.

EQUATION 9-1: DEVICE OPERATING FREQUENCY

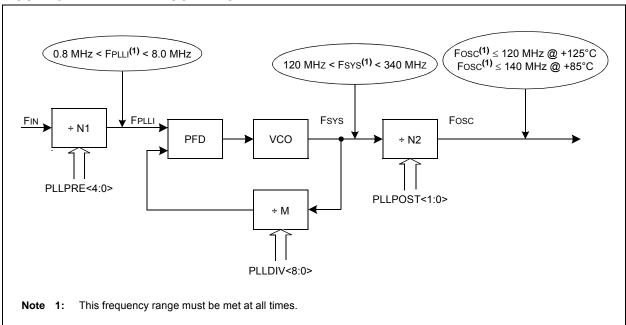

$$FCY = FOSC/2$$

Figure 9-2 is a block diagram of the PLL module.

Equation 9-2 provides the relationship between input frequency (FIN) and output frequency (FOSC).

Equation 9-3 provides the relationship between input frequency (FIN) and VCO frequency (FSYS).

FIGURE 9-2: PLL BLOCK DIAGRAM

EQUATION 9-2: Fosc CALCULATION

$$Fosc = Fin \times \left(\frac{M}{N1 \times N2}\right) = Fin \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2) \times 2(PLLPOST + 1)}\right)$$
 Where:
$$N1 = PLLPRE + 2$$

$$N2 = 2 \times (PLLPOST + 1)$$

$$M = PLLDIV + 2$$

EQUATION 9-3: FVCO CALCULATION

$$FSYS = FIN \times \left(\frac{M}{N1}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2)}\right)$$

Where:

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Notes
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (XT)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

^{2:} This is the default oscillator mode for an unprogrammed (erased) device.

OSCCON: OSCILLATOR CONTROL REGISTER (1,3) **REGISTER 9-1:**

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
_		COSC<2:0>		_		NOSC<2:0> ⁽²⁾	
bit 15							bit 8

R/W-0	R/W-0	R-0	U-0	R/W-0	U-0	R/W-0	R/W-0
CLKLOCK	IOLOCK	LOCK	_	CF ⁽⁵⁾	_	LPOSCEN	OSWEN
bit 7 bit 0							

Legend:	y = Value set from Configuration bits on POR				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15 Unimplemented: Read as '0'

bit 14-12 **COSC<2:0>:** Current Oscillator Selection bits (read-only)

111 = Fast RC Oscillator (FRC) with Divide-by-N

110 = Fast RC Oscillator (FRC) with Divide-by-16

101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC)(4)

011 = Primary Oscillator (MS, HS, EC) with PLL

010 = Primary Oscillator (MS, HS, EC)

001 = Fast RC Oscillator (FRC) Divided by N and PLL

000 = Fast RC Oscillator (FRC)

bit 11 Unimplemented: Read as '0'

bit 10-8 NOSC<2:0>: New Oscillator Selection bits⁽²⁾

111 = Fast RC Oscillator (FRC) with Divide-by-N

110 = Fast RC Oscillator (FRC) with Divide-by-16

101 = Low-Power RC Oscillator (LPRC)

100 = Secondary Oscillator (SOSC)(4)

011 = Primary Oscillator (MS, HS, EC) with PLL

010 = Primary Oscillator (MS, HS, EC)

001 = Fast RC Oscillator (FRC) Divided by N and PLL

000 = Fast RC Oscillator (FRC)

bit 7 **CLKLOCK:** Clock Lock Enable bit

> 1 = If FCKSM0 = 1, then clock and PLL configurations are locked; if FCKSM0 = 0, then clock and PLL configurations may be modified

0 = Clock and PLL selections are not locked, configurations may be modified

bit 6 IOLOCK: I/O Lock Enable bit

1 = I/O lock is active

0 = I/O lock is not active

Writes to this register require an unlock sequence. Refer to the "dsPIC33E/PIC24E Family Reference Manual", "Oscillator" (DS70580), available from the Microchip web site for details.

- 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
- 3: This register resets only on a Power-on Reset (POR).
- 4: Secondary Oscillator (SOSC) selection is valid on 64-pin and 100-pin devices and defaults to FRC/N on 44-pin devices.
- 5: Only '0' should be written to the CF bit in order to clear it. If a '1' is written to CF, it will have the same effect as a detected clock failure, including an oscillator fail trap.

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- bit 5 LOCK: PLL Lock Status bit (read-only) 1 = Indicates that PLL is in lock or PLL start-up timer is satisfied 0 = Indicates that PLL is out of lock, start-up timer is in progress or PLL is disabled bit 4 Unimplemented: Read as '0' **CF:** Clock Fail Detect bit (read/clear by application)⁽⁵⁾ bit 3 1 = FSCM has detected clock failure 0 = FSCM has not detected clock failure Unimplemented: Read as '0' bit 2 bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit 1 = Enables Secondary Oscillator (SOSC) 0 = Disables Secondary Oscillator bit 0 **OSWEN:** Oscillator Switch Enable bit 1 = Requests oscillator switch to selection specified by the NOSC<2:0> bits
- **Note 1:** Writes to this register require an unlock sequence. Refer to the "dsPIC33E/PIC24E Family Reference Manual", "Oscillator" (DS70580), available from the Microchip web site for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transitional clock source between the two PLL modes.
 - 3: This register resets only on a Power-on Reset (POR).

0 = Oscillator switch is complete

- **4:** Secondary Oscillator (SOSC) selection is valid on 64-pin and 100-pin devices and defaults to FRC/N on 44-pin devices.
- 5: Only '0' should be written to the CF bit in order to clear it. If a '1' is written to CF, it will have the same effect as a detected clock failure, including an oscillator fail trap.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER(2)

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI		DOZE<2:0>(3)		DOZEN(1,4)		FRCDIV<2:0>	
bit 15							bit 8

R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLPOS	ST<1:0>	_	PLLPRE<4:0>				
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 ROI: Recover on Interrupt bit

1 = Interrupts will clear the DOZEN bit

0 = Interrupts will have no effect on the DOZEN bit

bit 14-12 **DOZE<2:0>:** Processor Clock Reduction Select bits⁽³⁾

111 = Fcy divided by 128

110 = Fcy divided by 64

101 = Fcy divided by 32

100 = Fcy divided by 16

011 = Fcy divided by 8 (default)

010 = Fcy divided by 4

001 = Fcy divided by 2

000 = Fcy divided by 1

bit 11 **DOZEN:** Doze Mode Enable bit^(1,4)

1 = DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks

0 = Processor clock and peripheral clock ratio forced to 1:1

bit 10-8 FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits

111 = FRC divided by 256

110 = FRC divided by 64

101 = FRC divided by 32

100 = FRC divided by 16

011 = FRC divided by 8

010 = FRC divided by 4

001 = FRC divided by 2

000 = FRC divided by 1 (default)

bit 7-6 PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as 'N2', PLL postscaler)

11 = Output divided by 8

10 = Reserved

01 = Output divided by 4 (default)

00 = Output divided by 2

bit 5 **Unimplemented:** Read as '0'

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

- 2: This register resets only on a Power-on Reset (POR).
- **3:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
- 4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾ (CONTINUED)

bit 4-0

PLLPRE<4:0>: PLL Phase Detector Input Divider Select bits (also denoted as 'N1', PLL prescaler)

11111 = Input divided by 33

.

.

00001 = Input divided by 3

00000 = Input divided by 2 (default)

- Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.
 - 2: This register resets only on a Power-on Reset (POR).
 - **3:** The DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - **4:** The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	_	_	_	_	_	PLLDIV<8>
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	
PLLDIV<7:0>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-9 **Unimplemented:** Read as '0'

bit 8-0 PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier)

111111111 = 513

•

٠

000110000 = 50 (default)

•

•

•

00000010 = 4

000000001 = 3

000000000 = 2

Note 1: This register is reset only on a Power-on Reset (POR).

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			TUN	I<5:0>		
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-6 bit 5-0	Unimplemented: Read as '0' TUN<5:0>: FRC Oscillator Tuning bits 111111 = Center frequency - 0.047% 100001 = Center frequency - 1.453% 100000 = Center frequency - 1.5% (7.355 MHz) 011111 = Center frequency + 1.5% (7.385 MHz) 011110 = Center frequency + 1.453% •
	•
	000001 = Center frequency + 0.047% 000000 = Center frequency (7.3728 MHz nominal)

Note 1: This register resets only on a Power-on Reset (POR).

REGISTER 9-5: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROON	_	ROSSLP	ROSEL	RODIV<3:0> ⁽¹⁾			
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 ROON: Reference Oscillator Output Enable bit

1 = Reference oscillator output is enabled on the REFCLK pin(2)

0 = Reference oscillator output disabled

bit 14 Unimplemented: Read as '0'

bit 13 ROSSLP: Reference Oscillator Run in Sleep bit

1 = Reference oscillator output continues to run in Sleep

0 = Reference oscillator output is disabled in Sleep

bit 12 ROSEL: Reference Oscillator Source Select bit

1 = Oscillator crystal is used as the reference clock

0 = System clock is used as the reference clock

bit 11-8 RODIV<3:0>: Reference Oscillator Divider bits⁽¹⁾

1111 = Reference clock divided by 32,768

1110 = Reference clock divided by 16,384

1101 = Reference clock divided by 8,192

1100 = Reference clock divided by 4,096

1011 = Reference clock divided by 2,048

1010 = Reference clock divided by 1,024

1001 = Reference clock divided by 512

1000 = Reference clock divided by 256

0111 = Reference clock divided by 128

0110 = Reference clock divided by 64

0101 = Reference clock divided by 32

0100 = Reference clock divided by 16

0011 = Reference clock divided by 8

0010 = Reference clock divided by 4

0001 = Reference clock divided by 2

0000 = Reference clock

bit 7-0 **Unimplemented:** Read as '0'

Note 1: The reference oscillator output must be disabled (ROON = 0) before writing to these bits.

2: This pin is remappable. See Section 11.4 "Peripheral Pin Select (PPS)" for more information.

10.0 POWER-SAVING FEATURES

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Watchdog Timer and Power-Saving Modes" (DS70615), which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of peripherals being clocked constitutes lower consumed power.

dsPIC33EPXXXGM3XX/6XX/7XX devices can manage power consumption in four ways:

- · Clock Frequency
- · Instruction-Based Sleep and Idle modes
- · Software-Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

The dsPIC33EPXXXGM3XX/6XX/7XX devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSCx bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

The dsPIC33EPXXXGM3XX/6XX/7XX devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the Assembler Include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into Sleep mode
PWRSAV #IDLE_MODE ; Put the device into Idle mode

10.2.1 SLEEP MODE

The following occurs in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals can continue to operate. This includes items such as the Input Change Notification (ICN) on the I/O ports or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled

The device wakes up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- · Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

For optimal power savings, the internal regulator and the Flash regulator can be configured to go into Standby mode when Sleep mode is entered by clearing the VREGS (RCON<8>) and VREGSF (RCON<11>) bits (default configuration).

If the application requires a faster wake-up time, and can accept higher current requirements, the VREGS (RCON<8>) and VREGSF (RCON<11>) bits can be set to keep the internal regulator and the Flash regulator active during Sleep mode.

10.2.2 IDLE MODE

The following occurs in Idle mode:

- · The CPU stops executing instructions
- · The WDT is automatically cleared
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- · Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction or the first instruction in the Interrupt Service Routine (ISR).

All peripherals also have the option to discontinue operation when Idle mode is entered to allow for increased power savings. This option is selectable in the control register of each peripheral; for example, the TSIDL bit in the Timer1 Control register (T1CON<13>).

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate.

Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU Idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled, using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	DCIMD
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD ⁽¹⁾	C1MD ⁽¹⁾	AD1MD
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	T5MD: Timer5 Module Disable bit
	1 = Timer5 module is disabled
	0 = Timer5 module is enabled
bit 14	T4MD: Timer4 Module Disable bit
	1 = Timer4 module is disabled
	0 = Timer4 module is enabled
bit 13	T3MD: Timer3 Module Disable bit
	1 = Timer3 module is disabled
	0 = Timer3 module is enabled
bit 12	T2MD: Timer2 Module Disable bit
	1 = Timer2 module is disabled
	0 = Timer2 module is enabled
bit 11	T1MD: Timer1 Module Disable bit
	1 = Timer1 module is disabled
	0 = Timer1 module is enabled
bit 10	QEI1MD: QEI1 Module Disable bit
	1 = QEI1 module is disabled
	0 = QEI1 module is enabled
bit 9	PWMMD: PWM Module Disable bit
	1 = PWM module is disabled
	0 = PWM module is enabled
bit 8	DCIMD: DCI Module Disable bit
	1 = DCI module is disabled
	0 = DCI module is enabled
bit 7	I2C1MD: I2C1 Module Disable bit
	1 = I2C1 module is disabled 0 = I2C1 module is enabled
h:+ C	U2MD: UART2 Module Disable bit
bit 6	
	1 = UART2 module is disabled 0 = UART2 module is enabled
bit 5	U1MD: UART1 Module Disable bit
טונ ט	1 = UART1 module is disabled
	0 = UART1 module is disabled
	5 State iniodulo lo chabled

Note 1: These bits are available on dsPIC33EPXXXGM6XX/7XX devices only.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

bit 4	SPI2MD: SPI2 Module Disable bit
	1 = SPI2 module is disabled
	0 = SPI2 module is enabled
bit 3	SPI1MD: SPI1 Module Disable bit
	1 = SPI1 module is disabled
	0 = SPI1 module is enabled
bit 2	C2MD: ECAN2 Module Disable bit(1)
	1 = ECAN2 module is disabled
	0 = ECAN2 module is enabled
bit 1	C1MD: ECAN1 Module Disable bit(1)
	1 = ECAN1 module is disabled
	0 = ECAN1 module is enabled
bit 0	AD1MD: ADC1 Module Disable bit
	1 = ADC1 module is disabled
	0 = ADC1 module is enabled

Note 1: These bits are available on dsPIC33EPXXXGM6XX/7XX devices only.

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| OC8MD | OC7MD | OC6MD | OC5MD | OC4MD | OC3MD | OC2MD | OC1MD |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **IC8MD:IC1MD:** Input Capture x (x = 1-8) Module Disable bits

1 = Input Capture x module is disabled0 = Input Capture x module is enabled

bit 7-0 **OC8MD:OC1MD:** Output Compare x (x = 1-8) Module Disable bits

1 = Output Compare x module is disabled0 = Output Compare x module is enabled

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
T9MD	T8MD	T7MD	T6MD	_	CMPMD	RTCCMD	PMPMD
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCMD	DACMD	QEI2MD	PWM2MD	U3MD	I2C3MD	I2C2MD	ADC2MD
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	T9MD: Timer9 Module Disable bit
	1 = Timer9 module is disabled
	0 = Timer9 module is enabled
bit 13	T8MD: Timer8 Module Disable bit
	1 = Timer8 module is disabled
	0 = Timer8 module is enabled
bit 14	T7MD: Timer7 Module Disable bit
	1 = Timer7 module is disabled
	0 = Timer7 module is enabled
bit 12	T6MD: Timer6 Module Disable bit
	1 = Timer6 module is disabled
	0 = Timer6 module is enabled
bit 11	Unimplemented: Read as '0'
bit 10	CMPMD: Comparator Module Disable bit
	1 = Comparator module is disabled
	0 = Comparator module is enabled
bit 9	RTCCMD: RTCC Module Disable bit
	1 = RTCC module is disabled
	0 = RTCC module is enabled
bit 8	PMPMD: PMP Module Disable bit
	1 = PMP module is disabled
	0 = PMP module is enabled
bit 7	CRCMD: CRC Module Disable bit
	1 = CRC module is disabled
	0 = CRC module is enabled
bit 6	DACMD: DAC Module Disable bit
	1 = DAC module is disabled
	0 = DAC module is enabled
bit 5	QEI2MD: QEI2 Module Disable bit
	1 = QEI2 module is disabled 0 = QEI2 module is enabled
L:L A	
bit 4	PWM2MD: PWM2 Module Disable bit
	1 = PWM2 module is disabled 0 = PWM2 module is enabled
bit 3	U3MD: UART3 Module Disable bit
DIL 3	1 = UART3 module is disabled
	0 = UART3 module is enabled

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

bit 2 I2C3MD: I2C3 Module Disable bit

bit 1

1 = I2C3 module is disabled 0 = I2C3 module is enabled

I2C2MD: I2C2 Module Disable bit

1 = I2C2 module is disabled 0 = I2C2 module is enabled

bit 0 ADC2MD: ADC2 Module Disable bit

1 = ADC2 module is disabled0 = ADC2 module is enabled

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	-	_	-	_
bit 15							bit 8

U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	U-0	U-0
_	_	U4MD	_	REFOMD	CTMUMD	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-6 **Unimplemented:** Read as '0'

bit 5 U4MD: UART4 Module Disable bit

1 = UART4 module is disabled 0 = UART4 module is enabled

bit 4 **Unimplemented:** Read as '0'

bit 3 REFOMD: Reference Clock Module Disable bit

1 = Reference clock module is disabled0 = Reference clock module is enabled

bit 2 **CTMUMD:** CTMU Module Disable bit

1 = CTMU module is disabled0 = CTMU module is enabled

bit 1-0 **Unimplemented:** Read as '0'

REGISTER 10-5: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_		1		I	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 **PWM6MD:PWM1MD:** PWMx (x = 1-6) Module Disable bit

1 = PWMx module is disabled 0 = PWMx module is enabled

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 10-6: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0
_	_	_	DMA0MD ⁽¹⁾ DMA1MD ⁽¹⁾ DMA2MD ⁽¹⁾ DMA3MD ⁽¹⁾	PTGMD	_	ı	_
bit 7							bit 0

Legend	
--------	--

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-5 **Unimplemented:** Read as '0'

bit 4 **DMA0MD:** DMA0 Module Disable bit⁽¹⁾

1 = DMA0 module is disabled 0 = DMA0 module is enabled

DMA1MD: DMA1 Module Disable bit(1)

1 = DMA1 module is disabled 0 = DMA1 module is enabled

DMA2MD: DMA2 Module Disable bit(1)

1 = DMA2 module is disabled0 = DMA2 module is enabled

DMA3MD: DMA3 Module Disable bit⁽¹⁾

1 = DMA3 module is disabled 0 = DMA3 module is enabled

bit 3 **PTGMD:** PTG Module Disable bit

1 = PTG module is disabled0 = PTG module is enabled

bit 2-0 **Unimplemented:** Read as '0'

Note 1: This single bit enables and disables all four DMA channels.

11.0 I/O PORTS

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "I/O Ports" (DS70598) which is available from the Microchip web site (www.microchip.com).

> 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Many of the device pins are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of

the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The Data Direction register (TRISx) determines whether the pin is an input or an output. If the Data Direction register bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device are disabled. This means the corresponding LATx and TRISx registers, and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

Peripheral Module Output Multiplexers Peripheral Input Data Peripheral Module Enable I/O Peripheral Output Enable Output Enable Peripheral Output Data **PIO Module** Output Data Read TRIS Data Bus D I/O Pin WR TRIS CK ₹ TRIS Latch D Q WR LAT + CK 🔻 WR PORT Data Latch Read LAT Input Data Read PORT

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs other than VDD by using external pull-up resistors. The maximum open-drain voltage allowed on any pin is the same as the maximum VIH specification for that particular pin.

See the "Pin Diagrams" section for the available 5V tolerant pins and Table 33-10 for the maximum VIH specification for each pin.

11.2 Configuring Analog and Digital Port Pins

The ANSELx registers control the operation of the analog port pins. The port pins that are to function as analog inputs or outputs must have their corresponding ANSELx and TRISx bits set. In order to use port pins for I/O functionality with digital modules, such as timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

Pins with analog functions affected by the ANSELx registers are listed with a buffer type of analog in the Pinout I/O Descriptions (see Table 1-1 in **Section 1.0** "Device Overview").

If the TRISx bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADCx module or comparator module.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP, as shown in Example 11-1.

11.3 Input Change Notification (ICN)

The Input Change Notification function of the I/O ports allows devices to generate interrupt requests to the processor in response to a Change-of-State (COS) on selected input pins. This feature can detect input Change-of-States (COS), even in Sleep mode when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a Change-of-State.

Three control registers are associated with the ICN functionality of each I/O port. The CNENx registers contain the ICN interrupt enable control bits for each of the input pins. Setting any of these bits enables an ICN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups and pull-downs act as a current source or sink source connected to the pin, and eliminate the need for external resistors when pushbutton or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note: Pull-ups and pull-downs on Input Change Notification pins should always be disabled when the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

VOM	0xFF00, W0	<pre>; Configure PORTB<15:8></pre>
		; as inputs
VOM	W0, TRISB	; and PORTB<7:0>
		; as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction
1		

11.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option.

Peripheral Pin Select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPln", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPl" indicates pins that support remappable input functions only.

11.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

In comparison, some digital-only peripheral modules are never included in the Peripheral Pin Select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C and the PWM. A similar requirement excludes all modules with analog inputs, such as the A/D Converter.

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral Pin Select features are controlled through two sets of SFRs: one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.4.4 INPUT MAPPING

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-30). Each register contains sets of 7-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 7-bit value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of Peripheral Pin Selections supported by the device.

For example, Figure 11-2 illustrates remappable pin selection for the U1RX input.

FIGURE 11-2: REMAPPABLE INPUT FOR U1RX

11.4.4.1 Virtual Connections

dsPIC33EPXXXGM3XX/6XX/7XX devices support virtual (internal) connections to the output of the op amp/comparator module (see Figure 26-1 in Section 26.0 "Op Amp/Comparator Module") and the PTG module (see Section 25.0 "Peripheral Trigger Generator (PTG) Module").

In addition, dsPIC33EPXXXGM3XX/6XX/7XX devices support virtual connections to the filtered QEI module inputs: FINDX1, FHOME1, FINDX2 and FHOME2 (see Figure 17-1 in Section 17.0 "Quadrature Encoder Interface (QEI) Module").

Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<6:0> bits of the RPINR12 register to the value of `b00000001, the output of the analog comparator C1OUT will be connected to the PWM Fault 1 input, which allows the analog comparator to trigger PWM Faults without the use of an actual physical pin on the device.

Virtual connection to the QEI module allows peripherals to be connected to the QEI digital filter input. To utilize this filter, the QEI module must be enabled and its inputs must be connected to a physical RPn pin. Example 11-2 illustrates how the input capture module can be connected to the QEI digital filter.

EXAMPLE 11-2: CONNECTING IC1 TO THE HOME1 QEI1 DIGITAL FILTER INPUT ON PIN 43

```
RPINR15 = 0x2500; /* Connect the QEI1 HOME1 input to RP37 (pin 43) */
RPINR7 = 0x009; /* Connect the IC1 input to the digital filter on the FHOME1 input */
QEI1IOC = 0x4000; /* Enable the QEI digital filter */
QEI1CON = 0x8000; /* Enable the QEI module */
```

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<6:0>
External Interrupt 2	INT2	RPINR1	INT2R<6:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<6:0>
nput Capture 1	IC1	RPINR7	IC1R<6:0>
nput Capture 2	IC2	RPINR7	IC2R<6:0>
nput Capture 3	IC3	RPINR8	IC3R<6:0>
nput Capture 4	IC4	RPINR8	IC4R<6:0>
nput Capture 5	IC5	RPINR9	IC5R<6:0>
nput Capture 6	IC6	RPINR9	IC6R<6:0>
nput Capture 7	IC7	RPINR10	IC7R<6:0>
nput Capture 8	IC8	RPINR10	IC8R<6:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<6:0>
PWM Fault 1	FLT1	RPINR12	FLT1R<6:0>
PWM Fault 2	FLT2	RPINR12	FLT2R<6:0>
QEI1 Phase A	QEA1	RPINR14	QEA1R<6:0>
QEI1 Phase B	QEB1	RPINR14	QEB1R<6:0>
QEI1 Index	INDX1	RPINR 15	INDX1R<6:0>
QEI1 Home	HOME1	RPINR15	HOM1R<6:0>
QEI2 Phase A	QEA2	RPINR16	QEA2R<6:0>
QEI2 Phase B	QEB2	RPINR16	QEB2R<6:0>
QEI2 Index	INDX2	RPINR17	INDX2R<6:0>
QEI2 Home	HOME2	RPINR17	HOM2R<6:0>
JART1 Receive	U1RX	RPINR18	U1RXR<6:0>
JART2 Receive	U2RX	RPINR19	U2RXR<6:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<6:0>
SPI2 Clock Input	SCK2	RPINR22	SCK2R<6:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<6:0>
OCI Data Input	CSDI	RPINR24	CSDIR>6:0>
OCI Clock Input	CSCK	RPINR24	CSCKR<6:0>
OCI Frame Synchronization Input	COFS	RPINR25	COFSR<6:0>
CAN1 Receive ⁽²⁾	C1RX	RPINR26	C1RXR<6:0>
CAN2 Receive ⁽²⁾	C2RX	RPINR26	C2RXR<6:0>
JART3 Receive	U3RX	RPINR27	U3RXR<6:0>
JART3 Clear-to-Send	U3CTS	RPINR27	U3CTSR<6:0>
JART4 Receive	U4RX	RPINR28	U4RXR<6:0>
JART4 Clear-to-Send	U4CTS	RPINR28	U4CTSR<6:0>
SPI3 Data Input	SDI3	RPINR29	SDI3R<6:0>
SPI3 Clock Input	SCK3	RPINR29	SCK3R<6:0>
SPI3 Slave Select	SS3	RPINR 30	SS3R<6:0>

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

^{2:} This input is available on dsPIC33EPXXXGM6XX/7XX devices only.

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION) (CONTINUED)

•		,
Function Name	Register	Configuration Bits
SYNCI1	RPINR37	SYNCI1R<6:0>
DTCMP1	RPINR38	DTCMP1R<6:0>
DTCMP2	RPINR39	DTCMP2R<6:0>
DTCMP3	RPINR39	DTCMP3R<6:0>
DTCMP4	RPINR40	DTCMP4R<6:0>
DTCMP5	RPINR40	DTCMP5R<6:0>
DTCMP6	RPINR41	DTCMP6R<6:0>
	SYNCI1 DTCMP1 DTCMP2 DTCMP3 DTCMP4 DTCMP5	SYNCI1 RPINR37 DTCMP1 RPINR38 DTCMP2 RPINR39 DTCMP3 RPINR39 DTCMP4 RPINR40 DTCMP5 RPINR40

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger input buffers.

^{2:} This input is available on dsPIC33EPXXXGM6XX/7XX devices only.

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES

eriphera Select In egister \	nput	Input/ Output	Pin Assignment	Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignm	
000 00	000	I	Vss	010 1100	ı	RPI44	
000 00	001	I	CMP1 ⁽¹⁾	010 1101	I	RPI45	
000 00	10	I	CMP2 ⁽¹⁾	010 1110	I	RPI46	
000 00)11	I	CMP3 ⁽¹⁾	010 1111	I	RPI47	
000 01	.00	I	CMP4 ⁽¹⁾	011 0000	I/O	RP48	
000 01	.01	_	_	011 0001	I/O	RP49	
000 01	.10	ı	PTGO30 ⁽¹⁾	011 0010	I	RPI50	
000 01	.11	I	PTGO31 ⁽¹⁾	011 0011	I	RPI51	
000 10	000	I	INDX1 ⁽¹⁾	011 0100	I	RPI52	
000 10	001	I	HOME1 ⁽¹⁾	011 0101	I	RPI53	
000 10	10	I	INDX2 ⁽¹⁾	011 0110	I/O	RP54	
000 10)11	I	HOME2 ⁽¹⁾	011 0111	I/O	RP55	
000 11	.00	I	CMP5 ⁽¹⁾	011 1000	I/O	RP56	
000 11	.01	_	_	011 1001	I/O	RP57	
000 11	.10	_	_	011 1010	ı	RPI58	
000 11	.11	_	_	011 1011	_	_	
001 00	000	I	RPI16	011 1100	ı	RPI60	
001 00	001	I	RPI17	011 1101	I	RPI61	
001 00	10	I	RPI18	011 1110	_	_	
001 00)11	I	RPI19	011 1111	ı	RPI 63	
001 01	.00	I/O	RP20	100 0000	_	_	
001 01	.01	_	_	100 0001	_	_	
001 01	.10	_	_	100 0010	_	_	
001 01	.11	_	_	100 0011	_	_	
001 10	000	I	RPI24	100 0100	_	_	
001 10	001	I	RPI25	100 0101	I/O	RP69	
001 10	10	_	_	100 0110	I/O	RP70	
001 10)11	I	RPI27	100 0111	_	_	
001 11	.00	I	RPI28	100 1000	ı	RPI72	
001 11	.01	_	_	100 1001	_		
001 11	.10	_	_	100 1010			
001 11	.11	_		100 1011	_		
010 00	000	I	RPI32	100 1100	I	RPI76	
010 00	001	I	RPI33	100 1101	I	RPI77	
010 00	10	I	RPI34	100 1110			
010 00	11	I/O	RP35	100 1111	_		
010 01	.00	I/O	RP36	101 0000	I	RPI80	
010 01	.01	I/O	RP37	101 0001	I/O	RP81	
010 01	.10	I/O	RP38	101 0010	_	_	
010 01	.11	I/O	RP39	101 0011	_		
010 10	000	I/O	RP40	101 0100	_	_	

Legend: Shaded rows indicate PPS input register values that are unimplemented.

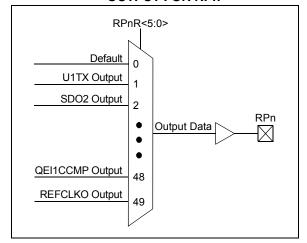
Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)

Peripheral Pin		ELECTION FOR SEL
Select Input Register Value	Input/ Output	Pin Assignment
010 1001	I/O	RP41
010 1010	I/O	RP42
010 1011	I/O	RP43
101 1000		_
101 1001		
101 1010	_	_
101 1011		_
101 1100	_	_
101 1101	_	_
101 1110	_	RPI94
101 1111	I	RPI95
110 0000		RPI96
110 0001	I/O	RP97
110 0010		_
110 0011		_
110 0100		_
110 0101		_
110 0110		_
110 0111		_
110 1000	_	_
110 1001	_	_
110 1010		_
110 1011	_	_

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
101 0101	_	_
101 0110	_	_
101 0111	_	
110 1100	_	_
110 1101	_	l
110 1110	_	
110 1111	_	
111 0000	1	RPI112
111 0001	I/O	RP113
111 0010	_	_
111 0011	_	_
111 0100	_	_
111 0101	_	_
111 0110	I/O	RP118
111 0111	I	RPI119
111 1000	I/O	RP120
111 1001	I	RPI121
111 1010		
111 1011		_
111 1100	I	RPI124
111 1101	I/O	RP125
111 1110	I/O	RP126
111 1111	I/O	RP127

Legend: Shaded rows indicate PPS input register values that are unimplemented.


Note 1: See Section 11.4.4.1 "Virtual Connections" for more information on selecting this pin assignment.

11.4.5 OUTPUT MAPPING

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6-bit fields, with each set associated with one RPn pin (see Register 11-31 through Register 11-43). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the output register Reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

FIGURE 11-3: MULTIPLEXING REMAPPABLE OUTPUT FOR RPn

11.4.5.1 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardware-enforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn pins is possible. This includes both many-to-one and one-to-many mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

Function	RPnR<5:0>	Output Name			
Default Port	000000	RPn tied to Default Pin			
U1TX	000001	RPn tied to UART1 Transmit			
U2TX	000011	RPn tied to UART2 Transmit			
SDO2	001000	RPn tied to SPI2 Data Output			
SCK2	001001	RPn tied to SPI2 Clock Output			
SS2	001010	RPn tied to SPI2 Slave Select			
CSDO	001011	RPn tied to DCI Data Output			
CSCK	001100	RPn tied to DCI Clock Output			
COFS	001101	RPn tied to DCI Frame Synch			
C1TX	001110	RPn tied to CAN1 Transmit			
C2TX	001111	RPn tied to CAN2 Transmit			
OC1	010000	RPn tied to Output Compare 1 Output			
OC2	010001	RPn tied to Output Compare 2 Output			
OC3	010010	RPn tied to Output Compare 3 Output			
OC4	010011	RPn tied to Output Compare 4 Output			
OC5	010100	RPn tied to Output Compare 5 Output			
OC6	010101	RPn tied to Output Compare 6 Output			
OC7	010110	RPn tied to Output Compare 7 Output			
OC8	010111	RPn tied to Output Compare 8 Output			
C1OUT	011000	RPn tied to Comparator Output 1			
C2OUT	011001	RPn tied to Comparator Output 2			
C3OUT	011010	RPn tied to Comparator Output 3			
U3TX	011011	RPn tied to UART3 Transmit			
U3RTS	011100	RPn tied to UART3 Ready-to-Send			
U4TX	011101	RPn tied to UART4 Transmit			
U4RTS	011110	RPn tied to UART4 Ready-to-Send			
SDO3	011111	RPn tied to SPI3 Slave Output			
SCK3	100000	RPn tied to SPI3 Clock Output			
SS3	100001	RPn tied to SPI3 Slave Select			
SYNCO1	101101	RPn tied to PWM Primary Time Base Sync Output			
SYNCO2	101110	RPn tied to PWM Secondary Time Base Sync Output			
QEI1CCMP	101111	RPn tied to QEI1 Counter Comparator Output			
QEI2CCMP	110000	RPn tied to QEI2 Counter Comparator Output			
REFCLKO	110001	RPn tied to Reference Clock Output			
C4OUT	110010	RPn tied to Comparator Output 4			
C5OUT	110011	RPn tied to Comparator Output 5			

11.5 High-Voltage Detect

dsPIC33EPXXXGM3XX/6XX/7XX devices contain High-Voltage Detection (HVD) which monitors the VCAP voltage. The HVD is used to monitor the VCAP supply voltage to ensure that an external connection does not raise the value above a safe level (~2.4V). If high core voltage is detected, all I/Os are disabled and put in a tri-state condition. The device remains in this I/O tristate condition as long as the high-voltage condition is present.

11.6 I/O Helpful Tips

- 1. In some cases, certain pins, as defined in Table 33-10 under "Injection Current", have internal protection diodes to VDD and Vss. The term, "Injection Current", is also referred to as "Clamp Current". On designated pins with sufficient external current-limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings, with respect to the Vss and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and Vss power rails, may affect the ADC accuracy by four to six counts.
- 2. I/O pins that are shared with any analog input pin (i.e., ANx) are always analog pins by default after any Reset. Consequently, configuring a pin as an analog input pin automatically disables the digital input pin buffer and any attempt to read the digital input level by reading PORTx or LATx will always return a '0', regardless of the digital logic level on the pin. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the Analog Pin Configuration registers in the I/O ports module, (i.e., ANSELx) by setting the appropriate bit that corresponds to that I/O port pin to a '0'.

Note: Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.

- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in this data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-to-right. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.
- 4. Each pin has an internal weak pull-up resistor and pull-down resistor that can be configured using the CNPUx and CNPDx registers, respectively. These resistors eliminate the need for external resistors in certain applications. The internal pull-up is up to ~(VDD-0.8), not VDD. This value is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specifications. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH and at or below the VOL levels. However, for LEDs, unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of this data sheet. For example:

VOH = 2.4V @ IOH = -8 mA and VDD = 3.3V The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VoH/IOH graphs in Section 33.0 "Electrical Characteristics" for additional information.

- 6. The Peripheral Pin Select (PPS) pin mapping rules are as follows:
 - a) Only one "output" function can be active on a given pin at any time, regardless if it is a dedicated or remappable function (one pin, one output).
 - b) It is possible to assign a "remappable output" function to multiple pins and externally short or tie them together for increased current drive.
 - c) If any "dedicated output" function is enabled on a pin, it will take precedence over any remappable "output" function.
 - d) If any "dedicated digital" (input or output) function is enabled on a pin, any number of "input" remappable functions can be mapped to the same pin.
 - e) If any "dedicated analog" function(s) are enabled on a given pin, "digital input(s)" of any kind will all be disabled, although a single "digital output", at the user's cautionary discretion, can be enabled and active as long as there is no signal contention with an external analog input signal. For example, it is possible for the ADCx to convert the digital output logic level or to toggle a digital output on a comparator or ADCx input provided there is no external analog input, such as for a built-in self test.

- f) Any number of "input" remappable functions can be mapped to the same pin(s) at the same time, including to any pin with a single output from either a dedicated or remappable "output".
- g) The TRIS registers control only the digital I/O output buffer. Any other dedicated or remappable active "output" will automatically override the TRIS setting. The TRIS register does not control the digital logic "input" buffer. Remappable digital "inputs" do not automatically override TRIS settings, which means that the TRIS bit must be set to input for pins with only remappable input function(s) assigned.
- h) All analog pins are enabled by default after any Reset and the corresponding digital input buffer on the pin is disabled. Only the Analog Pin Select registers control the digital input buffer, not the TRIS register. The user must disable the analog function on a pin using the Analog Pin Select registers in order to use any "digital input(s)" on a corresponding pin, no exceptions.

11.7 **Peripheral Pin Select Registers**

REGISTER 11-1: RPINRO: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				INT1R<6:0>			
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

R = Readable bit

Legend:

W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-8 INT1R<6:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7-0 Unimplemented: Read as '0'

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				INT2R<6:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6-0 INT2R<6:0>: Assign External Interrupt 2 (INT2) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-3: **RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2**

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				INT4R<6:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6-0 INT4R<6:0>: Assign External Interrupt 4 (INT4) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

REGISTER 11-4: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				T2CKR<6:0>	•		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-7 **Unimplemented:** Read as '0'

bit 6-0 T2CKR<6:0>: Assign Timer2 External Clock (T2CK) to the Corresponding RPn pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

© 2013 Microchip Technology Inc.

REGISTER 11-5: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC2R<6:0>			
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC1R<6:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 IC2R<6:0>: Assign Input Capture 2 (IC2) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

•

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7 **Unimplemented:** Read as '0'

bit 6-0 IC1R<6:0>: Assign Input Capture 1 (IC1) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

REGISTER 11-6: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC4R<6:0>			
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC3R<6:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-8 IC4R<6:0>: Assign Input Capture 4 (IC4) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7 **Unimplemented:** Read as '0'

bit 6-0 IC3R<6:0>: Assign Input Capture 3 (IC3) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

:

REGISTER 11-7: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC6R<6:0>			
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	IC5R<6:0>						
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 IC6R<6:0>: Assign Input Capture 6 (IC6) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

•

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7 **Unimplemented:** Read as '0'

bit 6-0 IC5R<6:0>: Assign Input Capture 5 (IC5) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

REGISTER 11-8: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC8R<6:0>			
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	IC7R<6:0>						
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-8 IC8R<6:0>: Assign Input Capture 8 (IC8) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

•

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7 **Unimplemented:** Read as '0'

bit 6-0 IC7R<6:0>: Assign Input Capture 7 (IC7) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

REGISTER 11-9: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	OCFAR<6:0>						
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-7 **Unimplemented:** Read as '0'

bit 6-0 OCFAR<6:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

:

0000001 = Input tied to CMP1

0000000 = Input tied to Vss

REGISTER 11-10: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				FLT2R<6:0>	•		
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				FLT1R<6:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 FLT2R<6:0>: Assign PWM Fault 2 (FLT2) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7 **Unimplemented:** Read as '0'

bit 6-0 FLT1R<6:0>: Assign PWM Fault 1 (FLT1) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

REGISTER 11-11: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				QEB1R<6:0>	>		
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				QEA1R<6:0>	>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 QEB1R<6:0>: Assign QEI1 Phase B (QEB1) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

•

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7 **Unimplemented:** Read as '0'

bit 6-0 QEA1R<6:0>: Assign QEI1 Phase A (QEA1) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

REGISTER 11-12: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				HOME1R<6:0)>		
bit 15					_	_	bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				INDX1R<6:0	>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-8 HOME1R<6:0>: Assign QEI1 HOME (HOME1) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

:

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7 **Unimplemented:** Read as '0'

bit 6-0 IND1XR<6:0>: Assign QEI1 INDEX (INDX1) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

:

REGISTER 11-13: RPINR16: PERIPHERAL PIN SELECT INPUT REGISTER 16

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				QEB2R<6:0>	>		
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				QEA2R<6:0>	>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 QEB2R<6:0>: Assign QEI2 Phase B (QEB2) to the Corresponding RPn/RPIn Pin bits

(see Table 11-2 for input pin selection numbers)

1111111 = Input tied to RP127

:

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7 **Unimplemented:** Read as '0'

bit 6-0 QEA2R<6:0>: Assign A QEI2 Phase A (QEA2) to the Corresponding RPn/RPIn Pin bits

(see Table 11-2 for input pin selection numbers)

1111111 = Input tied to RP127

:

REGISTER 11-14: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				HOME2R<6:0)>		
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				INDX2R<6:0	>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 HOME2R<6:0>: Assign QEI2 HOME (HOME2) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7 **Unimplemented:** Read as '0'

bit 6-0 IND2XR<6:0>: Assign QEI2 INDEX (INDX2) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

dsPIC33EPXXXGM3XX/6XX/7XX

REGISTER 11-15: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				U1RXR<6:0>	>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-7 **Unimplemented:** Read as '0'

bit 6-0 U1RXR<6:0>: Assign UART1 Receive (U1RX) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

•

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-16: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				U2RXR<6:0>	>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-7 **Unimplemented:** Read as '0'

bit 6-0 U2RXR<6:0>: Assign UART2 Receive (U2RX) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

REGISTER 11-17: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SCK2R<6:0>	>		
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SDI2R<6:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-8 SCK2R<6:0>: Assign SPI2 Clock Input (SCK2) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7 **Unimplemented:** Read as '0'

bit 6-0 SDI2R<6:0>: Assign SPI2 Data Input (SDI2) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

:

dsPIC33EPXXXGM3XX/6XX/7XX

REGISTER 11-18: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SS2R<6:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-7 **Unimplemented:** Read as '0'

bit 6-0 SS2R<6:0>: Assign SPI2 Slave Select (SS2) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

:

REGISTER 11-19: RPINR24: PERIPHERAL PIN SELECT INPUT REGISTER 24

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				CSCK2R<6:0	>		
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				CSDIR<6:0>	•		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-8 CSCK2R<6:0>: Assign DCI Clock Input (CSCK) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7 **Unimplemented:** Read as '0'

bit 6-0 CSDIR<6:0>: Assign DCI Data Input (CSDI) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

dsPIC33EPXXXGM3XX/6XX/7XX

REGISTER 11-20: RPINR25: PERIPHERAL PIN SELECT INPUT REGISTER 25

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				COFSR<6:0>	>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-7 **Unimplemented:** Read as '0'

bit 6-0 **COFSR<6:0>:** Assign DCI Frame Sync Input (COFS) to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

0000001 = Input tied to CMP1

0000000 = Input tied to Vss

REGISTER 11-21: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26⁽¹⁾

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				C2RXR<6:0	>		
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				C1RXR<6:0>	>		
bit 7							bit 0

 Legend:

 R = Readable bit
 W = Writable bit
 U = Unimplemented bit, read as '0'

 -n = Value at POR
 '1' = Bit is set
 '0' = Bit is cleared
 x = Bit is unknown

Note 1: This register is not available on dsPIC33EPXXXGM3XX devices.

REGISTER 11-22: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				U3CTSR<6:0	>		
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				U3RXR<6:0>	>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 U3CTSR<6:0>: Assign UART3 Clear-to-Send (U3CTS) to the Corresponding RPn/RPIn Pin bits

(see Table 11-2 for input pin selection numbers)

1111111 = Input tied to RP124

.

0000001 = Input tied to CMP1

0000000 = Input tied to Vss

bit 7 **Unimplemented:** Read as '0'

bit 6-0 U3RXR<6:0>: Assign UART3 Receive (U3RX) to the Corresponding RPn/RPIn Pin bits

(see Table 11-2 for input pin selection numbers)

1111111 = Input tied to RP124

.

REGISTER 11-23: RPINR28: PERIPHERAL PIN SELECT INPUT REGISTER 28

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				U4CTSR<6:0	>		
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				U4RXR<6:0>	>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

```
bit 15
              Unimplemented: Read as '0'
bit 14-8
              U4CTSR<6:0>: Assign UART4 Clear-to-Send (U4CTS) to the Corresponding RPn/RPIn Pin bits
              (see Table 11-2 for input pin selection numbers)
              1111111 = Input tied to RP124
              0000001 = Input tied to CMP1
              0000000 = Input tied to Vss
              Unimplemented: Read as '0'
bit 7
bit 6-0
              U4RXR<6:0>: Assign UART4 Receive (U4RX) to the Corresponding RPn/RPIn Pin bits
              (see Table 11-2 for input pin selection numbers)
              1111111 = Input tied to RP124
              0000001 = Input tied to CMP1
              0000000 = Input tied to Vss
```

REGISTER 11-24: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SCK3R<6:0>	>		
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SDI3R<6:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 SCK3R<6:0>: Assign SPI3 Clock Input (SCK3) to the Corresponding RPn/RPIn Pin bits

(see Table 11-2 for input pin selection numbers)

1111111 = Input tied to RP124

.

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7 **Unimplemented:** Read as '0'

bit 6-0 SDI3R<6:0>: Assign SPI3 Data Input (SDI3) to the Corresponding RPn/RPIn Pin bits

(see Table 11-2 for input pin selection numbers)

1111111 = Input tied to RP124

•

REGISTER 11-25: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SS3R<6:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-7 **Unimplemented:** Read as '0'

bit 6-0 SS3R<6:0>: Assign SPI3 Slave Select Input (SS3) to the Corresponding RPn/RPIn Pin bits

(see Table 11-2 for input pin selection numbers)

1111111 = Input tied to RP124

:

0000001 = Input tied to CMP1

0000000 = Input tied to Vss

REGISTER 11-26: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SYNCI1R<6:0)>		
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 SYNCI1R<6:0>: Assign PWM Synchronization Input 1 to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

:

0000001 = Input tied to CMP1

0000000 = Input tied to Vss

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 11-27: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_				DTCMP1R<6:0	0>		
bit	15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 **DTCMP1R<6:0>:** Assign PWM Dead-Time Compensation Input 1 to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

:

.

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7-0 **Unimplemented:** Read as '0'

REGISTER 11-28: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				DTCMP3R<6:0	0>		
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				DTCMP2R<6:0)>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-8 **DTCMP3R<6:0>:** Assign PWM Dead-Time Compensation Input 3 to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

:

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

bit 7 **Unimplemented:** Read as '0'

bit 6-0 DTCMP2R<6:0>: Assign PWM Dead-Time Compensation Input 2 to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

REGISTER 11-29: RPINR40: PERIPHERAL PIN SELECT INPUT REGISTER 40

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				DTCMP5R<6:0)>		
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				DTCMP4R<6:0)>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0' bit 14-8 DTCMP5R<6:0>: Assign PWM Dead-Time Compensation Input 5 to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

Unimplemented: Read as '0' bit 7

bit 6-0 DTCMP4R<6:0>: Assign PWM Dead-Time Compensation Input 4 to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

dsPIC33EPXXXGM3XX/6XX/7XX

REGISTER 11-30: RPINR41: PERIPHERAL PIN SELECT INPUT REGISTER 41

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				DTCMP6R<6:0)>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6-0 **DTCMP6R<6:0>:** Assign PWM Dead-Time Compensation Input 6 to the Corresponding RPn Pin bits

(see Table 11-2 for input pin selection numbers)

1111100 = Input tied to RPI124

.

REGISTER 11-31: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP35	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP20	R<5:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 RP35R<5:0>: Peripheral Output Function is Assigned to RP35 Output Pin bits

(see Table 11-3 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP20R<5:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits

(see Table 11-3 for peripheral function numbers)

REGISTER 11-32: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP37	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP36	R<5:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 RP37R<5:0>: Peripheral Output Function is Assigned to RP37 Output Pin bits

(see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 RP36R<5:0>: Peripheral Output Function is Assigned to RP36 Output Pin bits

REGISTER 11-33: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP39	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP38	R<5:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP39R<5:0>: Peripheral Output Function is Assigned to RP39 Output Pin bits

(see Table 11-3 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP38R<5:0>: Peripheral Output Function is Assigned to RP38 Output Pin bits

(see Table 11-3 for peripheral function numbers)

REGISTER 11-34: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP41	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP40	R<5:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP41R<5:0>:** Peripheral Output Function is Assigned to RP41 Output Pin bits

(see Table 11-3 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 **RP40R<5:0>:** Peripheral Output Function is Assigned to RP40 Output Pin bits

REGISTER 11-35: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP43	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP42	R<5:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 RP43R<5:0>: Peripheral Output Function is Assigned to RP43 Output Pin bits

(see Table 11-3 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP42R<5:0>: Peripheral Output Function is Assigned to RP42 Output Pin bits

(see Table 11-3 for peripheral function numbers)

REGISTER 11-36: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP49	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP48	R<5:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 RP49R<5:0>: Peripheral Output Function is Assigned to RP49 Output Pin bits

(see Table 11-3 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP48R<5:0>: Peripheral Output Function is Assigned to RP48 Output Pin bits

REGISTER 11-37: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				RP55	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP54	R<5:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 RP55R<5:0>: Peripheral Output Function is Assigned to RP55 Output Pin bits

(see Table 11-3 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP54R<5:0>: Peripheral Output Function is Assigned to RP54 Output Pin bits

(see Table 11-3 for peripheral function numbers)

REGISTER 11-38: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP57	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP56	R<5:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP57R<5:0>:** Peripheral Output Function is Assigned to RP57 Output Pin bits

(see Table 11-3 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP56R<5:0>: Peripheral Output Function is Assigned to RP56 Output Pin bits

REGISTER 11-39: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP70	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP69	R<5:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 RP70R<5:0>: Peripheral Output Function is Assigned to RP70 Output Pin bits

(see Table 11-3 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP69R<5:0>: Peripheral Output Function is Assigned to RP69 Output Pin bits

(see Table 11-3 for peripheral function numbers)

Note 1: This register is not available on dsPIC33EPXXXGM304/604 devices.

REGISTER 11-40: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP97	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP81F	R<5:0> ⁽²⁾		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 RP97R<5:0>: Peripheral Output Function is Assigned to RP97 Output Pin bits

(see Table 11-3 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP81R<5:0>: Peripheral Output Function is Assigned to RP81 Output Pin bits⁽²⁾

(see Table 11-3 for peripheral function numbers)

Note 1: This register is not available on dsPIC33EPXXXGM304/604 devices.

2: These bits are not available on dsPIC33EPXXXGM306/706 devices.

REGISTER 11-41: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP118	3R<5:0>		
bit 15	_	_	_	_	_		bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP113	3R<5:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 RP118R<5:0>: Peripheral Output Function is Assigned to RP118 Output Pin bits

(see Table 11-3 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP113R<5:0>: Peripheral Output Function is Assigned to RP113 Output Pin bits

(see Table 11-3 for peripheral function numbers)

Note 1: This register is not available on dsPIC33EPXXXGM30X/604/706 devices.

REGISTER 11-42: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11(1)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				RP125	5R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP120)R<5:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 RP125R<5:0>: Peripheral Output Function is Assigned to RP125 Output Pin bits

(see Table 11-3 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP120R<5:0>: Peripheral Output Function is Assigned to RP120 Output Pin bits

(see Table 11-3 for peripheral function numbers)

Note 1: This register is not available on dsPIC33EPXXXGM30X/604/706 devices.

REGISTER 11-43: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP127	7R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			RP126	6R<5:0>		
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 RP127R<5:0>: Peripheral Output Function is Assigned to RP127 Output Pin bits

(see Table 11-3 for peripheral function numbers)

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 RP126R<5:0>: Peripheral Output Function is Assigned to RP126 Output Pin bits

(see Table 11-3 for peripheral function numbers)

Note 1: This register is not available on dsPIC33EPXXXGM30X/604/706 devices.

dsPIC33EPXXXGM3XX/6XX/7XX

N	0	Т	_ (٠.
IV	u		_3	Э.

12.0 TIMER1

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Timers" (DS70362), which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer that can operate as a free-running, interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated in Asynchronous Counter mode from an external clock source
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler

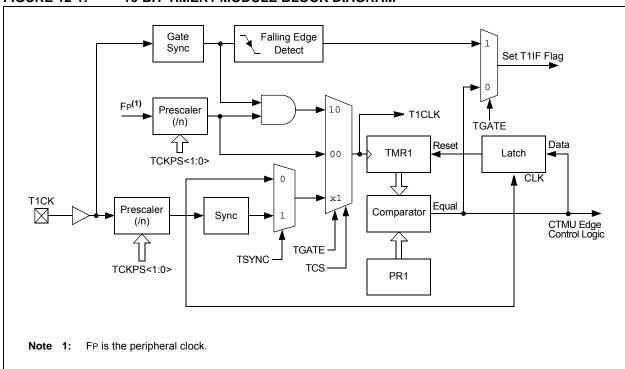
A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- · Timer mode
- · Gated Timer mode
- · Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit settings for different operating modes are given in the Table 12-1.

TABLE 12-1: TIMER MODE SETTINGS

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated Timer	0	1	х
Synchronous Counter	1	х	1
Asynchronous Counter	1	х	0

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

12.1 Timer1 Control Register

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	_	TSIDL	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
_	TGATE	TCKPS<1:0>		_	TSYNC ⁽¹⁾	TCS ⁽¹⁾	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **TON:** Timer1 On bit⁽¹⁾

1 = Starts 16-bit Timer1
0 = Stops 16-bit Timer1

bit 14 Unimplemented: Read as '0'

bit 13 TSIDL: Timer1 Stop in Idle Mode bit

1 = Discontinues module operation when device enters Idle mode

0 = Continues module operation in Idle mode

bit 12-7 Unimplemented: Read as '0'

bit 6 TGATE: Timer1 Gated Time Accumulation Enable bit

When TCS = 1: This bit is ignored. When TCS = 0:

1 = Gated time accumulation is enabled0 = Gated time accumulation is disabled

bit 5-4 TCKPS<1:0>: Timer1 Input Clock Prescale Select bits

11 = 1:256

10 = 1:64

01 = 1:8

00 = 1:1

bit 3 **Unimplemented:** Read as '0'

bit 2 TSYNC: Timer1 External Clock Input Synchronization Select bit (1)

When TCS = 1:

1 = Synchronizes external clock input

0 = Does not synchronize external clock input

When TCS = 0: This bit is ignored.

bit 1 TCS: Timer1 Clock Source Select bit(1)

1 = External clock is from pin, T1CK (on the rising edge)

0 = Internal clock (FP)

bit 0 **Unimplemented:** Read as '0'

Note 1: When Timer1 is enabled in External Synchronous Counter mode (TCS = 1, TSYNC = 1, TON = 1), any attempts by user software to write to the TMR1 register are ignored.

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Timers" (DS70362), which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as eight independent 16-bit timers with selectable operating modes.

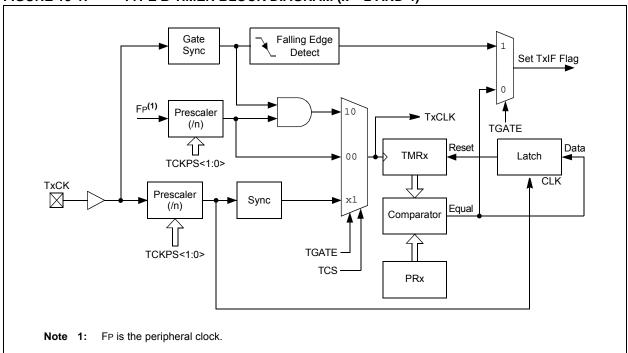
As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-Bit Timers (e.g., Timer2 and Timer3) with All 16-Bit Operating modes (except Asynchronous Counter mode)
- Single 32-Bit Timer
- Single 32-Bit Synchronous Counter

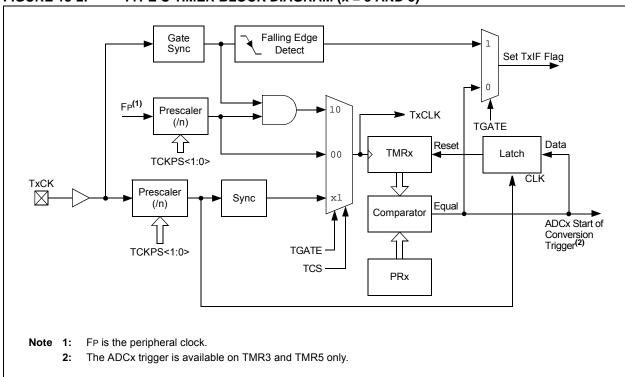
They also support these features:

- · Timer Gate Operation
- Selectable Prescaler Settings
- · Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-Bit Period Register Match
- Time Base for Input Capture and Output Compare Modules
- ADC1 Event Trigger (Timer2/3 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed previously, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2.


For 32-bit timer/counter operation, Timer2, Timer4, Timer6 and Timer8 are the least significant word (Isw); Timer3, Timer5, Timer7 and Timer9 are the most significant word (msw) of the 32-bit timers.

Note: For 32-bit operation, T3CON, T5CON, T7CON and T9CON control bits are ignored. Only T2CON, T4CON, T6CON and T8CON control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Timer7 and Timer9 interrupt flags.


A block diagram for an example of a 32-bit timer pair (Timer2/3 and Timer4/5) is shown in Figure 13-3.

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM (x = 2 AND 4)

FIGURE 13-2: TYPE C TIMER BLOCK DIAGRAM (x = 3 AND 5)

Falling Edge Gate Sync Detect Set TylF Flag PRx PRy **TGATE ADCx** Equal Comparator Data FP(1) Prescaler 10 Isw msw (/n) CLK Latch Reset **TMRx TMRy** 00 TCKPS<1:0> TxCK Prescaler Sync x1(/n) **TMRyHLD TGATE** TCKPS<1:0> **TCS** Data Bus<15:0>

FIGURE 13-3: TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)

The ADCx trigger is available only on the TMR3:TMR2 and TMR5:TMR4 32-bit timer pairs. Note 1:

Timerx is a Type B timer (x = 2 and 4). 2:

Timery is a Type C timer (x = 3 and 5). 3:

13.1 Timer Control Registers

REGISTER 13-1: TxCON (T2CON, T4CON, T6CON AND T8CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	_	TSIDL	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0
_	TGATE	TCKPS	S<1:0>	T32	_	TCS ⁽¹⁾	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 TON: Timerx On bit

When T32 = 1:

1 = Starts 32-bit Timerx/y
0 = Stops 32-bit Timerx/y

When T32 = 0:

1 = Starts 16-bit Timerx

0 = Stops 16-bit Timerx

bit 14 **Unimplemented:** Read as '0'

bit 13 TSIDL: Timerx Stop in Idle Mode bit

1 = Discontinues module operation when device enters Idle mode

0 = Continues module operation in Idle mode

bit 12-7 **Unimplemented:** Read as '0'

bit 6 TGATE: Timerx Gated Time Accumulation Enable bit

When TCS = 1: This bit is ignored. When TCS = 0:

1 = Gated time accumulation is enabled0 = Gated time accumulation is disabled

bit 5-4 TCKPS<1:0>: Timerx Input Clock Prescale Select bits

11 = 1:256 10 = 1:64 01 = 1:8 00 = 1:1

bit 3 T32: 32-Bit Timer Mode Select bit

1 = Timerx and Timery form a single 32-bit timer 0 = Timerx and Timery act as two 16-bit timers

bit 2 **Unimplemented:** Read as '0'

bit 1 TCS: Timerx Clock Source Select bit⁽¹⁾

1 = External clock is from pin, TxCK (on the rising edge)

0 = Internal clock (FP)

bit 0 **Unimplemented:** Read as '0'

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON AND T9CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	_	TSIDL ⁽²⁾	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
_	TGATE ⁽¹⁾	TCKPS<1:0>(1)		_	_	TCS ^(1,3)	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

TON: Timery On bit(1) bit 15 1 = Starts 16-bit Timery 0 = Stops 16-bit Timery bit 14 Unimplemented: Read as '0' TSIDL: Timery Stop in Idle Mode bit(2) bit 13 1 = Discontinues module operation when device enters Idle mode 0 = Continues module operation in Idle mode Unimplemented: Read as '0' bit 12-7 **TGATE:** Timery Gated Time Accumulation Enable bit (1) bit 6 When TCS = 1: This bit is ignored. When TCS = 0: 1 = Gated time accumulation is enabled 0 = Gated time accumulation is disabled TCKPS<1:0>: Timery Input Clock Prescale Select bits(1) bit 5-4 11 = 1:25610 = 1:6401 = 1:800 = 1:1bit 3-2 Unimplemented: Read as '0' TCS: Timery Clock Source Select bit (1,3) bit 1

1 = External clock from pin, TyCK (on the rising edge)

0 = Internal clock (FP)

Unimplemented: Read as '0'

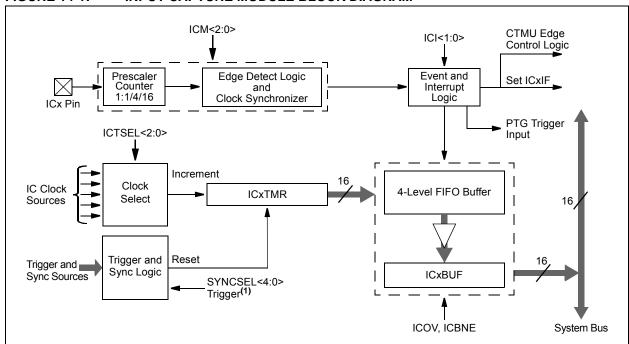
- **Note 1:** When 32-bit operation is enabled (T2CON<3> = 1), these bits have no effect on Timery operation; all timer functions are set through TxCON.
 - 2: When 32-bit timer operation is enabled (T32 = 1) in the Timerx Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.
 - 3: The TyCK pin is not available on all timers. See the "Pin Diagrams" section for the available pins.

bit 0

dsPIC33EPXXXGM3XX/6XX/7XX

NOTES:

14.0 INPUT CAPTURE


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Input Capture" (DS70352), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The input capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EPXXXGM3XX/6XX/7XX devices support up to eight input capture channels.

Key features of the input capture module include:

- Hardware configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 31 user-selectable Trigger/Sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- · Configurable interrupt generation
- Up to six clock sources available for each module, driving a separate internal 16-bit counter

FIGURE 14-1: INPUT CAPTURE MODULE BLOCK DIAGRAM

Note 1: The Trigger/Sync source is enabled by default and is set to Timer3 as a source. This timer must be enabled for proper ICx module operation or the Trigger/Sync source must be changed to another source option.

14.1 **Input Capture Control Registers**

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
_	_	ICSIDL		ICTSEL<2:0>		_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/HC/HS-0	R/HC/HS-0	R/W-0	R/W-0	R/W-0
_	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>	
bit 7							bit 0

Legend: HC = Hardware Clearable bit		HS = Hardware Settable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13 ICSIDL: Input Capture x Stop in Idle Mode Control bit

1 = Input Capture x Halts in CPU Idle mode

0 = Input Capture x continues to operate in CPU Idle mode

bit 12-10 ICTSEL<2:0>: Input Capture x Timer Select bits

111 = Peripheral clock (FP) is the clock source of the ICx

110 = Reserved 101 = Reserved

100 = T1CLK is the clock source of the ICx (only the synchronous clock is supported)

011 = T5CLK is the clock source of the ICx 010 = T4CLK is the clock source of the ICx 001 = T2CLK is the clock source of the ICx 000 = T3CLK is the clock source of the ICx

bit 9-7 Unimplemented: Read as '0'

bit 6-5 ICI<1:0>: Number of Captures per Interrupt Select bits

(this field is not used if ICM<2:0> = 001 or 111)

11 = Interrupts on every fourth capture event 10 = Interrupts on every third capture event

01 = Interrupts on every second capture event

00 = Interrupts on every capture event

bit 4 **ICOV:** Input Capture x Overflow Status Flag bit (read-only)

> 1 = Input Capture x buffer overflow occurred 0 = No Input Capture x buffer overflow occurred

ICBNE: Input Capture x Buffer Not Empty Status bit (read-only)

1 = Input Capture x buffer is not empty, at least one more capture value can be read

0 = Input Capture x buffer is empty

bit 2-0 ICM<2:0>: Input Capture x Mode Select bits

> 111 = Input Capture x functions as an interrupt pin only in CPU Sleep and Idle modes (rising edge detect only, all other control bits are not applicable)

110 = Unused (module disabled)

101 = Capture mode, every 16th rising edge (Prescaler Capture mode)

100 = Capture mode, every 4th rising edge (Prescaler Capture mode)

011 = Capture mode, every rising edge (Simple Capture mode)

010 = Capture mode, every falling edge (Simple Capture mode)

001 = Capture mode, every edge rising and falling (Edge Detect mode (ICI<1:0>) is not used in this mode)

000 = Input Capture x module is turned off

bit 3

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	_	_	_	_	_	IC32 ⁽¹⁾
bit 15							bit 8

R/W-0	R/W/HS-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1
ICTRIG ⁽²⁾	TRIGSTAT ⁽³⁾	_		SYI	NCSEL<4:0> ⁽⁴	1)	
bit 7							bit 0

 Legend:
 HS = Hardware Settable bit

 R = Readable bit
 W = Writable bit
 U = Unimplemented bit, read as '0'

 -n = Value at POR
 '1' = Bit is set
 '0' = Bit is cleared
 x = Bit is unknown

bit 15-9 **Unimplemented:** Read as '0'

bit 8 IC32: Input Capture x 32-Bit Timer Mode Select bit (Cascade mode)⁽¹⁾

1 = Odd ICx and Even ICx form a single 32-bit input capture module

0 = Cascade module operation is disabled

bit 7 ICTRIG: Input Capture x Trigger Operation Select bit⁽²⁾

1 = Input source is used to trigger the input capture timer (Trigger mode)

0 = Input source is used to synchronize the input capture timer to the timer of another module (Synchronization mode)

bit 6 TRIGSTAT: Timer Trigger Status bit (3)

1 = ICxTMR has been triggered and is running

0 = ICxTMR has not been triggered and is being held clear

bit 5 **Unimplemented:** Read as '0'

Note 1: The IC32 bit in both the Odd and Even ICx must be set to enable Cascade mode.

2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.

3: This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.

4: Do not use the ICx module as its own Sync or Trigger source.

5: This option should only be selected as a trigger source and not as a synchronization source.

6: Each Input Capture x module (ICx) has one PTG input source. See **Section 25.0 "Peripheral Trigger Generator (PTG) Module"** for more information.

PTGO8 = IC1, IC5

PTGO9 = IC2, IC6

PTGO10 = IC3, IC7

PTGO11 = IC4, IC8

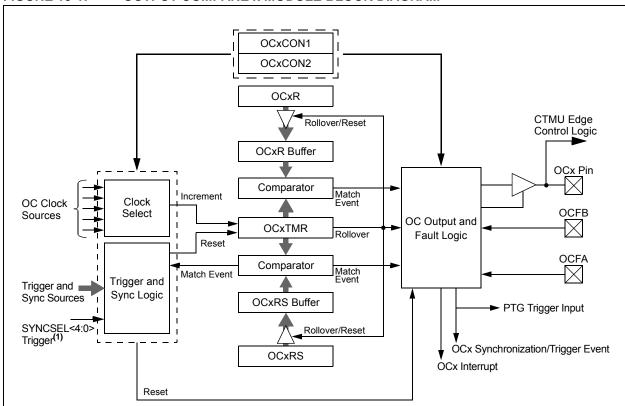
REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0 SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits⁽⁴⁾ 11111 = Capture timer is unsynchronized 11110 = Capture timer is unsynchronized 11101 = Capture timer is unsynchronized 11100 = CTMU trigger is the source for the capture timer synchronization 11011 = ADC1 interrupt is the source for the capture timer synchronization (5) 11010 = Analog Comparator 3 is the source for the capture timer synchronization (5) 11001 = Analog Comparator 2 is the source for the capture timer synchronization (5) 11000 = Analog Comparator 1 is the source for the capture timer synchronization (5) 10111 = Input Capture 8 interrupt is the source for the capture timer synchronization 10110 = Input Capture 7 interrupt is the source for the capture timer synchronization 10101 = Input Capture 6 interrupt is the source for the capture timer synchronization 10100 = Input Capture 5 interrupt is the source for the capture timer synchronization 10011 = Input Capture 4 interrupt is the source for the capture timer synchronization 10010 = Input Capture 3 interrupt is the source for the capture timer synchronization 10001 = Input Capture 2 interrupt is the source for the capture timer synchronization 10000 = Input Capture 1 interrupt is the source for the capture timer synchronization 01111 = GP Timer5 is the source for the capture timer synchronization 01110 = GP Timer4 is the source for the capture timer synchronization 01101 = GP Timer3 is the source for the capture timer synchronization 01100 = GP Timer2 is the source for the capture timer synchronization 01011 = GP Timer1 is the source for the capture timer synchronization 01010 = PTGx Trigger is the source for the capture timer synchronization (6) 01001 = Capture timer is unsynchronized 01000 = Output Compare 8 is the source for the capture timer synchronization 00111 = Output Compare 7 is the source for the capture timer synchronization 00110 = Output Compare 6 is the source for the capture timer synchronization 00101 = Output Compare 5 is the source for the capture timer synchronization 00100 = Output Compare 4 is the source for the capture timer synchronization 00011 = Output Compare 3 is the source for the capture timer synchronization 00010 = Output Compare 2 is the source for the capture timer synchronization 00001 = Output Compare 1 is the source for the capture timer synchronization 00000 = Capture timer is unsynchronized

- Note 1: The IC32 bit in both the Odd and Even ICx must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits); it can be read, set and cleared in software.
 - **4:** Do not use the ICx module as its own Sync or Trigger source.
 - 5: This option should only be selected as a trigger source and not as a synchronization source.
 - 6: Each Input Capture x module (ICx) has one PTG input source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for more information.

PTGO8 = IC1, IC5 PTGO9 = IC2, IC6 PTGO10 = IC3, IC7 PTGO11 = IC4, IC8

15.0 OUTPUT COMPARE


Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Output Compare" (DS70358), which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The output compare module can select one of eight available clock sources for its time base. The module compares the value of the timer with the value of one or two Compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the Compare register value. The output compare module generates either a single output pulse, or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events and trigger DMA data transfers.

Note: See the "dsPIC33E/PIC24E Family Reference Manual", "Output Compare" (DS70358) for OCxR and OCxRS register restrictions.

FIGURE 15-1: OUTPUT COMPARE x MODULE BLOCK DIAGRAM

Note 1: The Trigger/Sync source is enabled by default and is set to Timer2 as a source. This timer must be enabled for proper OCx module operation or the Trigger/Sync source must be changed to another source option.

15.1 Output Compare Control Registers

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
_	_	OCSIDL		OCTSEL<2:0>	>	_	ENFLTB
bit 15							bit 8

R/W-0	U-0	R/W-0, HSC	R/W-0, HSC	R/W-0	R/W-0	R/W-0	R/W-0
ENFLTA	_	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>	
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13 OCSIDL: Output Compare x Stop in Idle Mode Control bit

1 = Output Compare x halts in CPU Idle mode

0 = Output Compare x continues to operate in CPU Idle mode

bit 12-10 OCTSEL<2:0>: Output Compare x Clock Select bits

111 = Peripheral clock (FP)

110 = Reserved

101 = PTGOx clock(2)

100 = T1CLK is the clock source of the OCx (only the synchronous clock is supported)

011 = T5CLK is the clock source of the OCx

010 = T4CLK is the clock source of the OCx

001 = T3CLK is the clock source of the OCx

000 = T2CLK is the clock source of the OCx

bit 9 **Unimplemented:** Read as '0'

bit 8 ENFLTB: Fault B Input Enable bit

1 = Output Compare x Fault B input (OCFB) is enabled 0 = Output Compare x Fault B input (OCFB) is disabled

bit 7 ENFLTA: Fault A Input Enable bit

1 = Output Compare x Fault A input (OCFA) is enabled

0 = Output Compare x Fault A input (OCFA) is disabled

bit 6 **Unimplemented:** Read as '0'

bit 5 OCFLTB: PWM Fault B Condition Status bit

1 = PWM Fault B condition on OCFB pin has occurred

0 = No PWM Fault B condition on OCFB pin has occurred

bit 4 OCFLTA: PWM Fault A Condition Status bit

1 = PWM Fault A condition on OCFA pin has occurred

0 = No PWM Fault A condition on OCFA pin has occurred

Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

 Each Output Compare x module (OCx) has one PTG clock source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for more information.

PTGO4 = OC1, OC5

PTGO5 = OC2, OC6

PTGO6 = OC3, OC7

PTGO7 = OC4, OC8

REGISTER 15-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is cleared only by software
- bit 2-0 **OCM<2:0>:** Output Compare x Mode Select bits
 - 111 = Center-Aligned PWM mode: Output sets high when OCxTMR = OCxR and sets low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output sets high when OCxTMR = 0 and sets low when OCxTMR = OCxR(1)
 - 101 = Double Compare Continuous Pulse mode: Initializes OCx pin low, toggles OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initializes OCx pin low, toggles OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare event with OCxR, continuously toggles OCx pin
 - 010 = Single Compare Single-Shot mode: Initializes OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initializes OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.
 - 2: Each Output Compare x module (OCx) has one PTG clock source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for more information.

PTGO4 = OC1, OC5

PTGO5 = OC2, OC6

PTGO6 = OC3, OC7

PTGO7 = OC4, OC8

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0
FLTMD	FLTOUT	FLTTRIEN	OCINV	_	_	_	OC32
bit 15							bit 8

R/W-0	R/W-0, HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0
OCTRIG	TRIGSTAT	OCTRIS			SYNCSEL<4:0	>	
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 FLTMD: Fault Mode Select bit

> 1 = Fault mode is maintained until the Fault source is removed; the corresponding OCFLTx bit is cleared in software and a new PWM period starts

0 = Fault mode is maintained until the Fault source is removed and a new PWM period starts

bit 14 FLTOUT: Fault Out bit

1 = PWM output is driven high on a Fault

0 = PWM output is driven low on a Fault

bit 13 FLTTRIEN: Fault Output State Select bit

1 = OCx pin is tri-stated on a Fault condition

0 = OCx pin I/O state is defined by the FLTOUT bit on a Fault condition

OCINV: OCMP Invert bit bit 12

> 1 = OCx output is inverted 0 = OCx output is not inverted

bit 11-9 Unimplemented: Read as '0'

bit 8

OC32: Cascade Two OCx Modules Enable bit (32-bit operation)

1 = Cascade module operation is enabled 0 = Cascade module operation is disabled

bit 7 **OCTRIG:** OCx Trigger/Sync Select bit

> 1 = Triggers OCx from source designated by the SYNCSELx bits 0 = Synchronizes OCx with source designated by the SYNCSELx bits

bit 6 TRIGSTAT: Timer Trigger Status bit

1 = Timer source has been triggered and is running

0 = Timer source has not been triggered and is being held clear

bit 5 **OCTRIS:** OCx Output Pin Direction Select bit

1 = Output Compare x is tri-stated

0 = Output Compare x module drives the OCx pin

Note 1: Do not use the OCx module as its own synchronization or trigger source.

- 2: When the OCv module is turned OFF, it sends a trigger out signal. If the OCx module uses the OCv module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.
- 3: Each Output Compare x module (OCx) has one PTG Trigger/Sync source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for more information.

PTGO4 = OC1, OC5

PTGO5 = OC2, OC6

PTGO6 = OC3, OC7

PTG07 = OC4, OC8

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

```
bit 4-0
              SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
              11111 = OCxRS compare event is used for synchronization
              11110 = INT2 is the source for compare timer synchronization
              11101 = INT1 is the source for compare timer synchronization
              11100 = CTMU trigger is the source for compare timer synchronization
              11011 = ADC1 interrupt is the source for compare timer synchronization
              11010 = Analog Comparator 3 is the source for compare timer synchronization
              11001 = Analog Comparator 2 is the source for compare timer synchronization
              11000 = Analog Comparator 1 is the source for compare timer synchronization
              10111 = Input Capture 8 interrupt is the source for compare timer synchronization
              10110 = Input Capture 7 interrupt is the source for compare timer synchronization
              10101 = Input Capture 6 interrupt is the source for compare timer synchronization
              10100 = Input Capture 5 interrupt is the source for compare timer synchronization
              10011 = Input Capture 4 interrupt is the source for compare timer synchronization
              10010 = Input Capture 3 interrupt is the source for compare timer synchronization
              10001 = Input Capture 2 interrupt is the source for compare timer synchronization
              10000 = Input Capture 1 interrupt is the source for compare timer synchronization
              01111 = GP Timer5 is the source for compare timer synchronization
              01110 = GP Timer4 is the source for compare timer synchronization
              01101 = GP Timer3 is the source for compare timer synchronization
              01100 = GP Timer2 is the source for compare timer synchronization
              01011 = GP Timer1 is the source for compare timer synchronization
              01010 = PTGx Trigger is the source for compare timer synchronization<sup>(3)</sup>
              01001 = Compare timer is unsynchronized
              01000 = Output Compare 8 is the source for compare timer synchronization (1,2)
              00111 = Output Compare 7 is the source for compare timer synchronization<sup>(1,2)</sup>
              00110 = Output Compare 6 is the source for compare timer synchronization (1,2)
              00101 = Output Compare 5 is the source for compare timer synchronization (1,2)
              00100 = Output Compare 4 is the source for compare timer synchronization<sup>(1,2)</sup>
              00011 = Output Compare 3 is the source for compare timer synchronization<sup>(1,2)</sup>
              00010 = Output Compare 2 is the source for compare timer synchronization (1,2)
              00001 = Output Compare 1 is the source for compare timer synchronization (1,2)
```

Note 1: Do not use the OCx module as its own synchronization or trigger source.

00000 = Compare timer is unsynchronized

- 2: When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module uses the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.
- 3: Each Output Compare x module (OCx) has one PTG Trigger/Sync source. See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for more information.

PTGO4 = OC1, OC5

PTGO5 = OC2, OC6

PTGO6 = OC3, OC7

PTGO7 = OC4, OC8

N	0	Т	_ (٠.
IV	u		_3	Э.

16.0 HIGH-SPEED PWM MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "High-Speed PWM" (DS70645), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX devices support a dedicated Pulse-Width Modulation (PWM) module with up to 12 outputs.

The high-speed PWMx module consists of the following major features:

- Six PWM generators
- · Two PWM outputs per PWM generator
- · Individual period and duty cycle for each PWM pair
- Duty cycle, dead time, phase shift and a frequency resolution of 7.14 ns
- Independent Fault and current-limit inputs for six PWM outputs
- · Redundant output
- · Center-Aligned PWM mode
- · Output override control
- Chop mode (also known as Gated mode)
- · Special Event Trigger
- · Prescaler for input clock
- PWMxL and PWMxH output pin swapping
- Independent PWM frequency, duty cycle and phase-shift changes for each PWM generator
- · Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB) functionality
- · Frequency resolution enhancement
- · PWM capture functionality

Note: In Edge-Aligned PWM mode, the duty cycle, dead time, phase shift and frequency resolution are 7.14 ns.

The high-speed PWMx module contains up to six PWM generators. Each PWMx generator provides two PWM outputs: PWMxH and PWMxL. The master time base generator provides a synchronous signal as a common time base to synchronize the various PWM outputs. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.

Each PWMx can generate a trigger to the ADCx module to sample the analog signal at a specific instance during the PWM period. In addition, the high-speed PWM module also generates a Special Event Trigger to the ADCx module, based on either of the two master time bases.

The high-speed PWMx module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 and SYNCI2 input pins that utilize PPS, can synchronize the high-speed PWMx module with an external signal. The SYNCO1 and SYNCO2 pins are output pins that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the high-speed PWMx module and its interconnection with the CPU and other peripherals.

16.1 PWM Faults

The PWMx module incorporates multiple external Fault inputs, which include FLT1 and FLT2. The inputs are remappable using the PPS feature. FLT3 is available on 44-pin, 64-pin and 100-pin packages; FLT4 through FLT8 are available on specific pins on 64-pin and 100-pin packages, and FLT32, which has been implemented with Class B safety features, and is available on a fixed pin on all devices.

These Faults provide a safe and reliable way to safely shut down the PWM outputs when the Fault input is asserted.

16.1.1 PWM FAULTS AT RESET

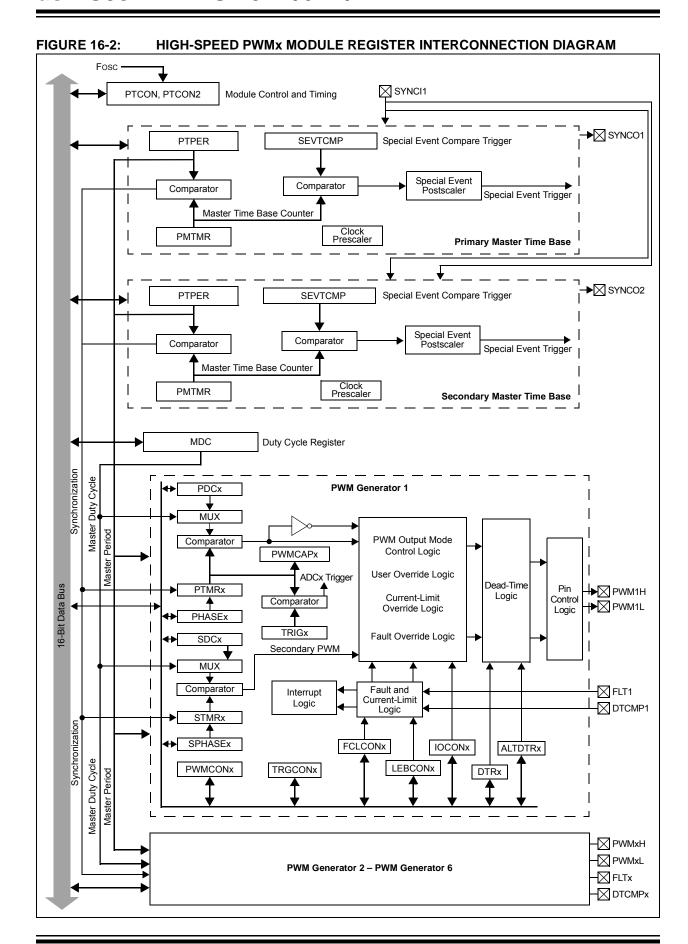
During any Reset event, the PWMx module maintains ownership of the Class B Fault, FLT32. At Reset, this Fault is enabled in Latched mode to ensure the fail-safe power-up of the application. The application software must clear the PWM Fault before enabling the high-speed motor control PWMx module. To clear the Fault condition, the FLT32 pin must first be pulled high externally or the internal pull-up resistor in the CNPUx register can be enabled.

Note: The Fault mode may be changed using the FLTMOD<1:0> bits (FCLCONx<1:0>), regardless of the state of FLT32.

16.1.2 WRITE-PROTECTED REGISTERS


On dsPIC33EPXXXGM3XX/6XX/7XX devices, write protection is implemented for the IOCONx and FCLCONx registers. The write protection feature prevents any inadvertent writes to these registers. This protection feature can be controlled by the PWMLOCK Configuration bit (FOSCSEL<6>). The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring: PWMLOCK = 0.

To gain write access to these locked registers, the user application must write two consecutive values of 0xABCD and 0x4321 to the PWMKEY register to perform the unlock operation. The write access to the IOCONx or FCLCONx registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access. To write to both the IOCONx and FCLCONx registers requires two unlock operations.


The correct unlocking sequence is described in Example 16-1.

EXAMPLE 16-1: PWMx WRITE-PROTECTED REGISTER UNLOCK SEQUENCE

```
; FLT32 pin must be pulled high externally in order to clear and disable the fault
; Writing to FCLCON1 register requires unlock sequence
mov #0xabcd, w10
                         ; Load first unlock key to w10 register
mov #0x4321, w11
                         ; Load second unlock key to wll register
                        ; Load desired value of FCLCON1 register in w0
mov #0x0000, w0
mov w10, PWMKEY
                        ; Write first unlock key to PWMKEY register
mov w11, PWMKEY
                        ; Write second unlock key to PWMKEY register
mov w0, FCLCON1
                        ; Write desired value to FCLCON1 register
; Set PWM ownership and polarity using the IOCON1 register
; Writing to IOCON1 register requires unlock sequence
mov #0xabcd, w10
                         ; Load first unlock key to w10 register
mov #0x4321, w11
                         ; Load second unlock key to w11 register
mov #0xF000, w0
                        ; Load desired value of IOCON1 register in w0
mov w10, PWMKEY
                        ; Write first unlock key to PWMKEY register
mov w11, PWMKEY
                        ; Write second unlock key to PWMKEY register
mov w0, IOCON1
                         ; Write desired value to IOCON1 register
```


HIGH-SPEED PWMx MODULE ARCHITECTURAL OVERVIEW

16.2 PWMx Control Registers

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER

R/W-0	U-0	R/W-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN	_	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SYNCEN ⁽¹⁾	SYNCSRC<2:0> ⁽¹⁾			SEVTPS<3:0> ⁽¹⁾				
bit 7							bit 0	

Legend: HC = Hardware Clearable bit		HS = Hardware Settable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			

bit 15	PTEN: PWMx Module Enable bit
	1 = PWMx module is enabled
	0 = PWMx module is disabled
bit 14	Unimplemented: Read as '0'
bit 13	PTSIDL: PWMx Time Base Stop in Idle Mode bit
	1 = PWMx time base halts in CPU Idle mode
	0 = PWMx time base runs in CPU Idle mode
bit 12	SESTAT: Special Event Interrupt Status bit
	1 = Special event interrupt is pending
	0 = Special event interrupt is not pending
bit 11	SEIEN: Special Event Interrupt Enable bit
	1 = Special event interrupt is enabled
	0 = Special event interrupt is disabled
bit 10	EIPU: Enable Immediate Period Updates bit ⁽¹⁾
	1 = Active Period register is updated immediately
	0 = Active Period register updates occur on PWMx cycle boundaries
bit 9	SYNCPOL: Synchronize Input and Output Polarity bit ⁽¹⁾
	1 = SYNCI1/SYNCO1 polarity is inverted (active-low)
	0 = SYNCI1/SYNCO1 is active-high
bit 8	SYNCOEN: Primary Time Base Sync Enable bit ⁽¹⁾
	1 = SYNCO1 output is enabled
	0 = SYNCO1 output is disabled
bit 7	SYNCEN: External Time Base Synchronization Enable bit ⁽¹⁾
	1 = External synchronization of primary time base is enabled
	0 = External synchronization of primary time base is disabled

- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

REGISTER 16-1: PTCON: PWMx TIME BASE CONTROL REGISTER (CONTINUED)

```
bit 6-4

SYNCSRC<2:0>: Synchronous Source Selection bits<sup>(1)</sup>

111 = Reserved

100 = Reserved

101 = PTGO17<sup>(2)</sup>

010 = PTGO16<sup>(2)</sup>

001 = Reserved

000 = SYNCI1

bit 3-0

SEVTPS<3:0>: PWMx Special Event Trigger Output Postscaler Select bits<sup>(1)</sup>

1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event

0001 = 1:2 Postscaler generates Special Event Trigger on every second compare match event

0000 = 1:1 Postscaler generates Special Event Trigger on every compare match event
```

- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

U = Unimplemented bit, read as '0'

REGISTER 16-2: PTCON2: PWMx PRIMARY MASTER CLOCK DIVIDER SELECT REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	ı	ı	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_	P	CLKDIV<2:0> ⁽¹)
bit 7							bit 0

-n = Value at POR '1' = Bit is set

Legend:

R = Readable bit

'0' = Bit is cleared x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits(1)

W = Writable bit

111 = Reserved

110 = Divide-by-64

101 = Divide-by-32

100 = Divide-by-16

011 = Divide-by-8

010 = Divide-by-4

001 = Divide-by-2

000 = Divide-by-1, maximum PWMx timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-3: PTPER: PWMx PRIMARY MASTER TIME BASE PERIOD REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
	PTPER<15:8>									
bit 15					_		bit 8			

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0			
	PTPER<7:0>									
bit 7							bit 0			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 PTPER<15:0>: Primary Master Time Base (PMTMR) Period Value bits

REGISTER 16-4: SEVTCMP: PWMx PRIMARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	SEVTCMP<15:8>										
bit 15							bit 8				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	SEVTCMP<7:0>										
bit 7							bit 0				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 SEVTCMP<15:0>: Special Event Compare Count Value bits

REGISTER 16-5: STCON: PWMx SECONDARY TIME BASE CONTROL REGISTER

-	U-0	U-0	U-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0
ſ	_	_	_	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹⁾
	bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SYNCEN ⁽¹⁾	SYNCSRC<2:0> ⁽¹⁾			SEVTPS<3:0> ⁽¹⁾				
bit 7							bit 0	

Legend:	HC = Hardware Clearable bit	HS = Hardware Settable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0' bit 12 **SESTAT:** Special Event Interrupt Status bit 1 = Special event interrupt is pending 0 = Special event interrupt is not pending bit 11 **SEIEN:** Special Event Interrupt Enable bit 1 = Special event interrupt is enabled 0 = Special event interrupt is disabled bit 10 **EIPU:** Enable Immediate Period Updates bit⁽¹⁾ 1 = Active Period register is updated immediately 0 = Active Period register updates occur on PWM cycle boundaries SYNCPOL: Synchronize Input and Output Polarity bit (1) bit 9 1 = SYNCI2/SYNCO2 polarity is inverted (active-low) 0 = SYNCI2/SYNCO2 is active-high **SYNCOEN:** Primary Time Base Sync Enable bit⁽¹⁾ bit 8 1 = SYNCO2 output is enabled 0 = SYNCO2 output is disabled bit 7 **SYNCEN:** External Time Base Synchronization Enable bit⁽¹⁾ 1 = External synchronization of primary time base is enabled 0 = External synchronization of primary time base is disabled SYNCSRC<2:0>: Synchronous Source Selection bits⁽¹⁾ bit 6-4 111 = Reserved 100 = Reserved 011 = PTGO17⁽²⁾ 010 = PTGO16⁽²⁾ 001 = Reserved 000 = SYNCI1

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.

2: See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

REGISTER 16-5: STCON: PWMx SECONDARY TIME BASE CONTROL REGISTER (CONTINUED)

bit 3-0 SEVTPS<3:0>: PWMx Special Event Trigger Output Postscaler Select bits⁽¹⁾

1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event

•

0001 = 1:2 Postscaler generates Special Event Trigger on every second compare match event 0000 = 1:1 Postscaler generates Special Event Trigger on every compare match event

- **Note 1:** These bits should be changed only when PTEN = 0. In addition, when using the SYNCI1 feature, the user application must program the Period register with a value that is slightly larger than the expected period of the external synchronization input signal.
 - 2: See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.

REGISTER 16-6: STCON2: PWMx SECONDARY MASTER CLOCK DIVIDER SELECT REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_	P	CLKDIV<2:0> ⁽¹)
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-3 **Unimplemented:** Read as '0'

bit 2-0 PCLKDIV<2:0>: PWMx Input Clock Prescaler (Divider) Select bits (1)

111 = Reserved 110 = Divide-by-64 101 = Divide-by-32

100 = Divide-by-16 011 = Divide-by-8 010 = Divide-by-4 001 = Divide-by-2

000 = Divide-by-1, maximum PWMx timing resolution (power-on default)

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-7: STPER: PWMx SECONDARY MASTER TIME BASE PERIOD REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
STPER<15:8>									
bit 15									

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	
STPER<7:0>								
bit 7		bit 0						

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 STPER<15:0>: PWMx Secondary Master Time Base (PMTMR) Period Value bits

REGISTER 16-8: SSEVTCMP: PWMx SECONDARY SPECIAL EVENT COMPARE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SSEVTCMP<15:8>								
bit 15								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SSEVTCMP<7:0>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 SSEVTCMP<15:0>: PWMx Secondary Special Event Compare Count Value bits

REGISTER 16-9: CHOP: PWMx CHOP CLOCK GENERATOR REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CHPCLKEN	_	_	_	_	_	CHOPC	LK<9:8>
bit 15				bit 8			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHOPCLK<7:0>							
bit 7					bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 CHPCLKEN: Enable Chop Clock Generator bit

1 = Chop clock generator is enabled0 = Chop clock generator is disabled

bit 14-10 **Unimplemented:** Read as '0'

bit 9-0 CHOPCLK<9:0>: Chop Clock Divider bits

The frequency of the chop clock signal is given by the following expression:

Chop Frequency = (FP/PCLKDIV<2:0>)/(CHOP<9:0> + 1)

REGISTER 16-10: MDC: PWMx MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
MDC<15:8>									
bit 15									

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
MDC<7:0>									
bit 7									

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 MDC<15:0>: PWMx Master Duty Cycle Value bits

REGISTER 16-11: PWMCONX: PWMX CONTROL REGISTER

HS/HC-0	HS/HC-0	HS/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
FLTSTAT ⁽¹⁾	CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
DTC<	:1:0>	DTCP ⁽³⁾	_	MTBS	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾
bit 7							bit 0

Legend:	HC = Hardware Clearable bit	bit HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x	= Bit is unknown	

bit 15 FLTSTAT: Fault Interrupt Status bit⁽¹⁾

1 = Fault interrupt is pending

0 = No Fault interrupt is pending
This bit is cleared by setting: FLTIEN = 0.

This bit is cleared by setting. FLTIEN = 0.

bit 14 CLSTAT: Current-Limit Interrupt Status bit⁽¹⁾

1 = Current-limit interrupt is pending

0 = No current-limit interrupt is pending This bit is cleared by setting: CLIEN = 0.

bit 13 TRGSTAT: Trigger Interrupt Status bit

1 = Trigger interrupt is pending

0 = No trigger interrupt is pending

This bit is cleared by setting: TRGIEN = 0.

bit 12 FLTIEN: Fault Interrupt Enable bit

1 = Fault interrupt is enabled

0 = Fault interrupt is disabled and FLTSTAT bit is cleared

bit 11 CLIEN: Current-Limit Interrupt Enable bit

1 = Current-limit interrupt is enabled

0 = Current-limit interrupt is disabled and CLSTAT bit is cleared

bit 10 TRGIEN: Trigger Interrupt Enable bit

1 = A trigger event generates an interrupt request

0 = Trigger event interrupts are disabled and TRGSTAT bit is cleared

bit 9 ITB: Independent Time Base Mode bit(2)

1 = PHASEx register provides time base period for this PWMx generator

0 = PTPER register provides timing for this PWMx generator

bit 8 MDCS: Master Duty Cycle Register Select bit⁽²⁾

1 = MDC register provides duty cycle information for this PWMx generator

0 = PDCx register provides duty cycle information for this PWMx generator

Note 1: Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.

- 2: These bits should not be changed after the PWMx is enabled (PTEN = 1).
- 3: DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
- 4: The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
- 5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

REGISTER 16-11: PWMCONx: PWMx CONTROL REGISTER (CONTINUED)

bit 7-6 DTC<1:0>: Dead-Time Control bits

11 = Dead-Time Compensation mode

10 = Dead-time function is disabled

01 = Negative dead time is actively applied for Complementary Output mode

00 = Positive dead time is actively applied for all Output modes

bit 5 **DTCP**: Dead-Time Compensation Polarity bit⁽³⁾

When Set to '1':

If DTCMPx = 0, PWMxL is shortened and PWMxH is lengthened.

If DTCMPx = 1, PWMxH is shortened and PWMxL is lengthened.

When Set to '0':

If DTCMPx = 0, PWMHx is shortened and PWMLx is lengthened. If DTCMPx = 1, PWMLx is shortened and PWMHx is lengthened.

bit 4 Unimplemented: Read as '0'

bit 3 MTBS: Master Time Base Select bit

- 1 = PWMx generator uses the secondary master time base for synchronization and as the clock source for the PWMx generation logic (if secondary time base is available)
- 0 = PWMx generator uses the primary master time base for synchronization and as the clock source for the PWMx generation logic

bit 2 **CAM:** Center-Aligned Mode Enable bit^(2,4)

1 = Center-Aligned mode is enabled

0 = Edge-Aligned mode is enabled

bit 1 XPRES: External PWMx Reset Control bit (5)

- 1 = Current-limit source resets the time base for this PWMx generator if it is in Independent Time Base mode
- 0 = External pins do not affect PWMx time base

bit 0 **IUE:** Immediate Update Enable bit⁽²⁾

- 1 = Updates to the active MDC/PDCx/DTx/ALTDTRx/PHASEx registers are immediate
- 0 = Updates to the active MDC/PDCx/DTx/ALTDTRx/PHASEx registers are synchronized to the PWMx period boundary
- Note 1: Software must clear the interrupt status here and in the corresponding IFSx bit in the interrupt controller.
 - 2: These bits should not be changed after the PWMx is enabled (PTEN = 1).
 - 3: DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
 - 4: The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
 - 5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

REGISTER 16-12: PDCx: PWMx GENERATOR DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PDCx<15:8>								
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PDCx<7:0>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 PDCx<15:0>: PWMx Generator # Duty Cycle Value bits

REGISTER 16-13: SDCx: PWMx SECONDARY DUTY CYCLE REGISTER(1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SDCx<15:8>								
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SDCx<7:0>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 SDCx<15:0>: Secondary Duty Cycle bits for PWMxL Output Pin bits

Note 1: The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle.

REGISTER 16-14: PHASEX: PWMX PRIMARY PHASE-SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PHASEx<15:8>								
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PHASEx<7:0>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 PHASEx<15:0>: Phase-Shift Value or Independent Time Base Period for the PWMx Generator bits

Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation:

Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) = 00, 01 or 10),

PHASEx<15:0> = Phase-shift value for PWMxH and PWMxL outputs.

2: If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation:
Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCONx<11:10>) = 00, 01 or 10),
PHASEx<15:0> = Independent Time Base Period Value for PWMxH and PWMxL.

REGISTER 16-15: SPHASEx: PWMx SECONDARY PHASE SHIFT REGISTER (1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SPHASEx<15:8>								
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SPHASEx<7:0>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **SPHASEx<15:0>:** Secondary Phase Offset bits for PWMxL Output Pin (used in Independent PWM mode only)

Note 1: If ITB (PWMCONx<9>) = 0, the following applies based on the mode of operation:

- Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) = 00, 01 or 10), SPHASEx<15:0> = Not used.
- True Independent Output mode (PMOD<1:0> (IOCON<11:10>) = 11), SPHASEx<15:0> = Phase-Shift Value for PWMxL only.
- 2: If ITB (PWMCONx<9>) = 1, the following applies based on the mode of operation:
 - Complementary, Redundant and Push-Pull Output mode (PMOD<1:0> (IOCON<11:10>) = 00, 01 or 10). SPHASEx<15:0> = Not used.
 - True Independent Output mode (PMOD<1:0> (IOCON<11:10>) = 11), SPHASEx<15:0> = Independent Time Base Period Value for PWMxL only.

REGISTER 16-16: DTRx: PWMx DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			DTRx	<13:8>		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
DTRx<7:0>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-17: ALTDTRx: PWMx ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			ALTDTI	Rx<13:8>		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
ALTDTRx<7:0>										
bit 7 b										

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-Bit Dead-Time Value for PWMx Dead-Time Unit bits

REGISTER 16-18: TRGCONX: PWMx TRIGGER CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	TRGDI\	/<3:0>		_	_	_	_
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_			TRGSTF	RT<5:0> ⁽¹⁾		
bit 7							bit 0

Legend:W = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-12 TRGDIV<3:0>: Trigger # Output Divider bits

1111 = Trigger output for every 16th trigger event

1110 = Trigger output for every 15th trigger event

1101 = Trigger output for every 14th trigger event

1100 = Trigger output for every 13th trigger event

1011 = Trigger output for every 12th trigger event

1010 = Trigger output for every 11th trigger event

1001 = Trigger output for every 10th trigger event

1000 = Trigger output for every 9th trigger event

0111 = Trigger output for every 8th trigger event

0110 = Trigger output for every 7th trigger event

0101 = Trigger output for every 6th trigger event

0100 = Trigger output for every 5th trigger event

0011 = Trigger output for every 4th trigger event

0010 = Trigger output for every 3rd trigger event

0001 = Trigger output for every 2nd trigger event

0000 = Trigger output for every trigger event

bit 11-6 **Unimplemented:** Read as '0'

bit 5-0 TRGSTRT<5:0>: Trigger Postscaler Start Enable Select bits⁽¹⁾

111111 = Wait 63 PWM cycles before generating the first trigger event after the module is enabled

•

•

.

000010 = Wait 2 PWM cycles before generating the first trigger event after the module is enabled 000001 = Wait 1 PWM cycle before generating the first trigger event after the module is enabled 000000 = Wait 0 PWM cycles before generating the first trigger event after the module is enabled

Note 1: The secondary PWM generator cannot generate PWM trigger interrupts.

REGISTER 16-19: IOCONx: PWMx I/O CONTROL REGISTER(2)

R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD	<1:0> ⁽¹⁾	OVRENH	OVRENL
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRDA	T<1:0>	FLTDA	T<1:0>	CLDAT<1:0>		SWAP	OSYNC
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **PENH:** PWMxH Output Pin Ownership bit

1 = PWMx module controls the PWMxH pin

0 = GPIO module controls the PWMxH pin

bit 14 PENL: PWMxL Output Pin Ownership bit

1 = PWMx module controls the PWMxL pin 0 = GPIO module controls the PWMxL pin

bit 13 **POLH:** PWMxH Output Pin Polarity bit

1 = PWMxH pin is active-low

0 = PWMxH pin is active-high

bit 12 POLL: PWMxL Output Pin Polarity bit

1 = PWMxL pin is active-low

0 = PWMxL pin is active-high

bit 11-10 **PMOD<1:0>:** PWMx # I/O Pin Mode bits⁽¹⁾

11 = PWMx I/O pin pair is in the True Independent Output mode

10 = PWMx I/O pin pair is in Push-Pull Output mode 01 = PWMx I/O pin pair is in Redundant Output mode

00 = PWMx I/O pin pair is in Complementary Output mode

bit 9 **OVRENH:** Override Enable for PWMxH Pin bit

1 = OVRDAT<1> controls the output on the PWMxH pin

0 = PWMx generator controls the PWMxH pin

bit 8 **OVRENL:** Override Enable for PWMxL Pin bit

1 = OVRDAT<0> controls the output on the PWMxL pin

0 = PWMx generator controls the PWMxL pin

bit 7-6 **OVRDAT<1:0>:** Data for PWMxH. PWMxL Pins if Override is Enabled bits

If OVERENH = 1, PWMxH is driven to the state specified by OVRDAT<1>.

If OVERENL = 1, PWMxL is driven to the state specified by OVRDAT<0>.

bit 5-4 **FLTDAT<1:0>:** Data for PWMxH and PWMxL Pins if FLTMOD is Enabled bits

If Fault is active, PWMxH is driven to the state specified by FLTDAT<1>. If Fault is active, PWMxL is driven to the state specified by FLTDAT<0>.

bit 3-2 CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits

If current limit is active, PWMxH is driven to the state specified by CLDAT<1>.

If current limit is active, PWMxL is driven to the state specified by CLDAT<0>.

Note 1: These bits should not be changed after the PWMx module is enabled (PTEN = 1).

2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 16-19: IOCONx: PWMx I/O CONTROL REGISTER⁽²⁾ (CONTINUED)

bit 1 **SWAP:** SWAP PWMxH and PWMxL Pins bit

1 = PWMxH output signal is connected to the PWMxL pins; PWMxL output signal is connected to the PWMxH pins

0 = PWMxH and PWMxL pins are mapped to their respective pins

bit 0 **OSYNC:** Output Override Synchronization bit

- 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base
- 0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary
- **Note 1:** These bits should not be changed after the PWMx module is enabled (PTEN = 1).
 - 2: If the PWMLOCK Configuration bit (FOSCSEL<6>) is a '1', the IOCONx register can only be written after the unlock sequence has been executed.

REGISTER 16-20: TRIGX: PWMx PRIMARY TRIGGER COMPARE VALUE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	TRGCMP<15:8>									
bit 15							bit 8			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	TRGCMP<7:0>										
bit 7											

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 TRGCMP<15:0>: Trigger Control Value bits

When the primary PWMx functions in the local time base, this register contains the compare values

that can trigger the ADCx module.

REGISTER 16-21: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IFLTMOD			CLSRC<4:0>	•		CLPOL ⁽¹⁾	CLMOD
bit 15							bit 8

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
FLTSRC<4:0>					FLTPOL ⁽¹⁾	FLTMO	D<1:0>
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

```
bit 15
               IFLTMOD: Independent Fault Mode Enable bit
               1 = Independent Fault mode is enabled
               0 = Independent Fault mode is disabled
bit 14-10
               CLSRC<4:0>: Current-Limit Control Signal Source Select for the PWMx Generator # bits
               11111 = Fault 32
               11110 = Reserved
               01100 = Op Amp/Comparator 5
               01011 = Comparator 4
               01010 = Op Amp/Comparator 3
               01001 = Op Amp/Comparator 2
               01000 = Op Amp/Comparator 1
               00111 = Fault 8
               00110 = Fault 7
               00101 = Fault 6
               00100 = Fault 5
               00011 = Fault 4
               00010 = Fault 3
               00001 = Fault 2
               00000 = Fault 1
              CLPOL: Current-Limit Polarity for PWMx Generator # bit(1)
bit 9
               1 = The selected current-limit source is active-low
               0 = The selected current-limit source is active-high
bit 8
               CLMOD: Current-Limit Mode Enable for PWMx Generator # bit
               1 = Current-Limit mode is enabled
```

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

0 = Current-Limit mode is disabled

REGISTER 16-21: FCLCONx: PWMx FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)

```
bit 7-3
              FLTSRC<4:0>: Fault Control Signal Source Select for PWMx Generator # bits
              11111 = Fault 32 (default)
              11110 = Reserved
              01100 = Op Amp/Comparator 5
               01011 = Comparator 4
               01010 = Op Amp/Comparator 3
               01001 = Op Amp/Comparator 2
              01000 = Op Amp/Comparator 1
              00111 = Fault 8
               00110 = Fault 7
              00101 = Fault 6
              00100 = Fault 5
              00011 = Fault 4
              00010 = Fault 3
              00001 = Fault 2
               00000 = Fault 1
bit 2
              FLTPOL: Fault Polarity for PWMx Generator # bit(1)
               1 = The selected Fault source is active-low
               0 = The selected Fault source is active-high
bit 1-0
              FLTMOD<1:0>: Fault Mode for PWMx Generator # bits
              11 = Fault input is disabled
              10 = Reserved
              01 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle)
               00 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)
```

Note 1: These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-22: LEBCONx: LEADING-EDGE BLANKING CONTROL REGISTER x

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	_
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	BCH ⁽¹⁾	BCL ⁽¹⁾	BPHH	BPHL	BPLH	BPLL
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

L	11 Value at 1	ore a brief set a brief set of brief sector of
	bit 15	PHR: PWMxH Rising Edge Trigger Enable bit 1 = Rising edge of PWMxH will trigger Leading-Edge Blanking counter
	bit 14	0 = Leading-Edge Blanking ignores rising edge of PWMxH PHF: PWMxH Falling Edge Trigger Enable bit 1 = Falling edge of PWMxH will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxH
	bit 13	PLR: PWMxL Rising Edge Trigger Enable bit 1 = Rising edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores rising edge of PWMxL
	bit 12	PLF: PWMxL Falling Edge Trigger Enable bit 1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter 0 = Leading-Edge Blanking ignores falling edge of PWMxL
	bit 11	FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is applied to selected Fault input 0 = Leading-Edge Blanking is not applied to selected Fault input
	bit 10	CLLEBEN: Current-Limit Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is applied to selected current-limit input 0 = Leading-Edge Blanking is not applied to selected current-limit input
	bit 9-6	Unimplemented: Read as '0'
	bit 5	BCH: Blanking in Selected Blanking Signal High Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high 0 = No blanking when selected blanking signal is high
	bit 4	BCL: Blanking in Selected Blanking Signal Low Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low 0 = No blanking when selected blanking signal is low
	bit 3	BPHH: Blanking in PWMxH High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high 0 = No blanking when PWMxH output is high
	bit 2	BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low 0 = No blanking when PWMxH output is low
	bit 1	BPLH: Blanking in PWMxL High Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is high 0 = No blanking when PWMxL output is high
	bit 0	BPLL: Blanking in PWMxL Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxL output is low 0 = No blanking when PWMxL output is low

Note 1: The blanking signal is selected via the BLANKSELx bits in the AUXCONx register.

REGISTER 16-23: LEBDLYx: LEADING-EDGE BLANKING DELAY REGISTER x

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	_		LEB<	11:8>	
bit 15					_		bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
LEB<7:0>								
bit 7								

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0'

bit 11-0 LEB<11:0>: Leading-Edge Blanking Delay for Current-Limit and Fault Inputs bits

REGISTER 16-24: AUXCONx: PWMx AUXILIARY CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	_		BLANKS	EL<3:0>	
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_		CHOPSEL<3:0>				CHOPLEN
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-8 BLANKSEL<3:0>: PWMx State Blank Source Select bits

The selected state blank signal will block the current-limit and/or Fault input signals (if enabled via the BCH and BCL bits in the LEBCONx register).

1001 = Reserved

•

•

0110 = PWM6H selected as state blank source

0101 = PWM5H selected as state blank source

0100 = PWM4H selected as state blank source

0011 = PWM3H selected as state blank source

0010 = PWM2H selected as state blank source

0001 = PWM1H selected as state blank source

0000 = No state blanking

bit 7-6 **Unimplemented:** Read as '0'

bit 5-2 CHOPSEL<3:0>: PWMx Chop Clock Source Select bits

The selected signal will enable and disable (CHOP) the selected PWMx outputs.

1001 = Reserved

•

.

0110 = PWM6H selected as state blank source

0101 = PWM5H selected as state blank source

0100 = PWM4H selected as state blank source

0011 = PWM3H selected as CHOP clock source

0010 = PWM2H selected as CHOP clock source

0001 = PWM1H selected as CHOP clock source

0000 = Chop clock generator selected as CHOP clock source

bit 1 CHOPHEN: PWMxH Output Chopping Enable bit

1 = PWMxH chopping function is enabled 0 = PWMxH chopping function is disabled

bit 0 CHOPLEN: PWMxL Output Chopping Enable bit

1 = PWMxL chopping function is enabled

0 = PWMxL chopping function is disabled

REGISTER 16-25: PWMCAPx: PWMx PRIMARY TIME BASE CAPTURE REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
PWMCAPx<15:8>(1,2)									
bit 15									

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			PWMCAP	x<7:0> ^(1,2)			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **PWMCAPx<15:0>:** PWMx Captured Time Base Value bits^(1,2)

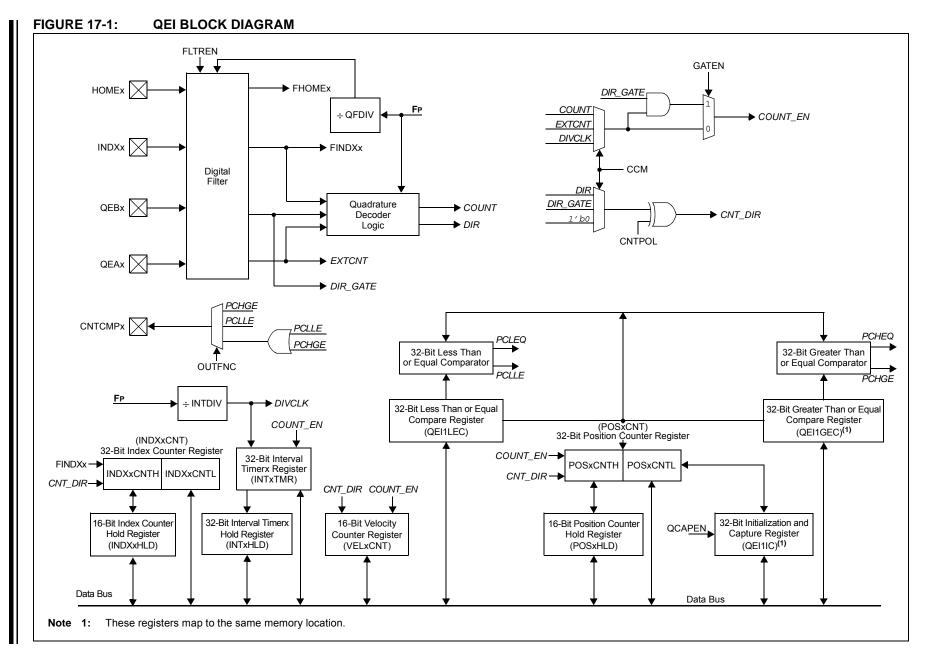
The value in this register represents the captured PWMx time base value when a leading edge is detected on the current-limit input.

- **Note 1:** The capture feature is only available on a primary output (PWMxH).
 - 2: This feature is active only after LEB processing on the current-limit input signal is complete.

N	0	Т	= 0	٠.
IV	u		_3	Э.

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Quadrature Encoder Interface (QEI)" (DS70601) which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI module include:

- · 32-Bit Position Counter
- · 32-Bit Index Pulse Counter
- · 32-Bit Interval Timer
- · 16-Bit Velocity Counter
- 32-Bit Position Initialization/Capture/Compare High Register
- · 32-Bit Position Compare Low Register
- · x4 Quadrature Count mode
- External Up/Down Count mode
- · External Gated Count mode
- · External Gated Timer mode
- · Internal Timer mode

Figure 17-1 illustrates the QEI block diagram.

:33EPXXXGM3XX/6XX/7XX

17.1 QEI Control Registers

REGISTER 17-1: QEIXCON: QEIX CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QEIEN	_	QEISIDL		PIMOD<2:0>	(1)	IMV<1	:0> ^(2,4)
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		INTDIV<2:0>(3)		CNTPOL	GATEN	CCM	<1:0>
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 QEIX Module Counter Enable bit

1 = Module counters are enabled

0 = Module counters are disabled, but SFRs can be read or written to

bit 14 Unimplemented: Read as '0'

bit 13 QEISIDL: QEIx Stop in Idle Mode bit

1 = Discontinues module operation when device enters Idle mode

0 = Continues module operation in Idle mode

bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits (1)

111 = Reserved

110 = Modulo Count mode for position counter

101 = Resets the position counter when the position counter equals the QEIxGEC register

100 = Second index event after home event initializes position counter with contents of the QEIxIC register

011 = First index event after home event initializes position counter with contents of the QEIxIC register

010 = Next index input event initializes the position counter with contents of the QEIxIC register

001 = Every index input event resets the position counter

000 = Index input event does not affect position counter

bit 9-8 IMV<1:0>: Index Match Value bits^(2,4)

1 = Required state of Phase B input signal for match on index pulse

0 = Required state of Phase A input signal for match on index pulse

bit 7 Unimplemented: Read as '0'

Note 1: When CCM<1:0> = 10 or CCM<1:0> = 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.

- 2: When CCM<1:0> = 00 and QEAx and QEBx values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset.
- 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.
- 4: The match value applies to the A and B inputs after the swap and polarity bits have been applied.

REGISTER 17-1: QEIXCON: QEIX CONTROL REGISTER (CONTINUED)

- bit 6-4 **INTDIV<2:0>:** Timer Input Clock Prescale Select bits (interval timer, main timer (position counter), velocity counter and index counter internal clock divider select)⁽³⁾
 - 111 = 1:128 prescale value
 - 110 = 1:64 prescale value
 - 101 = 1:32 prescale value
 - 100 = 1:16 prescale value
 - 011 = 1:8 prescale value
 - 010 = 1:4 prescale value
 - 001 = 1:2 prescale value
 - 000 = 1:1 prescale value
- bit 3 CNTPOL: Position and Index Counter/Timer Direction Select bit
 - 1 = Counter direction is negative unless modified by external up/down signal
 - 0 = Counter direction is positive unless modified by external up/down signal
- bit 2 GATEN: External Count Gate Enable bit
 - 1 = External gate signal controls position counter operation
 - 0 = External gate signal does not affect position counter/timer operation
- bit 1-0 CCM<1:0>: Counter Control Mode Selection bits
 - 11 = Internal Timer mode with optional external count is selected
 - 10 = External clock count with optional external count is selected
 - 01 = External clock count with external up/down direction is selected
 - 00 = Quadrature Encoder Interface (x4 mode) Count mode is selected
- **Note 1:** When CCM<1:0> = 10 or CCM<1:0> = 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.
 - 2: When CCM<1:0> = 00 and QEAx and QEBx values match the Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset.
 - 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.
 - 4: The match value applies to the A and B inputs after the swap and polarity bits have been applied.

REGISTER 17-2: QEIXIOC: QEIX I/O CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QCAPEN	FLTREN		QFDIV<2:0>		OUTFN	C<1:0>	SWPAB
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x
HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 QCAPEN: QEIx Position Counter Input Capture Enable bit

1 = Index match event of home input triggers a position capture event

0 = Index match event (positive edge) does not trigger a position capture event

bit 14 FLTREN: QEAx/QEBx/INDXx/HOMEx Digital Filter Enable bit

1 = Input pin digital filter is enabled

0 = Input pin digital filter is disabled (bypassed)

bit 13-11 QFDIV<2:0>: QEAx/QEBx/INDXx/HOMEx Digital Input Filter Clock Divide Select bits

111 = 1:128 clock divide

110 = 1:64 clock divide

101 = 1:32 clock divide

100 = 1:16 clock divide

011 = 1:8 clock divide

010 = 1:4 clock divide 001 = 1:2 clock divide

000 = 1:1 clock divide

bit 10-9 OUTFNC<1:0>: QEIx Module Output Function Mode Select bits

11 = The CNTCMPx pin goes high when QEIxLEC ≥ POSxCNT ≥ QEIxGEC

10 = The CNTCMPx pin goes high when POSxCNT ≤ QEIxLEC

01 = The CNTCMPx pin goes high when POSxCNT ≥ QEIxGEC

00 = Output is disabled

bit 8 SWPAB: Swap QEAx and QEBx Inputs bit

1 = QEAx and QEBx are swapped prior to quadrature decoder logic

0 = QEAx and QEBx are not swapped

bit 7 HOMPOL: HOMEx Input Polarity Select bit

1 = Input is inverted

0 = Input is not inverted

bit 6 IDXPOL: INDXx Input Polarity Select bit

1 = Input is inverted

0 = Input is not inverted

bit 5 QEBPOL: QEBx Input Polarity Select bit

1 = Input is inverted

0 = Input is not inverted

bit 4 QEAPOL: QEAx Input Polarity Select bit

1 = Input is inverted

0 = Input is not inverted

bit 3 **HOME:** Status of HOMEx Input Pin After Polarity Control bit

1 = Pin is at logic '1'

0 = Pin is at logic '0'

REGISTER 17-2: QEIXIOC: QEIX I/O CONTROL REGISTER (CONTINUED)

bit 2 INDEX: Status of INDXx Input Pin After Polarity Control bit

1 = Pin is at logic '1' 0 = Pin is at logic '0'

bit 1 QEB: Status of QEBx Input Pin After Polarity Control and SWPAB Pin Swapping bit

1 = Pin is at logic '1' 0 = Pin is at logic '0'

bit 0 QEA: Status of QEAx Input Pin After Polarity Control and SWPAB Pin Swapping bit

1 = Pin is at logic '1' 0 = Pin is at logic '0'

REGISTER 17-3: QEIXSTAT: QEIX STATUS REGISTER

U-0	U-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
_	_	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
bit 15							bit 8

HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0	HS, R/C-0	R/W-0
PCIIRQ ⁽¹⁾	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN
bit 7							bit 0

Legend: HS = Hardware Settable bit		C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13 **PCHEQIRQ:** Position Counter Greater Than or Equal Compare Status bit

1 = POSxCNT ≥ QEIxGEC 0 = POSxCNT < QEIxGEC

bit 12 **PCHEQIEN:** Position Counter Greater Than or Equal Compare Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

bit 11 PCLEQIRQ: Position Counter Less Than or Equal Compare Status bit

1 = POSxCNT ≤ QEIxLEC 0 = POSxCNT > QEIxLEC

bit 10 PCLEQIEN: Position Counter Less Than or Equal Compare Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

bit 9 **POSOVIRQ:** Position Counter Overflow Status bit

1 = Overflow has occurred0 = No overflow has occurred

bit 8 POSOVIEN: Position Counter Overflow Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

bit 7 PCIIRQ: Position Counter (Homing) Initialization Process Complete Status bit⁽¹⁾

1 = POSxCNT was reinitialized 0 = POSxCNT was not reinitialized

bit 6 PCIIEN: Position Counter (Homing) Initialization Process Complete interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

bit 5 **VELOVIRQ:** Velocity Counter Overflow Status bit

1 = Overflow has occurred0 = No overflow has occurred

bit 4 **VELOVIEN:** Velocity Counter Overflow Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

bit 3 **HOMIRQ:** Status Flag for Home Event Status bit

1 = Home event has occurred0 = No home event has occurred

Note 1: This status bit is only applicable to PIMOD<2:0> = 011 and 100 modes.

REGISTER 17-3: QEIXSTAT: QEIX STATUS REGISTER (CONTINUED)

bit 2 HOMIEN: Home Input Event Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

bit 1 IDXIRQ: Status Flag for Index Event Status bit

1 = Index event has occurred0 = No index event has occurred

bit 0 **IDXIEN:** Index Input Event Interrupt Enable bit

1 = Interrupt is enabled0 = Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD<2:0> = 011 and 100 modes.

REGISTER 17-4: POSxCNTH: POSITION COUNTER x HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
POSCNT<31:24>									
bit 15 bi									

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
			POSCN	Γ<23:16>					
bit 7									

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 POSCNT<31:16>: High Word Used to Form 32-Bit Position Counter x Register (POSxCNT) bits

REGISTER 17-5: POSxCNTL: POSITION COUNTER x LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			POSCN	T<15:8>				
bit 15								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			POSCN	IT<7:0>				
bit 7								

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 POSCNT<15:0>: Low Word Used to Form 32-Bit Position Counter x Register (POSxCNT) bits

REGISTER 17-6: POSXHLD: POSITION COUNTER x HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			POSHL	D<15:8>				
bit 15								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSHL	.D<7:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 POSHLD<15:0>: Holding Register for Reading and Writing POSxCNT bits

REGISTER 17-7: VELxCNT: VELOCITY COUNTER x REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	VELCNT<15:8>									
bit 15										

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			VELCN	IT<7:0>				
bit 7								

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **VELCNT<15:0>:** Velocity Counter x bits

REGISTER 17-8: INDXxCNTH: INDEX COUNTER x HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INDXCN	T<31:24>				
bit 15								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INDXCN	T<23:16>				
bit 7								

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 INDXCNT<31:16>: High Word Used to Form 32-Bit Index Counter x Register (INDXxCNT) bits

REGISTER 17-9: INDXxCNTL: INDEX COUNTER x LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INDXCN	T<15:8>				
bit 15								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			INDXCI	NT<7:0>				
bit 7								

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 INDXCNT<15:0>: Low Word Used to Form 32-Bit Index Counter x Register (INDXxCNT) bits

REGISTER 17-10: INDXxHLD: INDEX COUNTER x HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
INDXHLD<15:8>									
bit 15							bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
INDXHLD<7:0>										
bit 7							bit 0			

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 INDXHLD<15:0>: Holding Register for Reading and Writing INDXxCNT bits

REGISTER 17-11: QEIXICH: QEIX INITIALIZATION/CAPTURE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	QEIIC<31:24>										
bit 15							bit 8				

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
QEIIC<23:16>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 QEIIC<31:16>: High Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

REGISTER 17-12: QEIXICL: QEIX INITIALIZATION/CAPTURE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
QEIIC<15:8>									
bit 15							bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
QEIIC<7:0>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 QEIIC<15:0>: Low Word Used to Form 32-Bit Initialization/Capture Register (QEIxIC) bits

© 2013 Microchip Technology Inc.

REGISTER 17-13: QEIXLECH: QEIX LESS THAN OR EQUAL COMPARE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
QEILEC<31:24>									
bit 15							bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
QEILEC<23:16>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **QEILEC<31:16>:** High Word Used to Form 32-Bit Less Than or Equal Compare Register (QEIxLEC) bits

REGISTER 17-14: QEIXLECL: QEIX LESS THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
QEILEC<15:8>										
bit 15							bit 8			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<7:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **QEILEC<15:0>:** Low Word Used to Form 32-Bit Less Than or Equal Compare Register (QEIxLEC) bits

REGISTER 17-15: QEIXGECH: QEIX GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
QEIGEC<31:24>									
bit 15							bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
QEIGEC<23:16>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **QEIGEC<31:16>:** High Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEIx-GEC) bits

REGISTER 17-16: QEIXGECL: QEIX GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
QEIGEC<15:8>								
bit 15					bit 8			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	C<7:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **QEIGEC<15:0>:** Low Word Used to Form 32-Bit Greater Than or Equal Compare Register (QEIxGEC) bits

REGISTER 17-17: INTXTMRH: INTERVAL TIMERX HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
INTTMR<31:24>									
bit 15							bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
INTTMR<23:16>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 INTTMR<31:16>: High Word Used to Form 32-Bit Interval Timerx Register (INTxTMR) bits

REGISTER 17-18: INTXTMRL: INTERVAL TIMERX LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	INTTMR<15:8>									
bit 15							bit 8			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
INTTMR<7:0>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 INTTMR<15:0>: Low Word Used to Form 32-Bit Interval Timerx Register (INTxTMR) bits

REGISTER 17-19: INTxHLDH: INTERVAL TIMERx HOLD HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
INTHLD<31:24>								
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
INTHLD<23:16>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **INTHLD<31:16>:** Holding Register for Reading and Writing INTxTMRH bits

REGISTER 17-20: INTxHLDL: INTERVAL TIMERx HOLD LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	INTHLD<15:8>								
bit 15							bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
INTHLD<7:0>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 INTHLD<15:0>: Holding Register for Reading and Writing INTxTMRL bits

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

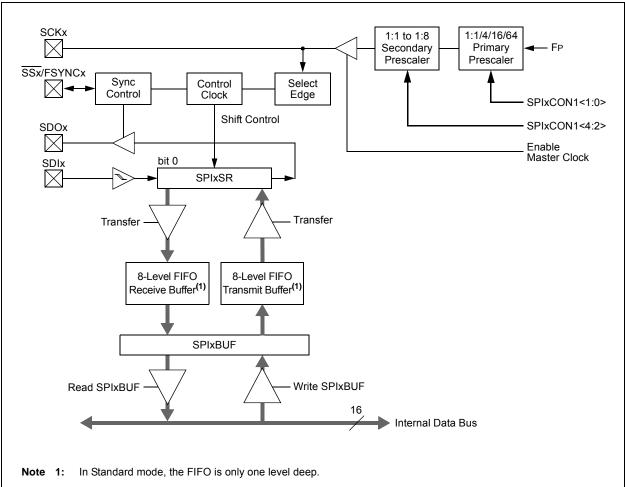
- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Serial Peripheral Interface (SPI)" (DS70569), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface, useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, A/D Converters, etc. The SPI module is compatible with the Motorola® SPI and SIOP interfaces.

The dsPIC33EPXXXGM3XX/6XX/7XX device family offers three SPI modules on a single device. These modules, which are designated as SPI1, SPI2 and SPI3, are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2 and SPI3. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1, SPI2 and SPI3 modules.

The SPI1 module uses dedicated pins which allow for a higher speed when using SPI1. The SPI2 and SPI3 modules take advantage of the Peripheral Pin Select (PPS) feature to allow for greater flexibility in pin configuration of these modules, but results in a lower maximum speed. See Section 33.0 "Electrical Characteristics" for more information.


The SPIx serial interface consists of four pins, as follows:

- · SDIx: Serial Data Input
- · SDOx: Serial Data Output
- · SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 18-1 illustrates the block diagram of the SPI module in Standard and Enhanced modes.

FIGURE 18-1: SPIX MODULE BLOCK DIAGRAM

18.1 SPI Helpful Tips

- In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on \overline{SSx} .

Note: This insures that the first frame transmission after initialization is not shifted or corrupted.

- In Non-Framed 3-Wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1
 6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = 0, always place a pull-down resistor on \overline{SSx} .

Note: This will insure that during power-up and initialization, the master/slave will not lose sync due to an errant SCK transition that would cause the slave to accumulate data shift errors, for both transmit and receive, appearing as corrupted data.

3. FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame Sync pulse is active on the SSx pin, which indicates the start of a data frame.

Note: Not all third-party devices support Frame mode timing. Refer to the SPI specifications in Section 33.0 "Electrical Characteristics" for details.

In Master mode only, set the SMP bit (SPIx-CON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIx-CON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must ensure enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF Transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPI Shift register and is empty once the data transmission begins.

18.2 SPI Control Registers

REGISTER 18-1: SPIXSTAT: SPIX STATUS AND CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
SPIEN	_	SPISIDL	_	_		SPIBEC<2:0>	>
bit 15							bit 8

R/W-0	R/C-0, HS	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	R-0, HS, HC
SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit C = Clearable bit

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

HS = Hardware Settable bit HC = Hardware Clearable bit U = Unimplemented bit, read as '0'

bit 15 SPIEN: SPIx Enable bit

1 = Enables the module and configures SCKx, SDOx, SDIx and \overline{SSx} as serial port pins

0 = Disables the module

bit 14 Unimplemented: Read as '0'

bit 13 SPISIDL: SPIx Stop in Idle Mode bit

1 = Discontinues the module operation when device enters Idle mode

0 = Continues the module operation in Idle mode

bit 12-11 **Unimplemented:** Read as '0'

bit 10-8 SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)

Master mode:

Number of SPIx transfers are pending.

Slave mode:

Number of SPIx transfers are unread.

bit 7 SRMPT: SPIx Shift Register (SPIxSR) Empty bit (valid in Enhanced Buffer mode)

1 = SPIx Shift register is empty and ready to send or receive the data

0 = SPIx Shift register is not empty

bit 6 SPIROV: SPIx Receive Overflow Flag bit

1 = A new byte/word is completely received and discarded; the user application has not read the previous data in the SPIxBUF register

0 = No overflow has occurred

bit 5 SRXMPT: SPIx Receive FIFO Empty bit (valid in Enhanced Buffer mode)

1 = RX FIFO is empty 0 = RX FIFO is not empty

bit 4-2 SISEL<2:0>: SPIx Buffer Interrupt Mode bits (valid in Enhanced Buffer mode)

111 = Interrupt when the SPIx transmit buffer is full (SPITBF bit is set)

110 = Interrupt when the last bit is shifted into SPIxSR and as a result, the TX FIFO is empty

101 = Interrupt when the last bit is shifted out of SPIxSR and the transmit is complete

100 = Interrupt when one data is shifted into SPIxSR and as a result, the TX FIFO has one open memory location

011 = Interrupt when the SPIx receive buffer is full (SPIRBF bit set)

010 = Interrupt when the SPIx receive buffer is 3/4 or more full

001 = Interrupt when data is available in the SPIx receive buffer (SRMPT bit is set)

000 = Interrupt when the last data in the SPIx receive buffer is read, and as a result, the buffer is empty (SRXMPT bit is set)

REGISTER 18-1: SPIXSTAT: SPIX STATUS AND CONTROL REGISTER (CONTINUED)

bit 1 SPITBF: SPIx Transmit Buffer Full Status bit

1 = Transmit has not yet started, SPIxTXB is full

0 = Transmit has started, SPIxTXB is empty

Standard Buffer Mode:

Automatically set in hardware when core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when the SPIx module transfers data from SPIxTXB to SPIxSR.

Enhanced Buffer Mode:

Automatically set in hardware when CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation.

bit 0 SPIRBF: SPIx Receive Buffer Full Status bit

- 1 = Receive is complete, SPIxRXB is full
- 0 = Receive is incomplete, SPIxRXB is empty

Standard Buffer Mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads the SPIxBUF location, reading SPIxRXB.

Enhanced Buffer Mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽²⁾	CKP	MSTEN	SPRE<2:0> ⁽³⁾			PPRE<	<1:0> ⁽³⁾
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12 DISSCK: Disable SCKx Pin bit (SPI Master modes only)

1 = Internal SPI clock is disabled, pin functions as I/O

0 = Internal SPI clock is enabled

bit 11 DISSDO: Disable SDOx Pin bit

1 = SDOx pin is not used by the module; pin functions as I/O

0 = SDOx pin is controlled by the module

bit 10 MODE16: Word/Byte Communication Select bit

1 = Communication is word-wide (16 bits)

0 = Communication is byte-wide (8 bits)

bit 9 SMP: SPIx Data Input Sample Phase bit

Master mode:

1 = Input data is sampled at end of data output time

0 = Input data is sampled at middle of data output time

Slave mode:

SMP must be cleared when SPIx is used in Slave mode.

bit 8 **CKE:** SPIx Clock Edge Select bit⁽¹⁾

1 = Serial output data changes on transition from active clock state to Idle clock state (refer to bit 6)

0 = Serial output data changes on transition from Idle clock state to active clock state (refer to bit 6)

bit 7 SSEN: Slave Select Enable bit (Slave mode)⁽²⁾

 $1 = \overline{SSx}$ pin is used for Slave mode

 $0 = \overline{SSx}$ pin is not used by module; pin is controlled by port function

bit 6 **CKP:** Clock Polarity Select bit

1 = Idle state for clock is a high level; active state is a low level

0 = Idle state for clock is a low level; active state is a high level

bit 5 MSTEN: Master Mode Enable bit

1 = Master mode

0 = Slave mode

Note 1: The CKE bit is not used in Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).

2: This bit must be cleared when FRMEN = 1.

3: Do not set both primary and secondary prescalers to the value of 1:1.

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

REGISTER 18-3: SPIXCON2: SPIX CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	FRMDLY	SPIBEN
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 FRMEN: Framed SPIx Support bit

1 = Framed SPIx support is enabled (\overline{SSx}) pin is used as the Frame Sync pulse input/output)

0 = Framed SPIx support is disabled

bit 14 SPIFSD: SPIx Frame Sync Pulse Direction Control bit

1 = Frame Sync pulse input (slave)0 = Frame Sync pulse output (master)

bit 13 FRMPOL: Frame Sync Pulse Polarity bit

1 = Frame Sync pulse is active-high

0 = Frame Sync pulse is active-low

bit 12-2 Unimplemented: Read as '0'

bit 1 FRMDLY: Frame Sync Pulse Edge Select bit

1 = Frame Sync pulse coincides with first bit clock0 = Frame Sync pulse precedes first bit clock

bit 0 SPIBEN: SPIx Enhanced Buffer Enable bit

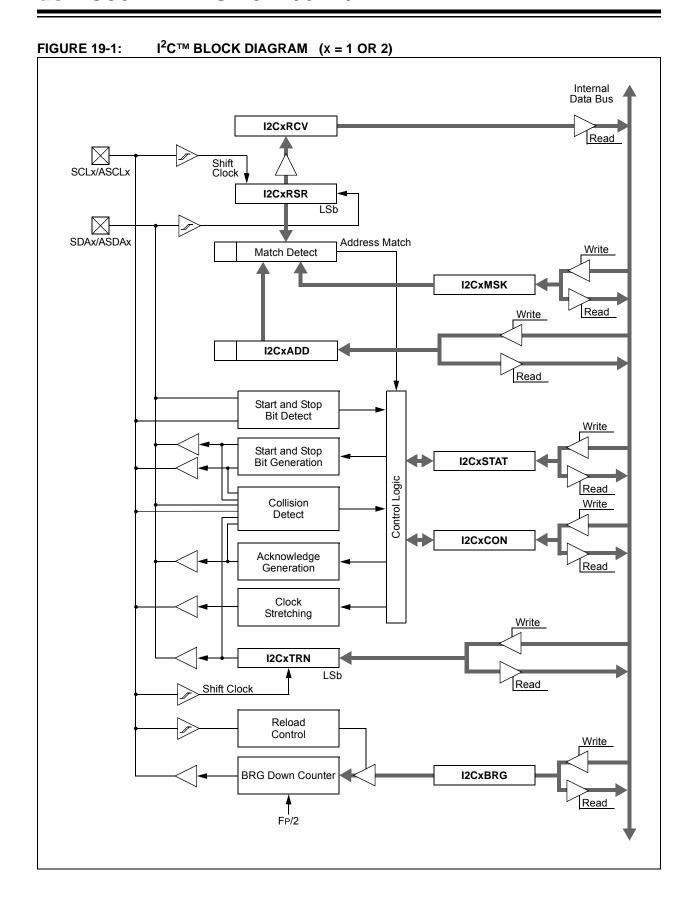
1 = Enhanced Buffer is enabled

0 = Enhanced Buffer is disabled (Standard mode)

19.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the dsPlC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPlC33E/PlC24E Family Reference Manual", "Inter-Integrated Circuit™ (I²C™)" (DS70330), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX family of devices contains two Inter-Integrated Circuit (I²C) modules: I2C1 and I2C2.


The I²C module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- · The SCLx pin is clock.
- · The SDAx pin is data.

The I²C module offers the following key features:

- I²C Interface Supporting both Master and Slave modes of Operation.
- I²C Slave mode Supports 7 and 10-Bit Addressing.
- I²C Master mode Supports 7 and 10-Bit Addressing.
- I²C Port Allows Bidirectional Transfers Between Master and Slaves.
- Serial Clock Synchronization for I²C Port can be used as a Handshake Mechanism to Suspend and Resume Serial Transfer (SCLREL control).
- 1²C Supports Multi-Master Operation, Detects Bus Collision and Arbitrates Accordingly.
- Intelligent Platform Management Interface (IPMI) Support
- · System Management Bus (SMBus) Support

19.1 I²C Control Registers

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-1, HC	R/W-0	R/W-0	R/W-0	R/W-0
I2CEN	_	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0, HC				
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
bit 7							bit 0

Legend:	HC = Hardware Clearable b	HC = Hardware Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15 I2CEN: I2Cx Enable bit

1 = Enables the I2Cx module and configures the SDAx and SCLx pins as serial port pins

0 = Disables the I2Cx module; all I^2C^{TM} pins are controlled by port functions

bit 14 Unimplemented: Read as '0'

bit 13 I2CSIDL: I2Cx Stop in Idle Mode bit

1 = Discontinues module operation when device enters an Idle mode

0 = Continues module operation in Idle mode

bit 12 **SCLREL:** SCLx Release Control bit (when operating as I²C[™] slave)

1 = Releases SCLx clock

0 = Holds SCLx clock low (clock stretch)

If STREN = 1:

Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clears at the beginning of every slave data byte transmission. Hardware clears at the end of every slave address byte reception. Hardware clears at the end of every slave data byte reception.

If STREN = 0:

Bit is R/S (i.e., software can only write '1' to release clock). Hardware clears at the beginning of every slave data byte transmission. Hardware clears at the end of every slave address byte reception.

bit 11 **IPMIEN:** Intelligent Peripheral Management Interface (IPMI) Enable bit (1)

1 = IPMI mode is enabled; all addresses are Acknowledged

0 = IPMI mode is disabled

bit 10 A10M: 10-Bit Slave Address bit

1 = I2CxADD is a 10-bit slave address0 = I2CxADD is a 7-bit slave address

bit 9 DISSLW: Disable Slew Rate Control bit

1 = Slew rate control is disabled0 = Slew rate control is enabled

bit 8 SMEN: SMBus Input Levels bit

1 = Enables I/O pin thresholds compliant with SMBus specification

0 = Disables SMBus input thresholds

bit 7 **GCEN:** General Call Enable bit (when operating as I²C slave)

1 = Enables interrupt when a general call address is received in the I2CxRSR (module is enabled for reception)

0 = General call address is disabled

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6 STREN: SCLx Clock Stretch Enable bit (when operating as I²C slave)

Used in conjunction with SCLREL bit.

1 = Enables software or receives clock stretching

0 = Disables software or receives clock stretching

bit 5 **ACKDT:** Acknowledge Data bit (when operating as I²C master, applicable during master receive)

Value that is transmitted when the software initiates an Acknowledge sequence.

1 = Sends NACK during Acknowledge

0 = Sends ACK during Acknowledge

bit 4 ACKEN: Acknowledge Sequence Enable bit

(when operating as I²C master, applicable during master receive)

- 1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware clears at the end of the master Acknowledge sequence.
- 0 = Acknowledge sequence is not in progress
- bit 3 **RCEN:** Receive Enable bit (when operating as I²C master)
 - 1 = Enables Receive mode for I²C. Hardware clears at the end of the eighth bit of a master receive data byte.
 - 0 = Receive sequence is not in progress
- bit 2 **PEN:** Stop Condition Enable bit (when operating as I²C master)
 - 1 = Initiates Stop condition on SDAx and SCLx pins. Hardware clears at the end of a master Stop sequence.
 - 0 = Stop condition is not in progress
- bit 1 RSEN: Repeated Start Condition Enable bit (when operating as I²C master)
 - 1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware clears at the end of a master Repeated Start sequence.
 - 0 = Repeated Start condition is not in progress
- bit 0 **SEN:** Start Condition Enable bit (when operating as I²C master)
 - 1 = Initiates Start condition on SDAx and SCLx pins. Hardware clears at the end of a master Start sequence.
 - 0 = Start condition is not in progress

Note 1: When performing master operations, ensure that the IPMIEN bit is set to '0'.

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10
bit 15							bit 8

R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7							bit 0

Legend:	C = Clearable bit	U = Unimplemented bit, read		
R = Readable bit	W = Writable bit	HS = Hardware Settable bit	HSC = Hardware Se	ettable/Clearable bit
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15 ACKSTAT: Acknowledge Status bit

(when operating as I²C[™] master, applicable to master transmit operation)

1 = NACK received from slave

0 = ACK received from slave

Hardware sets or clears at the end of a slave Acknowledge.

bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation)

1 = Master transmit is in progress (8 bits + ACK)

0 = Master transmit is not in progress

Hardware sets at the beginning of a master transmission. Hardware clears at the end of a slave Acknowledge.

bit 13-11 **Unimplemented:** Read as '0'

bit 10 BCL: Master Bus Collision Detect bit

1 = A bus collision has been detected during a master operation

0 = No collision

Hardware sets at detection of a bus collision.

bit 9 GCSTAT: General Call Status bit

1 = General call address was received

0 = General call address was not received

Hardware sets when address matches the general call address. Hardware clears at Stop detection.

bit 8 ADD10: 10-Bit Address Status bit

1 = 10-bit address was matched

0 = 10-bit address was not matched

Hardware sets at a match of the 2nd byte of a matched 10-bit address. Hardware clears at Stop detection.

bit 7 **IWCOL:** Write Collision Detect bit

1 = An attempt to write to the I2CxTRN register failed because the I²C module is busy

0 = No collision

Hardware sets at an occurrence of a write to I2CxTRN while busy (cleared by software).

bit 6 I2COV: I2Cx Receive Overflow Flag bit

1 = A byte was received while the I2CxRCV register was still holding the previous byte

0 = No overflow

Hardware sets at an attempt to transfer I2CxRSR to I2CxRCV (cleared by software).

bit 5 **D_A:** Data/Address bit (when operating as I²C slave)

1 = Indicates that the last byte received was data

0 = Indicates that the last byte received was a device address

Hardware clears at a device address match. Hardware sets by reception of a slave byte.

bit 4 **P:** Stop bit

1 = Indicates that a Stop bit has been detected last

0 = Stop bit was not detected last

Hardware sets or clears when Start, Repeated Start or Stop is detected.

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3 S: Start bit

1 = Indicates that a Start (or Repeated Start) bit has been detected last

0 = Start bit was not detected last

Hardware sets or clears when Start, Repeated Start or Stop is detected.

bit 2 R_W: Read/Write Information bit (when operating as I²C slave)

1 = Read – indicates data transfer is output from slave

0 = Write - indicates data transfer is input to slave

Hardware sets or clears after reception of an I²C device address byte.

bit 1 RBF: Receive Buffer Full Status bit

1 = Receive is complete, I2CxRCV is full

0 = Receive is not complete, I2CxRCV is empty

Hardware sets when I2CxRCV is written with a received byte. Hardware clears when software reads

I2CxRCV.

bit 0 TBF: Transmit Buffer Full Status bit

1 = Transmit is in progress, I2CxTRN is full

0 = Transmit is complete, I2CxTRN is empty

Hardware sets when software writes to I2CxTRN. Hardware clears at completion of data transmission.

REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	AMSK9	AMSK8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| AMSK7 | AMSK6 | AMSK5 | AMSK4 | AMSK3 | AMSK2 | AMSK1 | AMSK0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-10 **Unimplemented:** Read as '0'

bit 9-0 AMSK<9:0>: Address Mask Select bits

For 10-Bit Address:

1 = Enables masking for bit, Ax, of incoming message address; bit match is not required in this position

0 = Disables masking for bit, Ax; bit match is required in this position

For 7-Bit Address (I2CxMSK<6:0> only):

1 = Enables masking for bit, Ax + 1, of incoming message address; bit match is not required in this position

0 =Disables masking for bit, Ax + 1; bit match is required in this position

N	0	Т	= 0	٠.
IV	u		_3	Э.

20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

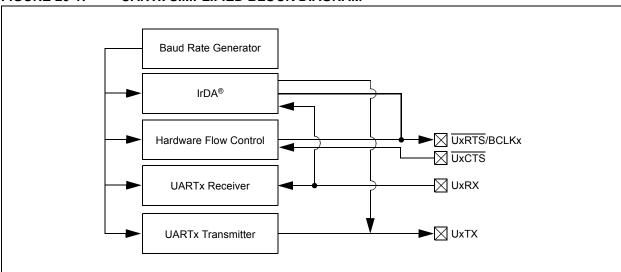
Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "UART" (DS70582), which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX family of devices contains four UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXXGM3XX/6XX/7XX device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UXCTS and UxRTS pins, and also includes an IrDA® encoder and decoder.

Note: Hardware flow control using UxRTS and UxCTS is not available on all pin count devices. See the "Pin Diagrams" section for availability.


The primary features of the UART module are:

- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX Pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop Bits
- Hardware Flow Control Option with UxCTS and UxRTS Pins
- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 4.375 Mbps to 67 bps at 16x mode at 70 MIPS
- Baud Rates Ranging from 17.5 Mbps to 267 bps at 4x mode at 70 MIPS
- 4-Deep First-In First-Out (FIFO) Transmit Data Buffer
- · 4-Deep FIFO Receive Data Buffer
- · Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- · A Separate Interrupt for All UART Error Conditions
- · Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Support for Automatic Baud Rate Detection
- IrDA[®] Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA[®] Support

A simplified block diagram of the UART module is shown in Figure 20-1. The UART module consists of these key hardware elements:

- · Baud Rate Generator
- · Asynchronous Transmitter
- · Asynchronous Receiver

FIGURE 20-1: UARTX SIMPLIFIED BLOCK DIAGRAM

20.1 UART Helpful Tips

- In multi-node direct connect UART networks, UART receive inputs react to the complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the Idle state, the default of which is logic high (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a Start bit detection and will cause the first byte received, after the device has been initialized, to be invalid. To avoid this situation, the user should use a pullup or pull-down resistor on the RX pin, depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.

2. The first character received on wake-up from Sleep mode, caused by activity on the UxRX pin of the UART module, will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock, relative to the incoming UxRX bit timing, is no longer synchronized, resulting in the first character being invalid. This is to be expected.

20.2 UART Control Registers

REGISTER 20-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	_	USIDL	IREN ⁽²⁾	RTSMD	_	UEN	<1:0>
bit 15 bit 8							

R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	_<1:0>	STSEL
bit 7							bit 0

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 **UARTEN:** UARTx Enable bit⁽¹⁾

1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0>

0 = UARTx is disabled; all UARTx pins are controlled by PORT latches; UARTx power consumption is minimal

bit 14 **Unimplemented:** Read as '0'

bit 13 USIDL: UARTx Stop in Idle Mode bit

1 = Discontinues module operation when device enters Idle mode

0 = Continues module operation in Idle mode

bit 12 IREN: IrDA® Encoder and Decoder Enable bit(2)

1 = IrDA encoder and decoder are enabled

0 = IrDA encoder and decoder are disabled

bit 11 RTSMD: Mode Selection for UxRTS Pin bit

 $1 = \overline{\text{UxRTS}}$ pin is in Simplex mode

 $0 = \overline{\text{UxRTS}}$ pin is in Flow Control mode

bit 10 **Unimplemented:** Read as '0'

bit 9-8 **UEN<1:0>:** UARTx Pin Enable bits

11 = UxTX, UxRX and BCLKx pins are enabled and used; UxCTS pin is controlled by PORT latches⁽³⁾

10 = UxTX, UxRX, $\overline{\text{UxCTS}}$ and $\overline{\text{UxRTS}}$ pins are enabled and used⁽⁴⁾

01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin is controlled by PORT latches (4)

00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLKx pins are controlled by PORT latches

bit 7 WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit

1 = UARTx continues to sample the UxRX pin; interrupt is generated on the falling edge; bit is cleared in hardware on the following rising edge

0 = No wake-up is enabled

bit 6 LPBACK: UARTx Loopback Mode Select bit

1 = Enables Loopback mode

0 = Loopback mode is disabled

Note 1: Refer to the "dsPIC33E/PIC24E Family Reference Manual", "UART" (DS70582) for information on enabling the UART module for receive or transmit operation.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

3: This feature is only available on 44-pin and 64-pin devices.

4: This feature is only available on 64-pin devices.

REGISTER 20-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 5 ABAUD: Auto-Baud Enable bit

1 = Enables baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion

0 = Baud rate measurement is disabled or has completed

bit 4 URXINV: UARTx Receive Polarity Inversion bit

1 = UxRX Idle state is '0'

0 = UxRX Idle state is '1'

bit 3 BRGH: High Baud Rate Enable bit

1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)

bit 2-1 PDSEL<1:0>: Parity and Data Selection bits

11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity

bit 0 STSEL: Stop Bit Selection bit

1 = Two Stop bits0 = One Stop bit

Note 1: Refer to the "dsPIC33E/PIC24E Family Reference Manual", "UART" (DS70582) for information on enabling the UART module for receive or transmit operation.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

3: This feature is only available on 44-pin and 64-pin devices.

4: This feature is only available on 64-pin devices.

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend: C = Clearable bit		HC = Hardware Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

- bit 15,13 UTXISEL<1:0>: UARTx Transmission Interrupt Mode Selection bits
 - 11 = Reserved; do not use
 - 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
 - 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
 - 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)
- bit 14 UTXINV: UARTx Transmit Polarity Inversion bit

If IREN = 0:

- 1 = UxTX Idle state is '0'
- 0 = UxTX Idle state is '1'

If IREN = 1:

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'
- bit 12 **Unimplemented:** Read as '0'
- bit 11 UTXBRK: UARTx Transmit Break bit
 - 1 = Sends Sync Break on next transmission Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
 - 0 = Sync Break transmission is disabled or has completed
- bit 10 UTXEN: UARTx Transmit Enable bit(1)
 - 1 = Transmit is enabled, UxTX pin is controlled by UARTx
 - 0 = Transmit is disabled, any pending transmission is aborted and the buffer is reset; UxTX pin is controlled by the PORT
- bit 9 UTXBF: UARTx Transmit Buffer Full Status bit (read-only)
 - 1 = Transmit buffer is full
 - 0 = Transmit buffer is not full, at least one more character can be written
- bit 8 **TRMT:** Transmit Shift Register Empty bit (read-only)
 - 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
 - 0 = Transmit Shift Register is not empty, a transmission is in progress or queued
- bit 7-6 URXISEL<1:0>: UARTx Receive Interrupt Mode Selection bits
 - 11 = Interrupt is set on UxRSR transfer, making the receive buffer full (i.e., has 4 data characters)
 - 10 = Interrupt is set on UxRSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters)
 - 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer; receive buffer has one or more characters
- **Note 1:** Refer to the "dsPIC33E/PIC24E Family Reference Manual", "UART" (DS70582) for information on enabling the UART module for transmit operation.

0 = Receive buffer is empty

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

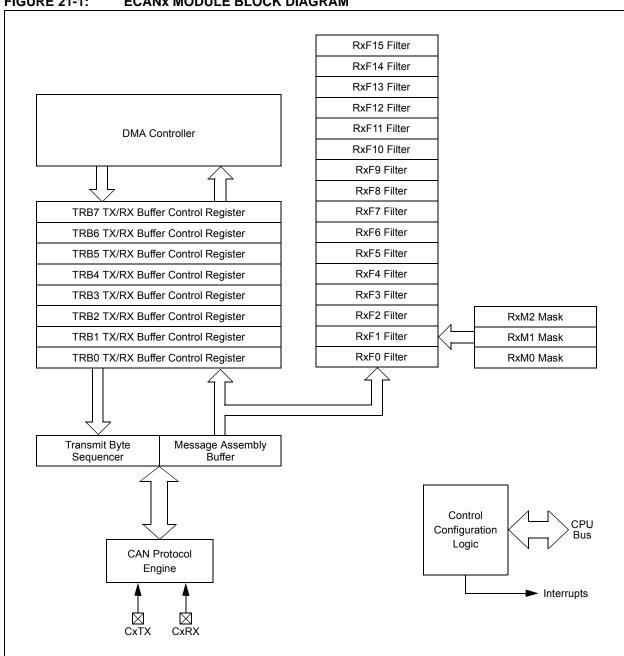
- bit 5 **ADDEN:** Address Character Detect bit (bit 8 of received data = 1) 1 = Address Detect mode is enabled; if 9-bit mode is not selected, this does not take effect 0 = Address Detect mode is disabled bit 4 RIDLE: Receiver Idle bit (read-only) 1 = Receiver is Idle 0 = Receiver is active bit 3 PERR: Parity Error Status bit (read-only) 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected bit 2 **FERR:** Framing Error Status bit (read-only) 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected bit 1 OERR: Receive Buffer Overrun Error Status bit (clear/read-only) 1 = Receive buffer has overflowed $0 = \text{Receive buffer has not overflowed. Clearing a previously set OERR bit } (1 \rightarrow 0 \text{ transition}) \text{ resets}$ the receive buffer and the UxRSR to the empty state. bit 0 **URXDA:** UARTx Receive Buffer Data Available bit (read-only)
- **Note 1:** Refer to the "dsPIC33E/PIC24E Family Reference Manual", "**UART**" (DS70582) for information on enabling the UART module for transmit operation.

1 = Receive buffer has data, at least one more character can be read

21.0 ENHANCED CAN (ECAN™) MODULE (dsPIC33EPXXXGM6XX/7XX DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPlC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPlC33E/PlC24E Family Reference Manual", "Enhanced Controller Area Network (ECAN™)" (DS70353), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview


The Enhanced Controller Area Network (ECAN™) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33EPXXXGM6XX/7XX devices contain two ECAN modules.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The ECAN module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- · Standard and extended data frames
- · 0-8 bytes data length
- Programmable bit rate, up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (Standard/Extended Identifier) acceptance filters
- · Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- · Programmable clock source
- Programmable link to Input Capture 2 (IC2) module for time-stamping and network synchronization
- · Low-power Sleep and Idle modes

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

FIGURE 21-1: ECANX MODULE BLOCK DIAGRAM

Modes of Operation 21.2

The ECANx module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- Disable mode
- · Normal Operation mode
- · Listen Only mode
- · Listen All Messages mode
- · Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CxCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CxCTRL1<7:5>). The module does not change the mode and the OPMODEx bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

21.3 ECAN Control Registers

REGISTER 21-1: CxCTRL1: ECANx CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0
_	_	CSIDL	ABAT	CANCKS		REQOP<2:0>	
bit 15							bit 8

R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0
	OPMODE<2:0>		_	CANCAP	_	_	WIN
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13 CSIDL: ECANx Stop in Idle Mode bit

1 = Discontinues module operation when device enters Idle mode

0 = Continues module operation in Idle mode

bit 12 ABAT: Abort All Pending Transmissions bit

1 = Signals all transmit buffers to abort transmission

0 = Module will clear this bit when all transmissions are aborted

bit 11 CANCKS: ECANx Module Clock (FCAN) Source Select bit

1 = FCAN is equal to 2 * FP

0 = FCAN is equal to FP

bit 10-8 **REQOP<2:0>:** Request Operation Mode bits

111 = Set Listen All Messages mode

110 = Reserved

101 = Reserved

100 = Set Configuration mode

011 = Set Listen Only Mode

010 = Set Loopback mode

001 = Set Disable mode

000 = Set Normal Operation mode

bit 7-5 **OPMODE<2:0>**: Operation Mode bits

111 = Module is in Listen All Messages mode

110 = Reserved

101 = Reserved

100 = Module is in Configuration mode

011 = Module is in Listen Only mode

010 = Module is in Loopback mode

001 = Module is in Disable mode

000 = Module is in Normal Operation mode

bit 4 **Unimplemented:** Read as '0'

bit 3 CANCAP: ECANx Message Receive Timer Capture Event Enable bit

1 = Enables input capture based on CAN message receive

0 = Disables CAN capture

bit 2-1 **Unimplemented:** Read as '0'

bit 0 WIN: SFR Map Window Select bit

1 = Uses filter window

0 = Uses buffer window

REGISTER 21-2: CxCTRL2: ECANx CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_		_
bit 15							bit 8

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
_	_	_			DNCNT<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-5 **Unimplemented:** Read as '0'

bit 4-0 **DNCNT<4:0>:** DeviceNet™ Filter Bit Number bits

10010-11111 = Invalid selection

10001 = Compare up to Data Byte 3, bit 6 with EID<17>

•

00001 = Compare up to Data Byte 1, bit 7 with EID<0>

00000 = Do not compare data bytes

REGISTER 21-3: CxVEC: ECANx INTERRUPT CODE REGISTER

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
_	_	_			FILHIT<4:0>		
bit 15							bit 8

U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
_				ICODE<6:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 FILHIT<4:0>: Filter Hit Number bits

10000-11111 = Reserved

01111 = Filter 15

•

.

00001 = Filter 1

00000 = Filter 0

bit 7 **Unimplemented:** Read as '0'

bit 6-0 **ICODE<6:0>:** Interrupt Flag Code bits

1000101-1111111 = Reserved

1000100 = FIFO almost full interrupt

1000011 = Receiver overflow interrupt

1000010 = Wake-up interrupt

1000001 = Error interrupt

1000000 **= No interrupt**

•

•

0010000-0111111 = Reserved

0001111 = RB15 buffer interrupt

.

•

•

0001001 = RB9 buffer interrupt

0001000 = RB8 buffer interrupt

0000111 = TRB7 buffer interrupt

0000110 = TRB6 buffer interrupt

0000101 = TRB5 buffer interrupt

0000100 = TRB4 buffer interrupt 0000011 = TRB3 buffer interrupt

0000010 = TRB2 buffer interrupt

00000010 = TRB2 buffer interrupt

0000000 = TRB0 Buffer interrupt

REGISTER 21-4: CxFCTRL: ECANx FIFO CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	DMABS<2:0>		_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			FSA<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 DMABS<2:0>: DMA Buffer Size bits

111 = Reserved

110 = 32 buffers in RAM

101 = 24 buffers in RAM

100 = 16 buffers in RAM

011 = 12 buffers in RAM

010 = 8 buffers in RAM

001 = 6 buffers in RAM

000 = 4 buffers in RAM

bit 12-5 **Unimplemented:** Read as '0'

bit 4-0 FSA<4:0>: FIFO Area Starts with Buffer bits

11111 = Receive Buffer RB31

11110 = Receive Buffer RB30

•

•

00001 = Transmit/Receive Buffer TRB1

00000 = Transmit/Receive Buffer TRB0

REGISTER 21-5: CxFIFO: ECANx FIFO STATUS REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_			FBP	<5:0>		
bit 15							bit 8

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0		
_	_		FNRB<5:0>						
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **FBP<5:0>:** FIFO Buffer Pointer bits

011111 = RB31 buffer 011110 = RB30 buffer

.

.

000001 = TRB1 buffer 000000 = TRB0 buffer

bit 7-6 **Unimplemented:** Read as '0'

bit 5-0 FNRB<5:0>: FIFO Next Read Buffer Pointer bits

011111 = RB31 buffer 011110 = RB30 buffer

•

•

000001 = TRB1 buffer 000000 = TRB0 buffer

REGISTER 21-6: CXINTF: ECANX INTERRUPT FLAG REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15							bit 8

R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF
bit 7							bit 0

Legend:	C = Writable bit, but o	only '0' can be written to clear t	the bit
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	TXBO: Transmitter in Error State Bus Off bit
	1 = Transmitter is in Bus Off state
	0 = Transmitter is not in Bus Off state
bit 12	TXBP: Transmitter in Error State Bus Passive bit
	1 = Transmitter is in Bus Passive state
	0 = Transmitter is not in Bus Passive state
bit 11	RXBP: Receiver in Error State Bus Passive bit
	1 = Receiver is in Bus Passive state
	0 = Receiver is not in Bus Passive state
bit 10	TXWAR: Transmitter in Error State Warning bit
	1 = Transmitter is in Error Warning state
	0 = Transmitter is not in Error Warning state
bit 9	RXWAR: Receiver in Error State Warning bit
	1 = Receiver is in Error Warning state
	0 = Receiver is not in Error Warning state
bit 8	EWARN: Transmitter or Receiver in Error State Warning bit
	1 = Transmitter or receiver is in Error Warning state0 = Transmitter or receiver is not in Error Warning state
bit 7	•
DIL 7	IVRIF: Invalid Message Interrupt Flag bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 6	WAKIF: Bus Wake-up Activity Interrupt Flag bit
Dit 0	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 5	ERRIF: Error Interrupt Flag bit (multiple sources in CxINTF<13:8> register)
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 4	Unimplemented: Read as '0'
bit 3	FIFOIF: FIFO Almost Full Interrupt Flag bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 2	RBOVIF: RX Buffer Overflow Interrupt Flag bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred

REGISTER 21-6: CXINTF: ECANX INTERRUPT FLAG REGISTER (CONTINUED)

bit 1 RBIF: RX Buffer Interrupt Flag bit

1 = Interrupt request has occurred

0 = Interrupt request has not occurred

bit 0 TBIF: TX Buffer Interrupt Flag bit

1 = Interrupt request has occurred0 = Interrupt request has not occurred

REGISTER 21-7: CXINTE: ECANX INTERRUPT ENABLE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

bit 7 IVRIE: Invalid Message Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 6 WAKIE: Bus Wake-up Activity Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 5 **ERRIE:** Error Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 4 Unimplemented: Read as '0'

bit 3 FIFOIE: FIFO Almost Full Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 2 RBOVIE: RX Buffer Overflow Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 1 RBIE: RX Buffer Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

bit 0 TBIE: TX Buffer Interrupt Enable bit

1 = Interrupt request is enabled0 = Interrupt request is not enabled

REGISTER 21-8: CXEC: ECANX TRANSMIT/RECEIVE ERROR COUNT REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
TERRCNT<7:0>								
bit 15							bit 8	

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
RERRCNT<7:0>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **TERRCNT<7:0>:** Transmit Error Count bits bit 7-0 **RERRCNT<7:0>:** Receive Error Count bits

REGISTER 21-9: CxCFG1: ECANx BAUD RATE CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SJW	<1:0>	BRP<5:0>					
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

bit 7-6 **SJW<1:0>:** Synchronization Jump Width bits

11 = Length is 4 x TQ 10 = Length is 3 x TQ

 $01 = \text{Length is } 2 \times \text{TQ}$

 $00 = \text{Length is } 1 \times \text{TQ}$

bit 5-0 BRP<5:0>: Baud Rate Prescaler bits

11 1111 = TQ = 2 x 64 x 1/FCAN

.

•

00 0010 = $TQ = 2 \times 3 \times 1/FCAN$

00 0001 = TQ = 2 x 2 x 1/FCAN

00 0000 = TQ = 2 x 1 x 1/FCAN

REGISTER 21-10: CxCFG2: ECANx BAUD RATE CONFIGURATION REGISTER 2

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
_	WAKFIL	_	_			SEG2PH<2:0>	
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM		SEG1PH<2:0>	>		PRSEG<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14 WAKFIL: Select CAN Bus Line Filter for Wake-up bit

1 = Uses CAN bus line filter for wake-up 0 = CAN bus line filter is not used for wake-up

bit 13-11 **Unimplemented:** Read as '0'

bit 10-8 **SEG2PH<2:0>:** Phase Segment 2 bits

111 = Length is 8 x TQ

•

•

000 = Length is $1 \times TQ$

bit 7 SEG2PHTS: Phase Segment 2 Time Select bit

1 = Freely programmable

0 = Maximum of SEG1PHx bits or Information Processing Time (IPT), whichever is greater

bit 6 SAM: Sample of the CAN Bus Line bit

1 = Bus line is sampled three times at the sample point

0 = Bus line is sampled once at the sample point

bit 5-3 **SEG1PH<2:0>:** Phase Segment 1 bits

111 = Length is 8 x TQ

•

•

000 = Length is 1 x TQ

bit 2-0 PRSEG<2:0>: Propagation Time Segment bits

111 = Length is 8 x TQ

.

•

•

000 = Length is 1 x TQ

REGISTER 21-11: CxFEN1: ECANx ACCEPTANCE FILTER ENABLE REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FLTEN7 | FLTEN6 | FLTEN5 | FLTEN4 | FLTEN3 | FLTEN2 | FLTEN1 | FLTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 FLTEN<15:0>: Enable Filter n to Accept Messages bits

1 = Enables Filter n0 = Disables Filter n

REGISTER 21-12: CxBUFPNT1: ECANx FILTER 0-3 BUFFER POINTER REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F3BP<	<3:0>			F2BP	<3:0>	
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | F1BP | <3:0> | | | <3:0> | | |
| bit 7 | | | | | | | bit 0 |

Legend:

bit 7-4

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 F3BP<3:0>: RX Buffer Mask for Filter 3 bits

1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14

•

•

0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0

bit 11-8 **F2BP<3:0>:** RX Buffer Mask for Filter 2 bits (same values as bits 15-12)

F1BP<3:0>: RX Buffer Mask for Filter 1 bits (same values as bits 15-12)

bit 3-0 **F0BP<3:0>:** RX Buffer Mask for Filter 0 bits (same values as bits 15-12)

REGISTER 21-13: CxBUFPNT2: ECANx FILTER 4-7 BUFFER POINTER REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F7BP<	<3:0>		F6BP<3:0>				
bit 15								

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F5BP<	<3:0>			F4BP<3:0>			
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 F7BP<3:0>: RX Buffer Mask for Filter 7 bits

1111 = Filter hits received in RX FIFO buffer

1110 = Filter hits received in RX Buffer 14

0001 = Filter hits received in RX Buffer 1

bit 11-8 F6BP<3:0>: RX Buffer Mask for Filter 6 bits (same values as bits 15-12)

bit 7-4 F5BP<3:0>: RX Buffer Mask for Filter 5 bits (same values as bits 15-12)

bit 3-0 F4BP<3:0>: RX Buffer Mask for Filter 4 bits (same values as bits 15-12)

REGISTER 21-14: CxBUFPNT3: ECANx FILTER 8-11 BUFFER POINTER REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F11BP	<3:0>		F10BP<3:0>				
bit 15				1				

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | F9BP< | <3:0> | | | F8BP | | |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 F11BP<3:0>: RX Buffer Mask for Filter 11 bits

1111 = Filter hits received in RX FIFO buffer

1110 = Filter hits received in RX Buffer 14

•

0001 = Filter hits received in RX Buffer 1

0000 = Filter hits received in RX Buffer 0

bit 11-8 F10BP<3:0>: RX Buffer Mask for Filter 10 bits (same values as bits 15-12)

bit 7-4 **F9BP<3:0>:** RX Buffer Mask for Filter 9 bits (same values as bits 15-12)

bit 3-0 F8BP<3:0>: RX Buffer Mask for Filter 8 bits (same values as bits 15-12)

REGISTER 21-15: CxBUFPNT4: ECANx FILTER 12-15 BUFFER POINTER REGISTER 4

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F15BP	<3:0>		F14BP<3:0>				
bit 15							bit 8	

R/W-0								
	F13BP	<3:0>						
bit 7				1				

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 F15BP<3:0>: RX Buffer Mask for Filter 15 bits

1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14

•

•

.

0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0

bit 11-8 F14BP<3:0>: RX Buffer Mask for Filter 14 bits (same values as bits 15-12) bit 7-4 F13BP<3:0>: RX Buffer Mask for Filter 13 bits (same values as bits 15-12) bit 3-0 F12BP<3:0>: RX Buffer Mask for Filter 12 bits (same values as bits 15-12)

REGISTER 21-16: CxRXFnSID: ECANx ACCEPTANCE FILTER n STANDARD IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	_	EXIDE	_	EID17	EID16
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-5 SID<10:0>: Standard Identifier bits

1 = Message address bit, SIDx, must be '1' to match filter 0 = Message address bit, SIDx, must be '0' to match filter

bit 4 Unimplemented: Read as '0'

bit 3 **EXIDE:** Extended Identifier Enable bit

If MIDE = 1:

1 = Matches only messages with Extended Identifier addresses0 = Matches only messages with Standard Identifier addresses

If MIDE = 0: Ignore EXIDE bit.

bit 2 Unimplemented: Read as '0'

bit 1-0 **EID<17:16>:** Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter 0 = Message address bit, EIDx, must be '0' to match filter

REGISTER 21-17: Cxrxfneid: ECANx ACCEPTANCE FILTER n EXTENDED IDENTIFIER REGISTER (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **EID<15:0>:** Extended Identifier bits

1 = Message address bit, EIDx, must be '1' to match filter

0 = Message address bit, EIDx, must be '0' to match filter

REGISTER 21-18: CxFMSKSEL1: ECANx FILTER 7-0 MASK SELECTION REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F7MSk	<<1:0>	F6MSI	<<1:0>	F5MS	K<1:0>	F4MS	SK<1:0>	
bit 15				•			bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3MSK	<1:0>	F2MSł	<<1:0>	F1MSK<1:0>		F0MSK<1:0>	
bit 7							bit 0

Legend:

bit 7-6

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 F7MSK<1:0>: Mask Source for Filter 7 bit

11 = Reserved

10 = Acceptance Mask 2 registers contain mask

01 = Acceptance Mask 1 registers contain mask

00 = Acceptance Mask 0 registers contain mask

bit 13-12 **F6MSK<1:0>:** Mask Source for Filter 6 bit (same values as bits 15-14)

bit 11-10 **F5MSK<1:0>:** Mask Source for Filter 5 bit (same values as bits 15-14)

bit 9-8 **F4MSK<1:0>:** Mask Source for Filter 4 bit (same values as bits 15-14)

bit 5-4 **F2MSK<1:0>:** Mask Source for Filter 2 bit (same values as bits 15-14)

F3MSK<1:0>: Mask Source for Filter 3 bit (same values as bits 15-14)

bit 3-2 **F1MSK<1:0>:** Mask Source for Filter 1 bit (same values as bits 15-14)

bit 1-0 FOMSK<1:0>: Mask Source for Filter 0 bit (same values as bits 15-14)

REGISTER 21-19: CxFMSKSEL2: ECANx FILTER 15-8 MASK SELECTION REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F15MS	F15MSK<1:0> F14MSK<1:0>		F13MSK<1:0>		F12MSK<1:0>		
bit 15		•		•		•	bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F11MSI	K<1:0>	F10MS	K<1:0>	F9MS	K<1:0>	F8MSI	K<1:0>
bit 7				•		•	bit 0

Lea	er	٦d	:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-14 F15MSK<1:0>: Mask Source for Filter 15 bit

11 = Reserved

10 = Acceptance Mask 2 registers contain mask

01 = Acceptance Mask 1 registers contain mask

00 = Acceptance Mask 0 registers contain mask

bit 13-12 **F14MSK<1:0>:** Mask Source for Filter 14 bit (same values as bits 15-14)

bit 11-10 F13MSK<1:0>: Mask Source for Filter 13 bit (same values as bits 15-14)

bit 9-8 F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bits 15-14)

bit 7-6 **F11MSK<1:0>:** Mask Source for Filter 11 bit (same values as bits 15-14) bit 5-4 **F10MSK<1:0>:** Mask Source for Filter 10 bit (same values as bits 15-14)

bit 5-4 **F10MSK<1:0>:** Mask Source for Filter 10 bit (same values as bits 15-14) bit 3-2 **F9MSK<1:0>:** Mask Source for Filter 9 bit (same values as bits 15-14)

bit 1-0 **F8MSK<1:0>:** Mask Source for Filter 8 bit (same values as bits 15-14)

bit 1-0 I dissipate for time obit (same values as bits 10-14)

REGISTER 21-20: CxRXMnSID: ECANx ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER REGISTER (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8

R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0	_	MIDE	_	EID17	EID16
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-5 SID<10:0>: Standard Identifier bits

1 = Includes bit, SIDx, in filter comparison

0 = Bit, SIDx, is a don't care in filter comparison

bit 4 **Unimplemented:** Read as '0'

bit 3 MIDE: Identifier Receive Mode bit

1 = Matches only message types (standard or extended address) that correspond to the EXIDE bit in

he filter

0 = Matches either standard or extended address message if filters match (i.e., if (Filter SID) = (Message

SID) or if (Filter SID/EID) = (Message SID/EID))

bit 2 Unimplemented: Read as '0'

bit 1-0 EID<17:16>: Extended Identifier bits

1 = Includes bit, EIDx, in filter comparison

0 = Bit, EIDx, is a don't care in filter comparison

REGISTER 21-21: CxRXMnEID: ECANx ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER REGISTER (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Includes bit, EIDx, in filter comparison

0 = Bit, EIDx, is a don't care in filter comparison

REGISTER 21-22: CxRXFUL1: ECANx RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 |
| bit 7 | | | | | | | bit 0 |

Legend: C = Writable bit, but only '0' can be written to clear the bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 21-23: CxRXFUL2: ECANx RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend: C = Writable bit, but only '0' can be written to clear the bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 21-24: CxRXOVF1: ECANx RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXOVF7 | RXOVF6 | RXOVF5 | RXOVF4 | RXOVF3 | RXOVF2 | RXOVF1 | RXOVF0 |
| bit 7 | | | | | | | bit 0 |

Legend: C = Writable bit, but only '0' can be written to clear the bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **RXOVF<15:0>:** Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 21-25: CxRXOVF2: ECANx RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend: C = Writable bit, but only '0' can be written to clear the bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 21-26: CxTRmnCON: ECANx TX/RX BUFFER mn CONTROL REGISTER (m = 0,2,4,6; n = 1,3,5,7)

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPRI<1:0>	
bit 15							bit 8

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPRI<1:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 See Definition for bits 7-0, controls Buffer n

bit 7 TXENm: TX/RX Buffer Selection bit

1 = Buffer, TRBn, is a transmit buffer 0 = Buffer, TRBn, is a receive buffer

bit 6 **TXABTm:** Message Aborted bit⁽¹⁾

1 = Message was aborted

0 = Message completed transmission successfully

bit 5 **TXLARBm:** Message Lost Arbitration bit⁽¹⁾

1 = Message lost arbitration while being sent

0 = Message did not lose arbitration while being sent

bit 4 TXERRm: Error Detected During Transmission bit (1)

1 = A bus error occurred while the message was being sent

0 = A bus error did not occur while the message was being sent

bit 3 TXREQm: Message Send Request bit

1 = Requests that a message be sent; the bit automatically clears when the message is successfully

sen

0 = Clearing the bit to '0' while set requests a message abort

bit 2 RTRENm: Auto-Remote Transmit Enable bit

1 = When a remote transmit is received, TXREQx will be set

0 = When a remote transmit is received, TXREQx will be unaffected

bit 1-0 **TXmPRI<1:0>:** Message Transmission Priority bits

11 = Highest message priority

10 = High intermediate message priority

01 = Low intermediate message priority

00 = Lowest message priority

Note 1: This bit is cleared when TXREQx is set.

Note: The buffers, SID, EID, DLC, Data Field, and Receive Status registers, are located in DMA RAM.

21.4 ECAN Message Buffers

ECAN Message Buffers are part of RAM memory. They are not ECAN Special Function Registers. The user application must directly write into the RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: ECANX MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_	SID10	SID9	SID8	SID7	SID6
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID5 | SID4 | SID3 | SID2 | SID1 | SID0 | SRR | IDE |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'
bit 12-2 SID<10:0>: Standard Identifier bits
bit 1 SRR: Substitute Remote Request bit

When IDE = 0:

1 = Message will request remote transmission

0 = Normal message When IDE = 1:

The SRR bit must be set to '1'.

bit 0 **IDE:** Extended Identifier bit

1 = Message will transmit Extended Identifier0 = Message will transmit Standard Identifier

BUFFER 21-2: ECANx MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_	_	EID17	EID16	EID15	EID14
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID13 | EID12 | EID11 | EID10 | EID9 | EID8 | EID7 | EID6 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0' bit 11-0 **EID<17:6>:** Extended Identifier bits

BUFFER 21-3: ECANX MESSAGE BUFFER WORD 2

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15							bit 8

U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-10 **EID<5:0>:** Extended Identifier bits

bit 9 RTR: Remote Transmission Request bit

When IDE = 1:

1 = Message will request remote transmission

0 = Normal message

When IDE = 0:

The RTR bit is ignored.

bit 8 RB1: Reserved Bit 1

User must set this bit to '0' per CAN protocol.

bit 7-5 **Unimplemented:** Read as '0'

bit 4 RB0: Reserved Bit 0

User must set this bit to '0' per CAN protocol.

bit 3-0 **DLC<3:0>:** Data Length Code bits

BUFFER 21-4: ECANx MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
Byte 1<15:8>									
bit 15									

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
Byte 0<7:0>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **Byte 1<15:8>:** ECANx Message Byte 1 bit 7-0 **Byte 0<7:0>:** ECANx Message Byte 0

BUFFER 21-5: ECANX MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
Byte 3<15:8>									
bit 15									

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
Byte 2<7:0>									
bit 7				bit 0					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **Byte 3<15:8>:** ECANx Message Byte 3 bit 7-0 **Byte 2<7:0>:** ECANx Message Byte 2

BUFFER 21-6: ECANx MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
	Byte 5<15:8>									
bit 15										

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
Byte 4<7:0>										
bit 7										

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **Byte 5<15:8>:** ECANx Message Byte 5 bit 7-0 **Byte 4<7:0>:** ECANx Message Byte 4

BUFFER 21-7: ECANX MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
Byte 7<15:8>									
bit 15									

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
Byte 6<7:0>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **Byte 7<15:8>:** ECANx Message Byte 7 bit 7-0 **Byte 6<7:0>:** ECANx Message Byte 6

BUFFER 21-8: ECANx MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_			FILHIT<4:0> ⁽¹)	
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0' bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits⁽¹⁾

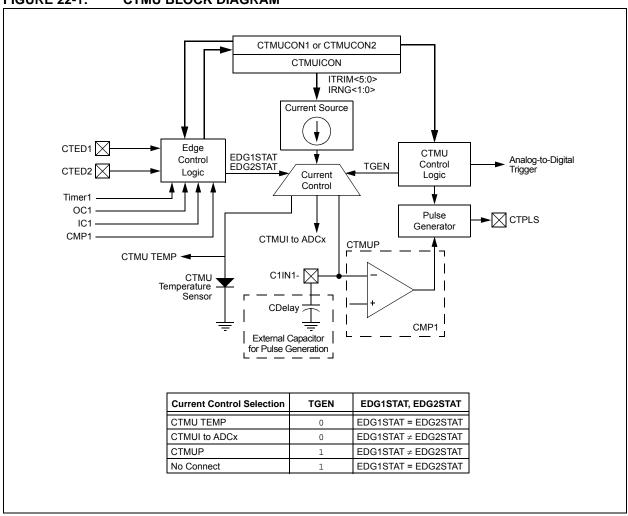
Encodes number of filter that resulted in writing this buffer.

bit 7-0 **Unimplemented:** Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Charge Time Measurement Unit (CTMU)" (DS70661), which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Charge Time Measurement Unit is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- · Four edge input trigger sources
- · Polarity control for each edge source
- · Control of edge sequence
- · Control of response to edges
- · Precise time measurement resolution of 1 ns
- Accurate current source suitable for capacitive measurement
- On-chip temperature measurement using a built-in diode

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 and CTMUCON2 enable the module and control edge source selection, edge source polarity selection and edge sequencing. The CTMUICON register controls the selection and trim of the current source.

FIGURE 22-1: CTMU BLOCK DIAGRAM

22.1 CTMU Control Registers

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN ⁽¹⁾	CTTRIG
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:				
R = Readable bit	adable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15 CTMUEN: CTMU Enable bit

1 = Module is enabled0 = Module is disabled

bit 14 Unimplemented: Read as '0'

bit 13 CTMUSIDL: CTMU Stop in Idle Mode bit

1 = Discontinues module operation when device enters Idle mode

0 = Continues module operation in Idle mode

bit 12 TGEN: Time Generation Enable bit

1 = Enables edge delay generation

0 = Disables edge delay generation

bit 11 **EDGEN:** Edge Enable bit

1 = Hardware modules are used to trigger edges (TMRx, CTEDx, etc.)

0 = Software is used to trigger edges (manual set of EDGxSTAT)

bit 10 EDGSEQEN: Edge Sequence Enable bit

1 = Edge 1 event must occur before Edge 2 event can occur

0 = No edge sequence is needed

bit 9 **IDISSEN:** Analog Current Source Control bit⁽¹⁾

1 = Analog current source output is grounded

0 = Analog current source output is not grounded

bit 8 CTTRIG: ADCx Trigger Control bit

1 = CTMU triggers ADCx start of conversion

0 = CTMU does not trigger ADCx start of conversion

bit 7-0 **Unimplemented:** Read as '0'

Note 1: The ADCx module Sample-and-Hold (S&H) capacitor is not automatically discharged between sample/conversion cycles. Any software using the ADCx as part of a capacitance measurement must discharge the ADCx capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADCx must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
EDG1MOD	EDG1POL		EDG1SEL<3:0>				EDG1STAT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
EDG2MOD	EDG2POL		EDG2SEL<3:0>				_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **EDG1MOD:** Edge 1 Edge Sampling Mode Selection bit

1 = Edge 1 is edge-sensitive 0 = Edge 1 is level-sensitive

bit 14 EDG1POL: Edge 1 Polarity Select bit

1 = Edge 1 is programmed for a positive edge response0 = Edge 1 is programmed for a negative edge response

bit 13-10 **EDG1SEL<3:0>:** Edge 1 Source Select bits

1111 **=** Fosc

1110 = OSCI pin

1101 = FRC oscillator

1100 = Reserved

1011 = Internal LPRC oscillator

1010 = Reserved

100x = Reserved

01xx = Reserved

0011 = CTED1 pin

0010 = CTED2 pin

0001 = OC1 module

0000 = Timer1 module

bit 9 EDG2STAT: Edge 2 Status bit

Indicates the status of Edge 2 and can be written to control the edge source.

1 = Edge 2 has occurred

0 = Edge 2 has not occurred

bit 8 EDG1STAT: Edge 1 Status bit

Indicates the status of Edge 1 and can be written to control the edge source.

1 = Edge 1 has occurred

0 = Edge 1 has not occurred

bit 7 **EDG2MOD:** Edge 2 Edge Sampling Mode Selection bit

1 = Edge 2 is edge-sensitive

0 = Edge 2 is level-sensitive

bit 6 EDG2POL: Edge 2 Polarity Select bit

1 = Edge 2 is programmed for a positive edge response

0 = Edge 2 is programmed for a negative edge response

Note 1: If the TGEN bit is set to '1', then the CMP1 module should be selected as the Edge 2 source in the EDG2SELx bits field; otherwise, the module will not function.

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2 (CONTINUED)

```
bit 5-2
             EDG2SEL<3:0>: Edge 2 Source Select bits
             1111 = Fosc
             1110 = OSCI pin
             1101 = FRC oscillator
             1100 = Reserved
             1011 = Internal LPRC oscillator
             1010 = Reserved
             100x = Reserved
             0111 = Reserved
             0110 = Reserved
             0101 = Reserved
             0100 = CMP1 module<sup>(1)</sup>
             0011 = CTED2 pin
             0010 = CTED1 pin
             0001 = OC1 module
             0000 = IC1 module
```

bit 1-0 Unimplemented: Read as '0'

If the TGEN bit is set to '1', then the CMP1 module should be selected as the Edge 2 source in the EDG2SELx bits field; otherwise, the module will not function.

REGISTER 22-3: CTMUICON: CTMU CURRENT CONTROL REGISTER(3)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ITRIM<5:0>							<1:0>
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-10 ITRIM<5:0>: Current Source Trim bits

011111 = Maximum positive change from nominal current + 62%

011110 = Maximum positive change from nominal current + 60%

•

•

•

000010 = Minimum positive change from nominal current + 4%

000001 = Minimum positive change from nominal current + 2%

000000 = Nominal current output specified by IRNG<1:0>

111111 = Minimum negative change from nominal current – 2%

111110 = Minimum negative change from nominal current – 4%

•

•

•

100010 = Maximum negative change from nominal current – 60% 100001 = Maximum negative change from nominal current – 62%

bit 9-8 IRNG<1:0>: Current Source Range Select bits

11 = 100 × Base Current(2)

10 = 10 × Base Current⁽²⁾

01 = Base Current Level(2)

00 = $1000 \times Base Current^{(1,2)}$

bit 7-0 **Unimplemented:** Read as '0'

Note 1: This current range is not available for use with the internal temperature measurement diode.

- 2: Refer to the CTMU Current Source Specifications (Table 33-55) in Section 33.0 "Electrical Characteristics" for the current range selection values.
- 3: Current sources are not generated when 12-Bit ADC mode is chosen. Current sources are active only when 10-Bit ADC mode is chosen.

23.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Analog-to-Digital Converter (ADC)" (DS70621), which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXGM3XX/6XX/7XX devices have two ADC modules: ADC1 and ADC2. The ADC1 supports up to 49 analog input channels, while the ADC2 supports up to 32 analog input channels.

On ADC1, the AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4 Sample-and-Hold (S&H) ADC (default configuration) or a 12-bit, 1 S&H ADC. Both ADC1 and ADC2 can be operated in 12-bit mode.

Note: The ADCx module needs to be disabled before modifying the AD12B bit.

23.1 Key Features

23.1.1 10-BIT ADCx CONFIGURATION

The 10-bit ADCx configuration has the following key features:

- · Successive Approximation (SAR) conversion
- · Conversion speeds of up to 1.1 Msps
- · Up to 49 analog input pins
- · Connections to three internal op amps
- Connections to the Charge Time Measurement Unit (CTMU) and temperature measurement diode

- Channel selection and triggering can be controlled by the Peripheral Trigger Generator (PTG)
- · External voltage reference input pins
- · Simultaneous sampling of:
 - Up to four analog input pins
 - Three op amp outputs
- · Combinations of analog inputs and op amp outputs
- · Automatic Channel Scan mode
- · Selectable conversion trigger source
- · Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- · Operation during CPU Sleep and Idle modes

23.1.2 12-BIT ADCx CONFIGURATION

The 12-bit ADCx configuration supports all the features listed above, with the exception of the following:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one S&H amplifier in the 12-bit configuration; therefore, simultaneous sampling of multiple channels is not supported.

The ADC1 has up to 49 analog inputs. The analog inputs, AN32 through AN49, are multiplexed, thus providing flexibility in using any of these analog inputs in addition to the analog inputs, AN0 through AN31. Since AN32 through AN49 are multiplexed, do not use two channels simultaneously, since it may result in erroneous output from the module. These analog inputs are shared with op amp inputs and outputs, comparator inputs and external voltage references. When op amp/comparator functionality is enabled, or an external voltage reference is used, the analog input that shares that pin is no longer available. The actual number of analog input pins, op amps and external voltage reference input configuration, depends on the specific device.

A block diagram of the ADCx module is shown in Figure 23-1. Figure 23-2 provides a diagram of the ADCx conversion clock period.

FIGURE 23-1: ADCx MODULE BLOCK DIAGRAM WITH CONNECTION OPTIONS FOR ANX PINS AND OP AMPS

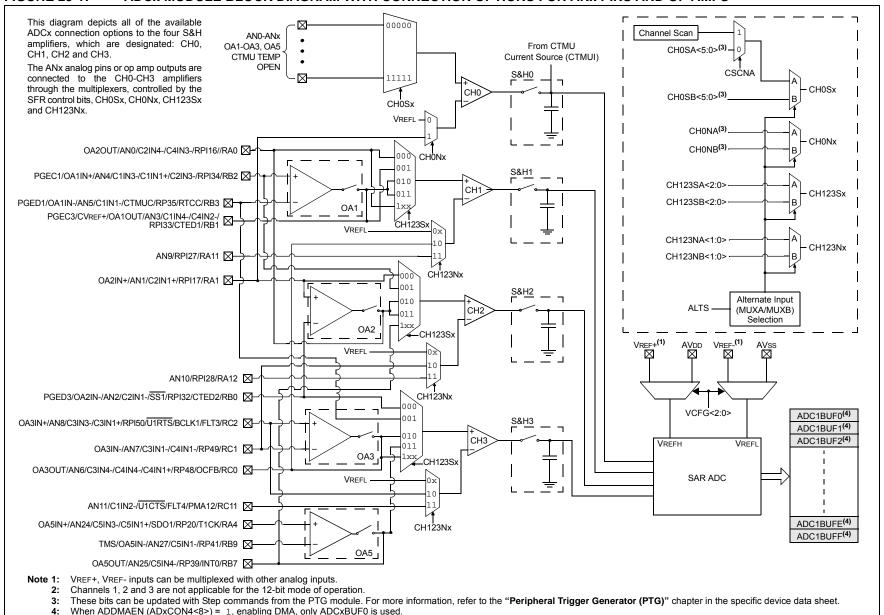
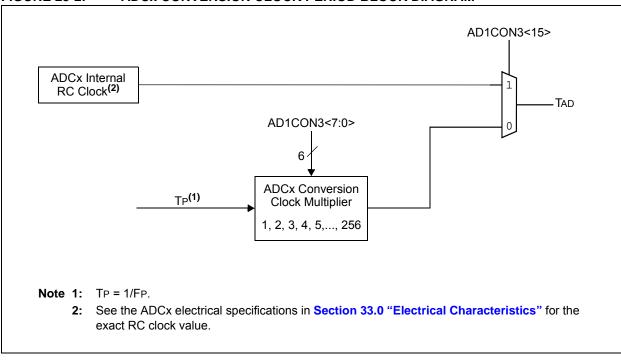



FIGURE 23-2: ADCx CONVERSION CLOCK PERIOD BLOCK DIAGRAM

23.2 ADCx Helpful Tips

- 1. The SMPIx control bits in the ADxCON2 registers:
 - a) Determine when the ADCx interrupt flag is set and an interrupt is generated, if enabled.
 - b) When the CSCNA bit in the ADxCON2 register is set to '1', this determines when the ADCx analog scan channel list, defined in the AD1CSSL/AD1CSSH registers, starts over from the beginning.
 - c) When the DMA peripheral is not used (ADDMAEN = 0), this determines when the ADCx Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0.
 - d) When the DMA peripheral is used (ADDMAEN = 1), this determines when the DMA Address Pointer is incremented after a sample/conversion operation. ADC1BUF0 is the only ADCx buffer used in this mode. The ADCx Result Buffer Pointer to ADC1BUF0-ADC1BUFF gets reset back to the beginning at ADC1BUF0. The DMA address is incremented after completion of every 32nd sample/conversion operation. Conversion results are stored in the ADC1BUF0 register for transfer to RAM using the DMA peripheral.
- 2. When the DMA module is disabled (ADDMAEN = 0), the ADCx has 16 result buffers. ADCx conversion results are stored sequentially in ADC1BUF0-ADC1BUFF, regardless of which analog inputs are being used subject to the SMPIx bits and the condition described in 1.c) above. There is no relationship between the ANx input being measured and which ADCx buffer (ADC1BUF0-ADC1BUFF) that the conversion results will be placed in.

- 3. When the DMA module is enabled (ADDMAEN = 1), the ADCx module has only 1 ADCx result buffer (i.e., ADC1BUF0) per ADCx peripheral and the ADCx conversion result must be read, either by the CPU or DMA controller, before the next ADCx conversion is complete to avoid overwriting the previous value.
- 4. The DONE bit (ADxCON1<0>) is only cleared at the start of each conversion and is set at the completion of the conversion, but remains set indefinitely, even through the next sample phase until the next conversion begins. If application code is monitoring the DONE bit in any kind of software loop, the user must consider this behavior because the CPU code execution is faster than the ADCx. As a result, in Manual Sample mode, particularly where the user's code is setting the SAMP bit (ADxCON1<1>), the DONE bit should also be cleared by the user application just before setting the SAMP bit.
- 5. Enabling op amps, comparator inputs and external voltage references can limit the availability of analog inputs (ANx pins). For example, when Op Amp 2 is enabled, the pins for AN0, AN1 and AN2 are used by the op amp's inputs and output. This negates the usefulness of Alternate Input mode since the MUXA selections use AN0-AN2. Carefully study the ADCx block diagram to determine the configuration that will best suit your application. Configuration examples are available in the "dsPIC33E/PIC24E Family Reference Manual", "Analog-to-Digital Converter (ADC)" (DS70621)

23.3 ADCx Control Registers

REGISTER 23-1: ADxCON1: ADCx CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	_	ADSIDL	ADDMABM	_	AD12B	FORM	<1:0>
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HC, HS	R/C-0, HC, HS
	SSRC<2:0>		SSRCG	SIMSAM	ASAM	SAMP	DONE ⁽²⁾
bit 7							bit 0

Legend:	C = Clearable bit	U = Unimplemented bit, read as '0'		
R = Readable bit	W = Writable bit	HS = Hardware Settable bit	HC = Hardware Clearable bit	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

- bit 15 ADON: ADCx Operating Mode bit
 - 1 = ADCx module is operating
 - 0 = ADCx is off
- bit 14 Unimplemented: Read as '0'
- bit 13 ADSIDL: ADCx Stop in Idle Mode bit
 - 1 = Discontinues module operation when device enters Idle mode
 - 0 = Continues module operation in Idle mode
- bit 12 ADDMABM: ADCx DMA Buffer Build Mode bit
 - 1 = DMA buffers are written in the order of conversion; the module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer
 - 0 = DMA buffers are written in Scatter/Gather mode; the module provides a Scatter/Gather address to the DMA channel based on the index of the analog input and the size of the DMA buffer
- bit 11 **Unimplemented:** Read as '0'
- bit 10 AD12B: 10-Bit or 12-Bit ADCx Operation Mode bit
 - 1 = 12-bit, 1-channel ADCx operation
 - 0 = 10-bit, 4-channel ADCx operation
- bit 9-8 **FORM<1:0>:** Data Output Format bits

For 10-Bit Operation:

- 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s = .NOT.d<9>)
- 10 = Fractional (Dout = dddd dddd dd00 0000)
- 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>)
- 00 = Integer (Dout = 0000 00dd dddd dddd)

For 12-Bit Operation:

- 11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>)
- 10 = Fractional (Dout = dddd dddd dddd 0000)
- 01 = Signed integer (Dout = ssss sddd dddd, where s = .NOT.d<11>)
- 00 = Integer (Dout = 0000 dddd dddd dddd)
- Note 1: See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.
 - 2: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

REGISTER 23-1: ADxCON1: ADCx CONTROL REGISTER 1 (CONTINUED)

bit 7-5 SSRC<2:0>: Sample Clock Source Select bits

If SSRCG = 1:

- 111 = Reserved
- 110 = PTGO15 primary trigger compare ends sampling and starts conversion⁽¹⁾
- 101 = PTGO14 primary trigger compare ends sampling and starts conversion⁽¹⁾
- 100 = PTGO13 primary trigger compare ends sampling and starts conversion⁽¹⁾
- 011 = PTGO12 primary trigger compare ends sampling and starts conversion⁽¹⁾
- 010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion
- 001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion
- 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion

If SSRCG = 0:

- 111 = Internal counter ends sampling and starts conversion (auto-convert)
- 110 = CTMU ends sampling and starts conversion
- 101 = PWM secondary Special Event Trigger ends sampling and starts conversion
- 100 = Timer5 compare ends sampling and starts conversion
- 011 = PWM primary Special Event Trigger ends sampling and starts conversion
- 010 = Timer3 compare ends sampling and starts conversion
- 001 = Active transition on the INT0 pin ends sampling and starts conversion
- 000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
- bit 4 SSRCG: Sample Trigger Source Group bit

See SSRC<2:0> for details.

bit 3 SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)

In 12-Bit Mode (AD12B = 1), SIMSAM is Unimplemented and is Read as '0':

- 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01)
- 0 = Samples multiple channels individually in sequence
- bit 2 ASAM: ADCx Sample Auto-Start bit
 - 1 = Sampling begins immediately after last conversion; SAMP bit is auto-set
 - 0 = Sampling begins when SAMP bit is set
- bit 1 SAMP: ADCx Sample Enable bit
 - 1 = ADCx Sample-and-Hold amplifiers are sampling
 - 0 = ADCx Sample-and-Hold amplifiers are holding
 - If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC<2:0> = 000, software can write '0' to end sampling and start conversion. If SSRC<2:0> \neq 000, automatically cleared by hardware to end sampling and start conversion.
- bit 0 **DONE**: ADCx Conversion Status bit⁽²⁾
 - 1 = ADCx conversion cycle is completed.
 - 0 = ADCx conversion has not started or is in progress

Automatically set by hardware when A/D conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress. Automatically cleared by hardware at the start of a new conversion.

- Note 1: See Section 25.0 "Peripheral Trigger Generator (PTG) Module" for information on this selection.
 - 2: Do not clear the DONE bit in software if Auto-Sample is enabled (ASAM = 1).

REGISTER 23-2: ADxCON2: ADCx CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
VCFG<2:0>(1)		OFFCAL	_	CSCNA	CHPS	S<1:0>	
bit 15							bit 8

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS			SMPI<4:0>			BUFM	ALTS
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 VCFG<2:0>: Converter Voltage Reference Configuration bits⁽¹⁾

Value	VREFH	VREFL		
000	Avdd	Avss		
001	External VREF+	Avss		
010	AVDD	External VREF-		
011	External VREF+	External VREF-		
1xx	Avdd	Avss		

bit 12 OFFCAL: Offset Calibration Mode Select bit

1 = + and - inputs of channel Sample-and-Hold are connected to AVss

0 = + and – inputs of channel Sample-and-Hold normal

bit 11 **Unimplemented:** Read as '0' bit 10 **CSCNA:** Input Scan Select bit

1 = Scans inputs for CH0+ during Sample MUXA

0 = Does not scan inputs

bit 9-8 CHPS<1:0>: Channel Select bits

In 12-Bit Mode (AD21B = 1), CHPS<1:0> Bits are Unimplemented and are Read as '00':

1x = Converts CH0, CH1, CH2 and CH3

01 = Converts CH0 and CH1

00 = Converts CH0

bit 7 **BUFS:** Buffer Fill Status bit (only valid when BUFM = 1)

- 1 = ADCx is currently filling the second half of the buffer; the user application should access data in the first half of the buffer
- 0 = ADCx is currently filling the first half of the buffer; the user application should access data in the second half of the buffer

Note 1: The '010' and '011' bit combinations for VCFG<2:0> are not applicable on ADC2.

REGISTER 23-2: ADxCON2: ADCx CONTROL REGISTER 2 (CONTINUED)

bit 6-2 SMPI<4:0>: Increment Rate bits

When ADDMAEN = 0:

x1111 = Generates interrupt after completion of every 16th sample/conversion operation x1110 = Generates interrupt after completion of every 15th sample/conversion operation

•

•

x0001 = Generates interrupt after completion of every 2nd sample/conversion operation x0000 = Generates interrupt after completion of every sample/conversion operation

When ADDMAEN = 1:

11111 = Increments the DMA address after completion of every 32nd sample/conversion operation 11110 = Increments the DMA address after completion of every 31st sample/conversion operation

•

.

00001 = Increments the DMA address after completion of every 2nd sample/conversion operation 00000 = Increments the DMA address after completion of every sample/conversion operation

bit 1 **BUFM:** Buffer Fill Mode Select bit

- 1 = Starts buffer filling the first half of the buffer on the first interrupt and the second half of the buffer on the next interrupt
- 0 = Always starts filling the buffer from the Start address.

bit 0 ALTS: Alternate Input Sample Mode Select bit

- 1 = Uses channel input selects for Sample MUXA on the first sample and Sample MUXB on the next sample
- 0 = Always uses channel input selects for Sample MUXA

Note 1: The '010' and '011' bit combinations for VCFG<2:0> are not applicable on ADC2.

REGISTER 23-3: ADxCON3: ADCx CONTROL REGISTER 3

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	_				SAMC<4:0>(1))	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADCS<7:0>(2)									
bit 7							bit 0		

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set

'0' = Bit is cleared x = Bit is unknown

bit 15 ADRC: ADCx Conversion Clock Source bit

1 = ADCx internal RC clock

0 = Clock derived from system clock

bit 14-13 Unimplemented: Read as '0'

bit 12-8 SAMC<4:0>: Auto-Sample Time bits(1)

11111 = 31 TAD

Legend:

00001 **= 1** TAD

00000 = 0 TAD

ADCS<7:0>: ADCx Conversion Clock Select bits(2) bit 7-0

11111111 = $TP \cdot (ADCS < 7:0 > + 1) = TP \cdot 256 = TAD$

 $00000010 = \text{TP} \cdot (\text{ADCS} < 7:0 > + 1) = \text{TP} \cdot 3 = \text{TAD}$

 $00000001 = \text{TP} \cdot (\text{ADCS} < 7:0 > + 1) = \text{TP} \cdot 2 = \text{TAD}$

 $000000000 = \text{Tp} \cdot (\text{ADCS} < 7:0 > + 1) = \text{Tp} \cdot 1 = \text{TAD}$

Note 1: This bit is only used if SSRC<2:0> (AD1CON1<7:5>) = 111 and SSRCG (AD1CON1<4>) = 0.

2: This bit is not used if ADRC (AD1CON3<15>) = 1.

REGISTER 23-4: ADxCON4: ADCx CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	_	_	_	_	_	ADDMAEN
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_	_	_		DMABL<2:0>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-9 **Unimplemented:** Read as '0'

bit 8 ADDMAEN: ADCx DMA Enable bit

1 = Conversion results, stored in ADC1BUF0 register, for transfer to RAM using DMA

0 = Conversion results, stored in ADC1BUF0 through ADC1BUFF registers; DMA will not be used

bit 7-3 **Unimplemented:** Read as '0'

bit 2-0 DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input 110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input 100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

REGISTER 23-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	CH123SB<2:1>		CH123NB<1:0>		CH123SB<0>
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_	CH1239	SA<2:1>	CH123N	IA<1:0>	CH123SA<0>
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 **Unimplemented:** Read as '0'

bit 12-11 CH123SB<2:1>: Channels 1, 2, 3 Positive Input Select for Sample B bits

1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3)

011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5)

010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3)

001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5

000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2

bit 10-9 CH123NB<1:0>: Channels 1, 2, 3 Negative Input Select for Sample B bits

11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11

10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8

0x = CH1, CH2, CH3 negative input is $VREFL^{(1)}$

bit 8 CH123SB<0>: Channels 1, 2, 3 Positive Input Select for Sample B bit

See bits<12:11> for bit selections.

bit 7-5 **Unimplemented:** Read as '0'

bit 4-3 CH123SA<2:1>: Channels 1, 2, 3 Positive Input Select for Sample A bits

1xx = CH1 positive input is AN0 (Op Amp 2), CH2 positive input is AN25 (Op Amp 5), CH3 positive input is AN6 (Op Amp 3)

011 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN25 (Op Amp 5)

010 = CH1 positive input is AN3 (Op Amp 1), CH2 positive input is AN0 (Op Amp 2), CH3 positive input is AN6 (Op Amp 3)

001 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5

000 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2

bit 2-1 CH123NA<1:0>: Channels 1, 2, 3 Negative Input Select for Sample A bits

11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11

10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8

0x = CH1, CH2, CH3 negative input is VREFL

bit 0 CH123SA: Channels 1, 2, 3 Positive Input Select for Sample A bit

See bits<4:3> for the bit selections.

Note 1: The negative input to VREFL happens only when VCFG<2:0> = 2 or 3 in the ADxCON2 register. When VCFG<2:0> = 0 or 1, this negative input is internally routed to AVss.

REGISTER 23-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER(3)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB	_			CH0SB<	<5:0> ^(1,4)		
bit 15	•	•					bit 8

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA	_			CH0SA<	<5:0> ^(1,4)		
bit 7							bit 0

```
R = Readable bit
                             W = Writable bit
                                                          U = Unimplemented bit, read as '0'
-n = Value at POR
                             '1' = Bit is set
                                                          '0' = Bit is cleared
                                                                                       x = Bit is unknown
bit 15
               CHONB: Channel 0 Negative Input Select for Sample MUXB bit
               1 = Channel 0 negative input is AN1<sup>(1)</sup>
               0 = Channel 0 negative input is VREFL
bit 14
               Unimplemented: Read as '0'
               CH0SB<5:0>: Channel 0 Positive Input Select for Sample MUXB bits(1,4,5)
bit 13-8
               111111 = Channel 0 positive input is (AN63) unconnected
               111110 = Channel 0 positive input is (AN62) CTMU temperature voltage
               111101 = Channel 0 positive input is (AN61) reserved
               110010 = Channel 0 positive input is (AN50) reserved
               110001 = Channel 0 positive input is AN49
               110000 = Channel 0 positive input is AN48
               101111 = Channel 0 positive input is AN47
               101110 = Channel 0 positive input is AN46
               011010 = Channel 0 positive input is AN26
               011001 = Channel 0 positive input is AN25 or Op Amp 5 output voltage(2)
               011000 = Channel 0 positive input is AN24
               000111 = Channel 0 positive input is AN7
               000110 = Channel 0 positive input is AN6 or Op Amp 3 output voltage(2)
               000101 = Channel 0 positive input is AN5
               000100 = Channel 0 positive input is AN4
               000011 = Channel 0 positive input is AN3 or Op Amp 1 output voltage(2)
               000010 = Channel 0 positive input is AN2
               000001 = Channel 0 positive input is AN1
               000000 = Channel 0 positive input is AN0 or Op Amp 2 output voltage<sup>(2)</sup>
```

- Note 1: AN0 through AN7 are repurposed when comparator and op amp functionality are enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: If the op amp is selected (OPMODE bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
 - **3:** See the "Pin Diagrams" section for the available analog channels for each device.
 - **4:** Analog input selections for ADC1 are shown here. AN32-AN63 selections are not available for ADC2. The CH0SB<5> and CH0SA<5> bits are 'Reserved' for ADC2 and should be programmed to '0'.
 - **5:** Analog inputs, AN32-AN49, are available only when the ADCx is working in 10-bit mode.

Legend:

REGISTER 23-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER⁽³⁾ (CONTINUED)

```
bit 7
               CHONA: Channel 0 Negative Input Select for Sample MUXA bit
               1 = Channel 0 negative input is AN1(1)
               0 = Channel 0 negative input is VREFL
bit 6
               Unimplemented: Read as '0'
               CH0SA<5:0>: Channel 0 Positive Input Select for Sample MUXA bits(1,4,5)
bit 5-0
               111111 = Channel 0 positive input is (AN63) unconnected
               111110 = Channel 0 positive input is (AN62) CTMU temperature voltage
               111101 = Channel 0 positive input is (AN61) reserved
               110010 = Channel 0 positive input is (AN50) reserved
               110001 = Channel 0 positive input is AN49
               110000 = Channel 0 positive input is AN48
               101111 = Channel 0 positive input is AN47
               101110 = Channel 0 positive input is AN46
               011010 = Channel 0 positive input is AN26
               011001 = Channel 0 positive input is AN25 or Op Amp 5 output voltage (2)
               011000 = Channel 0 positive input is AN24
               000111 = Channel 0 positive input is AN7
               000110 = Channel 0 positive input is AN6 or Op Amp 3 output voltage(2)
               000101 = Channel 0 positive input is AN5
               000100 = Channel 0 positive input is AN4
               000011 = Channel 0 positive input is AN3 or Op Amp 1 output voltage(2)
               000010 = Channel 0 positive input is AN2
               000001 = Channel 0 positive input is AN1
               000000 = Channel 0 positive input is AN0 or Op Amp 2 output voltage(2)
```

- **Note 1:** AN0 through AN7 are repurposed when comparator and op amp functionality are enabled. See Figure 23-1 to determine how enabling a particular op amp or comparator affects selection choices for Channels 1, 2 and 3.
 - 2: If the op amp is selected (OPMODE bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
 - 3: See the "Pin Diagrams" section for the available analog channels for each device.
 - **4:** Analog input selections for ADC1 are shown here. AN32-AN63 selections are not available for ADC2. The CH0SB<5> and CH0SA<5> bits are 'Reserved' for ADC2 and should be programmed to '0'.
 - 5: Analog inputs, AN32-AN49, are available only when the ADCx is working in 10-bit mode.

REGISTER 23-7: ADXCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH(2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30	CSS29	CSS28	CSS27	CSS26 ⁽¹⁾	CSS25 ⁽¹⁾	CSS24 ⁽¹⁾
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CSS23 | CSS22 | CSS21 | CSS20 | CSS19 | CSS18 | CSS17 | CSS16 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 CSS31: ADCx Input Scan Selection bit

1 = Selects ANx for input scan 0 = Skips ANx for input scan

bit 14 CSS30: ADCx Input Scan Selection bit

1 = Selects ANx for input scan

0 = Skips ANx for input scan

bit 13 CSS29: ADCx Input Scan Selection bits

1 = Selects ANx for input scan

0 = Skips ANx for input scan

bit 12 CSS28: ADCx Input Scan Selection bit

1 = Selects ANx for input scan

0 = Skips ANx for input scan

bit 11 CSS27: ADCx Input Scan Selection bit

1 = Selects ANx for input scan0 = Skips ANx for input scan

bit 10 CSS26: ADCx Input Scan Selection bit⁽¹⁾

1 = Selects OA3/AN6 for input scan

0 = Skips OA3/AN6 for input scan

bit 9 CSS25: ADCx Input Scan Selection bit⁽¹⁾

1 = Selects OA2/AN0 for input scan

0 = Skips OA2/AN0 for input scan

bit 8 CSS24: ADCx Input Scan Selection bit(1)

1 = Selects OA1/AN3 for input scan

0 = Skips OA1/AN3 for input scan

bit 7 CSS23: ADCx Input Scan Selection bit

1 = Selects ANx for input scan

0 = Skips ANx for input scan

bit 6 CSS22: ADCx Input Scan Selection bits

 $_1$ = Selects ANx for input scan

0 = Skips ANx for input scan

bit 5 CSS21: ADCx Input Scan Selection bits

1 = Selects ANx for input scan

0 = Skips ANx for input scan

Note 1: If the op amp is selected (OPMODE bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.

2: All bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

REGISTER 23-7: ADxCSSH: ADCx INPUT SCAN SELECT REGISTER HIGH⁽²⁾ (CONTINUED)

bit 4	CSS20: ADCx Input Scan Selection bit
	1 = Selects ANx for input scan0 = Skips ANx for input scan
bit 3	CSS19: ADCx Input Scan Selection bit
	1 = Selects ANx for input scan0 = Skips ANx for input scan
bit 2	CSS18: ADCx Input Scan Selection bit
	1 = Selects ANx for input scan0 = Skips ANx for input scan
bit 1	CSS17: ADCx Input Scan Selection bit
	1 = Selects ANx for input scan0 = Skips ANx for input scan
bit 0	CSS16: ADCx Input Scan Selection bit
	1 = Selects ANx for input scan
	0 = Skips ANx for input scan

- **Note 1:** If the op amp is selected (OPMODE bit (CMxCON<10>) = 1), the OAx input is used; otherwise, the ANx input is used.
 - **2:** All bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

REGISTER 23-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CSS7 | CSS6 | CSS5 | CSS4 | CSS3 | CSS2 | CSS1 | CSS0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 CSS<15:0>: ADCx Input Scan Selection bits

1 = Selects ANx for input scan

0 = Skips ANx for input scan

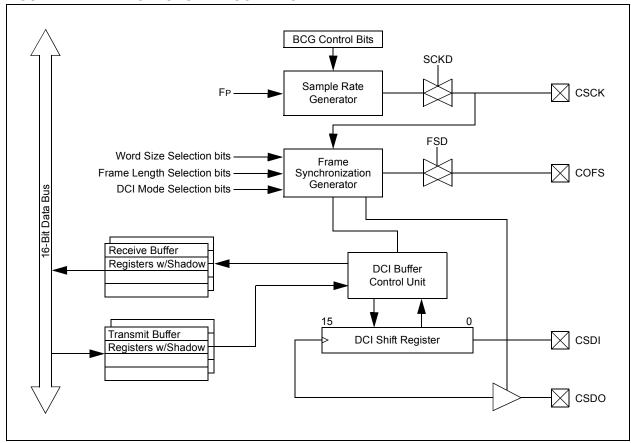
Note 1: On devices with less than 16 analog inputs, all bits in this register can be selected by the user application. However, inputs selected for scan without a corresponding input on the device convert VREFL.

2: CSSx = ANx, where 'x' = 0-15.

24.0 DATA CONVERTER INTERFACE (DCI) MODULE

- Note 1: This data sheet is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Data Converter Interface (DCI)" (DS70356), which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

24.1 Module Introduction


The Data Converter Interface (DCI) module allows simple interfacing of devices, such as audio coder/decoders (Codecs), ADC and D/A Converters. The following interfaces are supported:

- Framed Synchronous Serial Transfer (Single or Multi-Channel)
- Inter-IC Sound (I²S) Interface
- · AC-Link Compliant mode

General features include:

- · Programmable word size up to 16 bits
- Supports up to 16 time slots, for a maximum frame size of 256 bits
- Data buffering for up to 4 samples without CPU overhead

FIGURE 24-1: DCI MODULE BLOCK DIAGRAM

24.2 **DCI Control Registers**

DCICON1: DCI CONTROL REGISTER 1 REGISTER 24-1:

R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
DCIEN	r	DCISIDL	r	DLOOP	CSCKD	CSCKE	COFSD
bit 15							bit 8

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
UNFM	CSDOM	DJST	r	r	r	COFSM<1:0>	
bit 7							bit 0

Legend:	r = Reserved bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15 **DCIEN:** DCI Module Enable bit 1 = DCI module is enabled 0 = DCI module is disabled bit 14 Reserved: Read as '0'

bit 13 DCISIDL: DCI Stop in Idle Control bit 1 = Module will halt in CPU Idle mode

0 = Module will continue to operate in CPU Idle mode

bit 12 Reserved: Read as '0'

bit 11 **DLOOP:** Digital Loopback Mode Control bit

1 = Digital Loopback mode is enabled; CSDI and CSDO pins are internally connected

0 = Digital Loopback mode is disabled

bit 10 **CSCKD:** Sample Clock Direction Control bit

> 1 = CSCK pin is an input when DCI module is enabled 0 = CSCK pin is an output when DCI module is enabled

bit 9 CSCKE: Sample Clock Edge Control bit

> 1 = Data changes on serial clock falling edge, sampled on serial clock rising edge 0 = Data changes on serial clock rising edge, sampled on serial clock falling edge

bit 8 **COFSD:** Frame Synchronization Direction Control bit

1 = COFS pin is an input when DCI module is enabled 0 = COFS pin is an output when DCI module is enabled

bit 7 UNFM: Underflow Mode bit

1 = Transmits last value written to the Transmit registers on a transmit underflow

0 = Transmits '0's on a transmit underflow

bit 6 **CSDOM:** Serial Data Output Mode bit

1 = CSDO pin will be tri-stated during disabled transmit time slots

0 = CSDO pin drives '0's during disabled transmit time slots

bit 5 **DJST:** DCI Data Justification Control bit

1 = Data transmission/reception is begun during the same serial clock cycle as the frame synchronization

0 = Data transmission/reception is begun one serial clock cycle after frame synchronization pulse

bit 4-2 Reserved: Read as '0'

bit 1-0 COFSM<1:0>: Frame Sync Mode bits

> 11 = 20-Bit AC-Link mode 10 = 16-Bit AC-Link mode $01 = I^2S$ Frame Sync mode

00 = Multi-Channel Frame Sync mode

REGISTER 24-2: DCICON2: DCI CONTROL REGISTER 2

U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0
r	r	r	r	BLEN	N<1:0>	r	COFSG3
bit 15							bit 8

R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	COFSG<2:0>		r		WS	<3:0>	
bit 7							bit 0

Legend:r = Reserved bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-12 Reserved: Read as '0'

bit 11-10 **BLEN<1:0>:** Buffer Length Control bits

11 = Four data words will be buffered between interrupts
 10 = Three data words will be buffered between interrupts
 01 = Two data words will be buffered between interrupts

00 = One data word will be buffered between interrupts

bit 9 Reserved: Read as '0'

bit 8-5 **COFSG<3:0>:** Frame Sync Generator Control bits

1111 = Data frame has 16 words

.

•

0010 = Data frame has 3 words 0001 = Data frame has 2 words 0000 = Data frame has 1 word

bit 4 Reserved: Read as '0'

bit 3-0 WS<3:0>: DCI Data Word Size bits

1111 = Data word size is 16 bits

•

•

0100 = Data word size is 5 bits

0011 = Data word size is 4 bits

0010 = Invalid Selection. Do not use. Unexpected results may occur.

0001 = Invalid Selection. Do not use. Unexpected results may occur.

0000 = Invalid Selection. Do not use. Unexpected results may occur.

REGISTER 24-3: DCICON3: DCI CONTROL REGISTER 3

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
r	r	r	r		BCG<	:11:8>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BCG<7:0>							
bit 7							bit 0

Legend: r = Reserved bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 **Reserved:** Read as '0'

bit 11-0 BCG<11:0>: DCI Bit Clock Generator Control bits

REGISTER 24-4: DCISTAT: DCI STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
r	r	r	r		SLOT	<3:0>	
bit 15							bit 8

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
r	r	r	r	ROV	RFUL	TUNF	TMPTY
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Reserved: Read as '0'

bit 11-8 **SLOT<3:0>:** DCI Slot Status bits

1111 = Slot 15 is currently active

•

•

•

0010 = Slot 2 is currently active 0001 = Slot 1 is currently active 0000 = Slot 0 is currently active

bit 7-4 Reserved: Read as '0'

bit 3 ROV: Receive Overflow Status bit

1 = A receive overflow has occurred for at least one Receive register

0 = A receive overflow has not occurred

bit 2 RFUL: Receive Buffer Full Status bit

1 = New data is available in the Receive registers

0 = The Receive registers have old data

bit 1 **TUNF:** Transmit Buffer Underflow Status bit

1 = A transmit underflow has occurred for at least one Transmit register

0 = A transmit underflow has not occurred

bit 0 TMPTY: Transmit Buffer Empty Status bit

1 = The Transmit registers are empty

0 = The Transmit registers are not empty

REGISTER 24-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RSE7 | RSE6 | RSE5 | RSE4 | RSE3 | RSE2 | RSE1 | RSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 RSE<15:0>: DCI Receive Slot Enable bits

1 = CSDI data is received during the Individual Time Slot n

0 = CSDI data is ignored during the Individual Time Slot n

REGISTER 24-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| TSE7 | TSE6 | TSE5 | TSE4 | TSE3 | TSE2 | TSE1 | TSE0 |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 TSE<15:0>: DCI Transmit Slot Enable Control bits

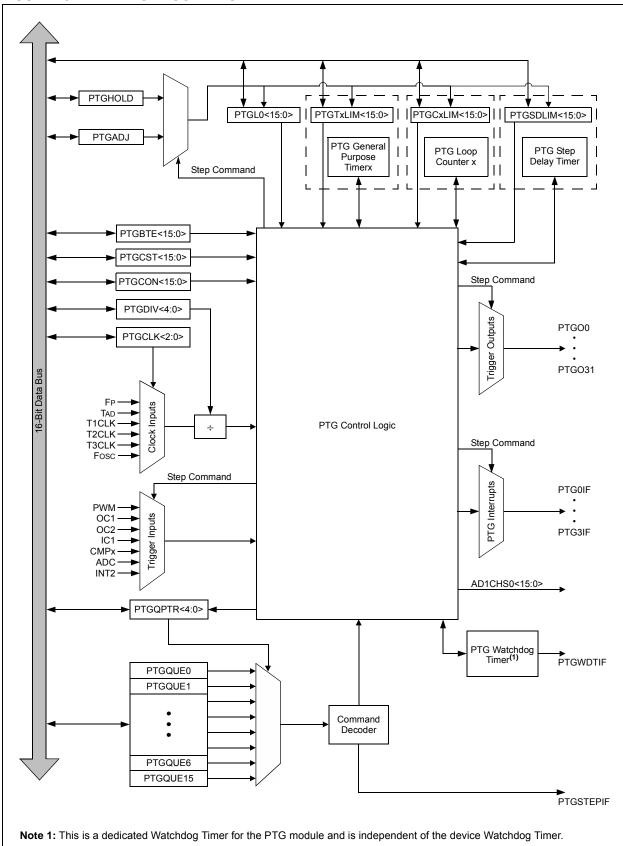
1 = Transmit buffer contents are sent during the Individual Time Slot n

0 = CSDO pin is tri-stated or driven to logic '0' during the individual time slot, depending on the state of the CSDOM bit

25.0 PERIPHERAL TRIGGER GENERATOR (PTG) MODULE

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Peripheral Trigger Generator (PTG)" (DS70669), which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


25.1 Module Introduction

The Peripheral Trigger Generator (PTG) provides a means to schedule complex, high-speed peripheral operations that would be difficult to achieve using software. The PTG module uses 8-bit commands, called "steps", that the user writes to the PTG Queue register (PTGQUE0-PTQUE7), which performs operations, such as wait for input signal, generate output trigger and wait for timer.

The PTG module has the following major features:

- · Multiple clock sources
- Two 16-bit general purpose timers
- Two 16-bit general limit counters
- · Configurable for rising or falling edge triggering
- · Generates processor interrupts to include:
 - Four configurable processor interrupts
 - Interrupt on a step event in Single-Step mode
 - Interrupt on a PTG Watchdog Timer time-out
- Able to receive trigger signals from these peripherals:
 - ADC
 - PWM
 - Output Compare
 - Input Capture
 - Op Amp/Comparator
 - INT2
- Able to trigger or synchronize to these peripherals:
 - Watchdog Timer
 - Output Compare
 - Input Capture
 - ADC
 - PWM
 - Op Amp/Comparator

FIGURE 25-1: PTG BLOCK DIAGRAM

25.2 **PTG Control Registers**

REGISTER 25-1: PTGCST: PTG CONTROL/STATUS REGISTER

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
PTGEN	_	PTGSIDL	PTGTOGL	_	PTGSWT ⁽²⁾	PTGSSEN	PTGIVIS
bit 15							bit 8

R/W-0	HS-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
PTGSTRT	PTGWDTO	_	_	_	_	PTGITM	<1:0> ⁽¹⁾
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 PTGEN: PTG Module Enable bit

> 1 = PTG module is enabled 0 = PTG module is disabled

bit 14 Unimplemented: Read as '0'

bit 13 PTGSIDL: PTG Stop in Idle Mode bit

1 = Discontinues module operation when device enters Idle mode

0 = Continues module operation in Idle mode

bit 12 **PTGTOGL:** PTG TRIG Output Toggle Mode bit

1 = Toggles the state of the PTGOx for each execution of the PTGTRIG command

0 = Each execution of the PTGTRIG command will generate a single PTGOx pulse determined by the value in the PTGPWDx bits

bit 11 Unimplemented: Read as '0'

bit 10 PTGSWT: PTG Software Trigger bit(2)

1 = Triggers the PTG module

0 = No action (clearing this bit will have no effect)

bit 9 PTGSSEN: PTG Enable Single-Step bit

1 = Enables Single-Step mode

0 = Disables Single-Step mode

bit 8 PTGIVIS: PTG Counter/Timer Visibility Control bit

> 1 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the current values of their corresponding Counter/Timer registers (PTGSD, PTGCx, PTGTx)

> 0 = Reads of the PTGSDLIM, PTGCxLIM or PTGTxLIM registers return the value previously written to those Limit registers

PTGSTRT: Start PTG Sequencer bit bit 7

1 = Starts to sequentially execute commands (Continuous mode)

0 = Stops executing commands

PTGWDTO: PTG Watchdog Timer Time-out Status bit bit 6

> 1 = PTG Watchdog Timer has timed out 0 = PTG Watchdog Timer has not timed out.

bit 5-2 Unimplemented: Read as '0'

Note 1: These bits apply to the PTGWHI and PTGWLO commands only.

This bit is only used with the PTGCTRL Step command software trigger option.

REGISTER 25-1: PTGCST: PTG CONTROL/STATUS REGISTER (CONTINUED)

- bit 1-0 **PTGITM<1:0>:** PTG Input Trigger Command Operating Mode bits⁽¹⁾
 - 11 = Single level detect with step delay not executed on exit of command (regardless of PTGCTRL command)
 - 10 = Single level detect with step delay executed on exit of command
 - 01 = Continuous edge detect with step delay not executed on exit of command (regardless of PTGCTRL command)
 - 00 = Continuous edge detect with step delay executed on exit of command
- Note 1: These bits apply to the PTGWHI and PTGWLO commands only.
 - 2: This bit is only used with the PTGCTRL Step command software trigger option.

REGISTER 25-2: PTGCON: PTG CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PTGCLK<2:0>				PTGDIV<4:0>	•	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
	PTGPW	D<3:0>		_	PTGWDT<2:0>		
bit 7							bit 0

 Legend:
 R = Readable bit
 W = Writable bit
 U = Unimplemented bit, read as '0'

 -n = Value at POR
 '1' = Bit is set
 '0' = Bit is cleared
 x = Bit is unknown

bit 15-13 PTGCLK<2:0>: Select PTG Module Clock Source bits

111 = Reserved

110 = Reserved

101 = PTG module clock source will be T3CLK

100 = PTG module clock source will be T2CLK

011 = PTG module clock source will be T1CLK

010 = PTG module clock source will be TAD

001 = PTG module clock source will be Fosc

000 = PTG module clock source will be FP

bit 12-8 PTGDIV<4:0>: PTG Module Clock Prescaler (divider) bits

11111 = Divide-by-32

11110 = Divide-by-31

•

00001 = Divide-by-2

00000 = Divide-by-1

bit 7-4 **PTGPWD<3:0>:** PTG Trigger Output Pulse-Width bits

1111 = All trigger outputs are 16 PTG clock cycles wide

1110 = All trigger outputs are 15 PTG clock cycles wide

•

•

0001 = All trigger outputs are 2 PTG clock cycles wide

0000 = All trigger outputs are 1 PTG clock cycle wide

bit 3 Unimplemented: Read as '0'

bit 2-0 PTGWDT<2:0>: Select PTG Watchdog Timer Time-out Count Value bits

111 = Watchdog Timer will time-out after 512 PTG clocks

110 = Watchdog Timer will time-out after 256 PTG clocks

101 = Watchdog Timer will time-out after 128 PTG clocks

100 = Watchdog Timer will time-out after 64 PTG clocks

011 = Watchdog Timer will time-out after 32 PTG clocks

010 = Watchdog Timer will time-out after 16 PTG clocks

001 = Watchdog Timer will time-out after 8 PTG clocks

000 = Watchdog Timer is disabled

REGISTER 25-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2)

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| ADCTS4 | ADCTS3 | ADCTS2 | ADCTS1 | IC4TSS | IC3TSS | IC2TSS | IC1TSS |
| bit 15 | | | | | | | bit 8 |

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OC4CS	OC3CS	OC2CS	OC1CS	OC4TSS	OC3TSS	OC2TSS	OC1TSS
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	ADCTS4: Sample Trigger PTGO15 for ADCx bit
	1 = Generates trigger when the broadcast command is executed
	0 = Does not generate trigger when the broadcast command is executed
bit 14	ADCTS3: Sample Trigger PTGO14 for ADCx bit
	1 = Generates trigger when the broadcast command is executed0 = Does not generate trigger when the broadcast command is executed
bit 13	ADCTS2: Sample Trigger PTGO13 for ADCx bit
	 1 = Generates trigger when the broadcast command is executed 0 = Does not generate trigger when the broadcast command is executed
bit 12	ADCTS1: Sample Trigger PTGO12 for ADCx bit
	1 = Generates trigger when the broadcast command is executed0 = Does not generate trigger when the broadcast command is executed
bit 11	IC4TSS: Trigger/Synchronization Source for IC4 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 10	IC3TSS: Trigger/Synchronization Source for IC3 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 9	IC2TSS: Trigger/Synchronization Source for IC2 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 8	IC1TSS: Trigger/Synchronization Source for IC1 bit
	 1 = Generates trigger/synchronization when the broadcast command is executed 0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 7	OC4CS: Clock Source for OC4 bit
	1 = Generates clock pulse when the broadcast command is executed0 = Does not generate clock pulse when the broadcast command is executed
bit 6	OC3CS: Clock Source for OC3 bit
	1 = Generates clock pulse when the broadcast command is executed0 = Does not generate clock pulse when the broadcast command is executed
bit 5	OC2CS: Clock Source for OC2 bit
	1 = Generates clock pulse when the broadcast command is executed0 = Does not generate clock pulse when the broadcast command is executed

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

2: This register is only used with the PTGCTRL OPTION = 1111 Step command.

REGISTER 25-3: PTGBTE: PTG BROADCAST TRIGGER ENABLE REGISTER^(1,2) (CONTINUED)

bit 4		OC1CS: Clock Source for OC1 bit
		1 = Generates clock pulse when the broadcast command is executed0 = Does not generate clock pulse when the broadcast command is executed
bit 3		OC4TSS: Trigger/Synchronization Source for OC4 bit
		1 = Generates trigger/synchronization when the broadcast command is executed0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 2		OC3TSS: Trigger/Synchronization Source for OC3 bit
		1 = Generates trigger/synchronization when the broadcast command is executed0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 1		OC2TSS: Trigger/Synchronization Source for OC2 bit
		1 = Generates trigger/synchronization when the broadcast command is executed0 = Does not generate trigger/synchronization when the broadcast command is executed
bit 0		OC1TSS: Trigger/Synchronization Source for OC1 bit
		1 = Generates trigger/synchronization when the broadcast command is executed0 = Does not generate trigger/synchronization when the broadcast command is executed
Note	1:	This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).
	2:	This register is only used with the PTGCTRL OPTION = 1111 Step command.

REGISTER 25-4: PTGT0LIM: PTG TIMER0 LIMIT REGISTER(1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT0L	IM<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT0L	.IM<7:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 PTGT0LIM<15:0>: PTG Timer0 Limit Register bits

General purpose Timer0 Limit register (effective only with a PTGT0 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-5: PTGT1LIM: PTG TIMER1 LIMIT REGISTER(1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1L	IM<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGT1L	.IM<7:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **PTGT1LIM<15:0>:** PTG Timer1 Limit Register bits

General purpose Timer1 Limit register (effective only with a PTGT1 Step command).

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-6: PTGSDLIM: PTG STEP DELAY LIMIT REGISTER(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGSDL	IM<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTGSDLIM<7:0>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 PTGSDLIM<15:0>: PTG Step Delay Limit Register bits

Holds a PTG step delay value, representing the number of additional PTG clocks, between the start of a Step command and the completion of a Step command.

Note 1: A base step delay of one PTG clock is added to any value written to the PTGSDLIM register (Step Delay = (PTGSDLIM) + 1).

2: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-7: PTGC0LIM: PTG COUNTER 0 LIMIT REGISTER(1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTGC0LIM<15:8>								
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTGC0LIM<7:0>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 PTGC0LIM<15:0>: PTG Counter 0 Limit Register bits

May be used to specify the loop count for the PTGJMPC0 Step command or as a limit register for the General Purpose Counter 0.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-8: PTGC1LIM: PTG COUNTER 1 LIMIT REGISTER(1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTGC1LIM<15:8>								
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTGC1LIM<7:0>									
bit 7							bit 0		

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 PTGC1LIM<15:0>: PTG Counter 1 Limit Register bits

> May be used to specify the loop count for the PTGJMPC1 Step command, or as a limit register for the General Purpose Counter 1.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-9: PTGHOLD: PTG HOLD REGISTER(1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGHOL	_D<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTGHOLD<7:0>									
bit 7				bit 0					

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

PTGHOLD<15:0>: PTG General Purpose Hold Register bits bit 15-0

> Holds user-supplied data to be copied to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the PTGCOPY command.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-10: PTGADJ: PTG ADJUST REGISTER(1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTGADJ<15:8>									
bit 15							bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PTGADJ<7:0>								
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **PTGADJ<15:0>:** PTG Adjust Register bits

This register holds user-supplied data to be added to the PTGTxLIM, PTGCxLIM, PTGSDLIM or PTGL0 registers with the PTGADD command.

Ç

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-11: PTGL0: PTG LITERAL 0 REGISTER(1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGL0	<15:8>			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTGL	0<7:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 **PTGL0<15:0>:** PTG Literal 0 Register bits

This register holds the 16-bit value to be written to the AD1CHS0 register with the PTGCTRL Step command.

communa

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-12: PTGQPTR: PTG STEP QUEUE POINTER REGISTER(1)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			PTGQPTR<4:0	>	
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-5 **Unimplemented:** Read as '0'

bit 4-0 PTGQPTR<4:0>: PTG Step Queue Pointer Register bits

This register points to the currently active Step command in the step queue.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

REGISTER 25-13: PTGQUEx: PTG STEP QUEUE REGISTER x (x = 0-15) $^{(1,3)}$

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP(2x +	· 1)<7:0> ⁽²⁾			
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STEP(2x	()<7:0> ⁽²⁾			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 STEP(2x + 1)<7:0>: PTG Step Queue Pointer Register bits⁽²⁾

A queue location for storage of the STEP(2x +1) command byte.

bit 7-0 STEP(2x)<7:0>: PTG Step Queue Pointer Register bits⁽²⁾

A queue location for storage of the STEP(2x) command byte.

Note 1: This register is read-only when the PTG module is executing Step commands (PTGEN = 1 and PTGSTRT = 1).

2: Refer to Table 25-1 for the Step command encoding.

3: The Step registers maintain their values on any type of Reset.

25.3 Step Commands and Format

TABLE 25-1: PTG STEP COMMAND FORMAT

Step Command Byte:					
STEPx<7:0>					
CMD<3:0>	OPTION<3:0>				
bit 7 b	bit 4 bit 3 b				

bit 7-4	CMD<3:0>	Step Command	Command Description
	0000	PTGCTRL	Execute control command as described by OPTION<3:0>
	0001	PTGADD	Add contents of PTGADJ register to target register as described by OPTION<3:0>
		PTGCOPY	Copy contents of PTGHOLD register to target register as described by OPTION<3:0>
	001x	PTGSTRB	Copy the value contained in CMD<0>:OPTION<3:0> to the CH0SA<4:0> bits (AD1CHS0<4:0>)
	0100	PTGWHI	Wait for a low-to-high edge input from selected PTG trigger input as described by OPTION<3:0>
	0101	PTGWLO	Wait for a high-to-low edge input from selected PTG trigger input as described by OPTION<3:0>
	0110	Reserved	Reserved
	0111	PTGIRQ	Generate individual interrupt request as described by OPTION3<:0>
	100x	PTGTRIG	Generate individual trigger output as described by < <cmd<0>:OPTION<3:0>></cmd<0>
	101x	PTGJMP	Copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue</cmd<0>
	110x	PTGJMPC0	PTGC0 = PTGC0LIM: Increment the Queue Pointer (PTGQPTR)
			PTGC0 ≠ PTGC0LIM: Increment Counter 0 (PTGC0) and copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue</cmd<0>
	111x	PTGJMPC1	PTGC1 = PTGC1LIM: Increment the Queue Pointer (PTGQPTR)
			PTGC1 ≠ PTGC1LIM: Increment Counter 1 (PTGC1) and copy the value indicated in < <cmd<0>:OPTION<3:0>> to the Queue Pointer (PTGQPTR) and jump to that step queue</cmd<0>

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

2: Refer to Table 25-2 for the trigger output descriptions.

TABLE 25-1: PTG STEP COMMAND FORMAT (CONTINUED)

bit 3-0	Step Command	OPTION<3:0>	Option Description
	PTGCTRL(1)	0000	Reserved
		0001	Reserved
		0010	Disable Step Delay Timer (PTGSD)
		0011	Reserved
		0100	Reserved
		0101	Reserved
		0110	Enable Step Delay Timer (PTGSD)
		0111	Reserved
		1000	Start and wait for the PTG Timer0 to match Timer0 Limit register
		1001	Start and wait for the PTG Timer1 to match Timer1 Limit register
		1010	Reserved
		1011	Wait for software trigger bit transition from low-to-high before continuing (PTGSWT = 0 to 1)
		1100	Copy contents of the Counter 0 register to the AD1CHS0 register
		1101	Copy contents of the Counter 1 register to the AD1CHS0 register
		1110	Copy contents of the Literal 0 register to the AD1CHS0 register
		1111	Generate triggers indicated in the Broadcast Trigger Enable register (PTGBTE)
	PTGADD ⁽¹⁾	0000	Add contents of PTGADJ register to the Counter 0 Limit register (PTGC0LIM)
		0001	Add contents of PTGADJ register to the Counter 1 Limit register (PTGC1LIM)
		0010	Add contents of PTGADJ register to the Timer0 Limit register (PTGT0LIM)
		0011	Add contents of PTGADJ register to the Timer1 Limit register (PTGT1LIM)
		0100	Add contents of PTGADJ register to the Step Delay Limit register (PTGSDLIM)
		0101	Add contents of PTGADJ register to the Literal 0 register (PTGL0)
		0110	Reserved
		0111	Reserved
	PTGCOPY ⁽¹⁾	1000	Copy contents of PTGHOLD register to the Counter 0 Limit register (PTGC0LIM)
		1001	Copy contents of PTGHOLD register to the Counter 1 Limit register (PTGC1LIM)
		1010	Copy contents of PTGHOLD register to the Timer0 Limit register (PTGT0LIM)
		1011	Copy contents of PTGHOLD register to the Timer1 Limit register (PTGT1LIM)
		1100	Copy contents of PTGHOLD register to the Step Delay Limit register (PTGSDLIM)
		1101	Copy contents of PTGHOLD register to the Literal 0 register (PTGL0)
		1110	Reserved
		1111	Reserved

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

^{2:} Refer to Table 25-2 for the trigger output descriptions.

TABLE 25-1: PTG STEP COMMAND FORMAT (CONTINUED)

bit 3-0 Step Command	OPTION<3:0>	Option Description
PTGWHI(1)	0000	PWM Special Event Trigger
or PTGWLO(1)	0001	PWM master time base synchronization output
P.T.GMTO(.)	0010	PWM1 interrupt
	0011	PWM2 interrupt
	0100	PWM3 interrupt
	0101	PWM4 interrupt
	0110	PWM5 interrupt
	0111	OC1 Trigger Event
	1000	OC2 Trigger Event
	1001	IC1 Trigger Event
	1010	CMP1 Trigger Event
	1011	CMP2 Trigger Event
	1100	CMP3 Trigger Event
	1101	CMP4 Trigger Event
	1110	ADC conversion done interrupt
	1111	INT2 external interrupt
PTGIRQ(1)	0000	Generate PTG Interrupt 0
	0001	Generate PTG Interrupt 1
	0010	Generate PTG Interrupt 2
	0011	Generate PTG Interrupt 3
	0100	Reserved
	•	•
	•	•
	•	•
(0)	1111	Reserved
PTGTRIG ⁽²⁾	00000	PTGO0
	00001	PTGO1
	•	•
	•	•
	•	•
	11110	PTGO30
	11111	PTGO31

Note 1: All reserved commands or options will execute but have no effect (i.e., execute as a NOP instruction).

^{2:} Refer to Table 25-2 for the trigger output descriptions.

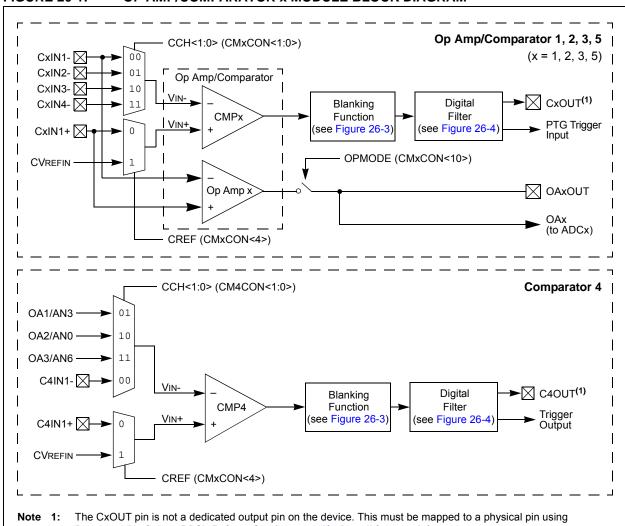
TABLE 25-2: PTG OUTPUT DESCRIPTIONS

PTG Output Number	PTG Output Description
PTGO0	Trigger/Synchronization Source for OC1
PTGO1	Trigger/Synchronization Source for OC2
PTGO2	Trigger/Synchronization Source for OC3
PTGO3	Trigger/Synchronization Source for OC4
PTGO4	Clock Source for OC1
PTGO5	Clock Source for OC2
PTGO6	Clock Source for OC3
PTGO7	Clock Source for OC4
PTGO8	Trigger/Synchronization Source for IC1
PTGO9	Trigger/Synchronization Source for IC2
PTGO10	Trigger/Synchronization Source for IC3
PTGO11	Trigger/Synchronization Source for IC4
PTGO12	Sample Trigger for ADC
PTGO13	Sample Trigger for ADC
PTGO14	Sample Trigger for ADC
PTGO15	Sample Trigger for ADC
PTGO16	PWM Time Base Synchronous Source for PWM
PTGO17	PWM Time Base Synchronous Source for PWM
PTGO18	Mask Input Select for Op Amp/Comparator
PTGO19	Mask Input Select for Op Amp/Comparator
PTGO20	Reserved
PTGO21	Reserved
PTGO22	Reserved
PTGO23	Reserved
PTGO24	Reserved
PTGO25	Reserved
PTGO26	Reserved
PTGO27	Reserved
PTGO28	Reserved
PTGO29	Reserved
PTGO30	PTG Output to PPS Input Selection
PTGO31	PTG Output to PPS Input Selection

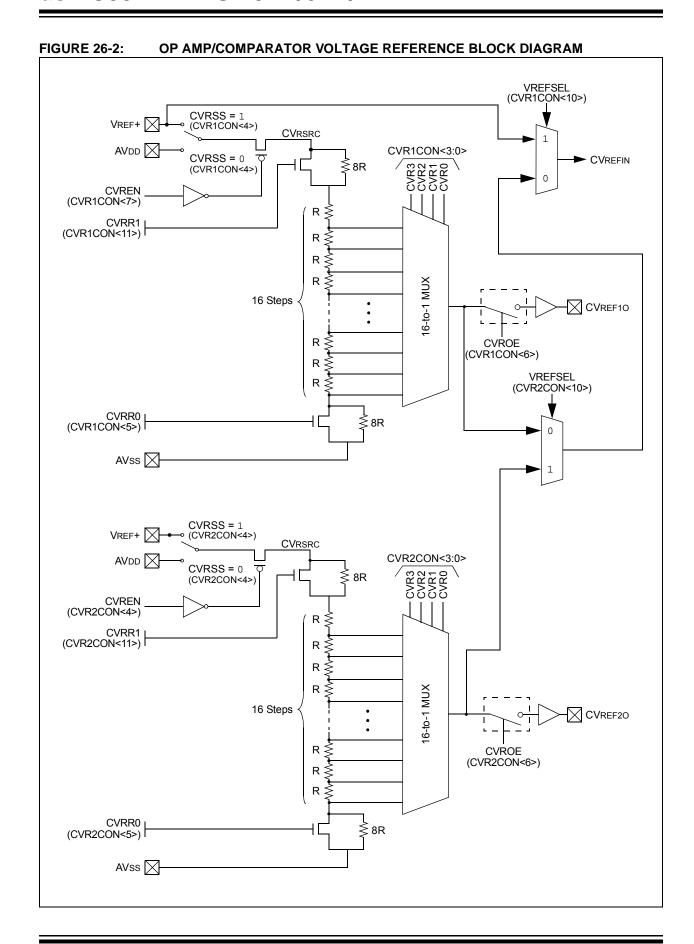
OP AMP/COMPARATOR 26.0 MODULE

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual', "Op Amp/ Comparator" (DS70357), which is available from the Microchip web site (www.microchip.com).

> 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The dsPIC33FPXXXGM3XX/6XX/7XX devices contain up to five comparators that can be configured in various ways. Comparators, CMP1, CMP2, CMP3 and CMP5, also have the option to be configured as op amps, with the output being brought to an external pin for gain/ filtering connections. As shown in Figure 26-1, individual comparator options are specified by the comparator module's Special Function Register (SFR) control bits.

These options allow users to:


- Select the edge for trigger and interrupt generation
- · Configure the comparator voltage reference
- · Configure output blanking and masking
- Configure as a comparator or op amp (CMP1, CMP2, CMP3 and CMP5 only)

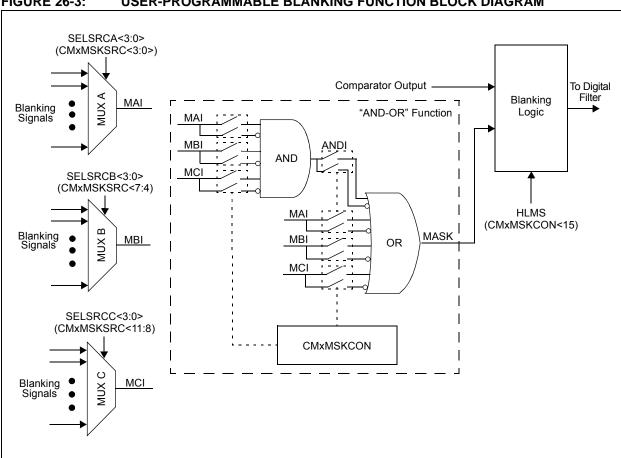

Note: Not all op amp/comparator input/output connections are available on all devices. See the "Pin Diagrams" section for available connections

FIGURE 26-1: OP AMP/COMPARATOR x MODULE BLOCK DIAGRAM

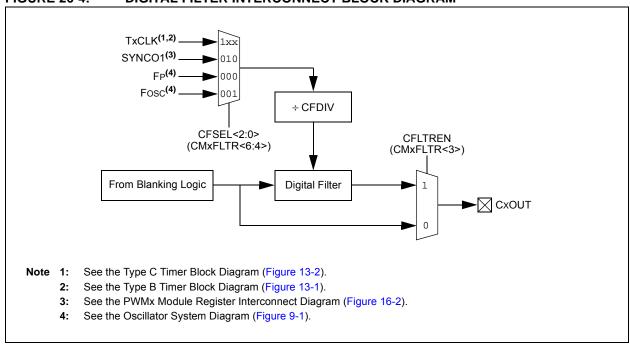
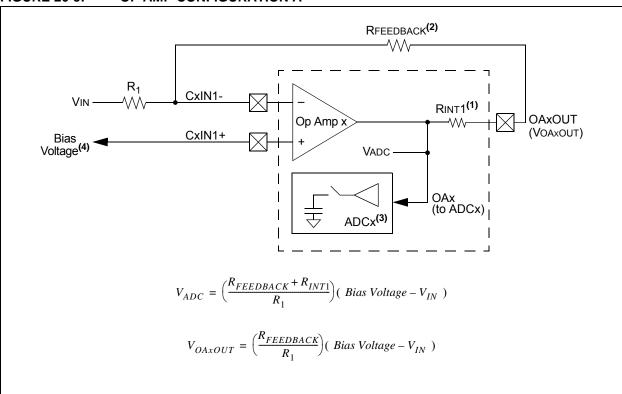

Peripheral Pin Select (PPS). Refer to Section 11.0 "I/O Ports" for more information.

FIGURE 26-3: USER-PROGRAMMABLE BLANKING FUNCTION BLOCK DIAGRAM

FIGURE 26-4: DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM


26.1 Op Amp Application Considerations

There are two configurations to take into consideration when designing with the op amp modules that are available in the dsPIC33EPXXXGM3XX/6XX/7XX devices. Configuration A (see Figure 26-5) takes advantage of the internal connection to the ADCx module to route the output of the op amp directly to the ADCx for measurement. Configuration B (see Figure 26-6) requires that the designer externally route the output of the op amp (OAxOUT) to a separate analog input pin (ANy) on the device. Table 33-53 in Section 33.0 "Electrical Characteristics" describes the performance characteristics for the op amps, distinguishing between the two configuration types where applicable.

26.1.1 OP AMP CONFIGURATION A

Figure 26-5 shows a typical inverting amplifier circuit taking advantage of the internal connections from the op amp output to the input of the ADCx. The advantage of this configuration is that the user does not need to consume another analog input (ANy) on the device, and allows the user to simultaneously sample all three op amps with the ADCx module, if needed. However, the presence of the internal resistance, RINT1, adds an error in the feedback path. Since RINT1 is an internal resistance, in relation to the op amp output (VOAXOUT) and ADCx internal connection (VADC). RINT1 must be included in the numerator term of the transfer function. See Table 33-52 in Section 33.0 "Electrical Characteristics" for the typical value of RINT1. Table 33-57 and Table 33-58 in Section 33.0 "Electrical Characteristics" describe the minimum sample time (TSAMP) requirements for the ADCx module in this configuration. Figure 26-5 also defines the equations that should be used when calculating the expected voltages at points, VADC and VOAXOUT.

FIGURE 26-5: OP AMP CONFIGURATION A

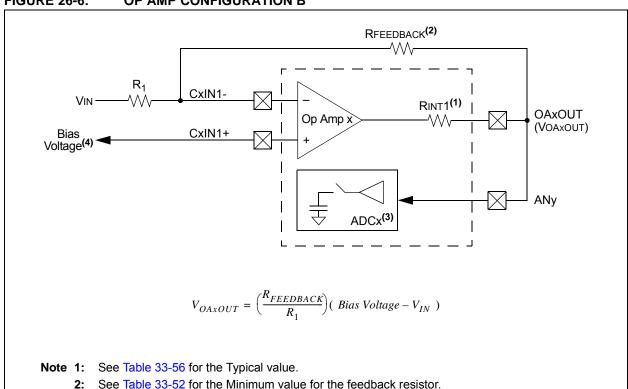
- Note 1: See Table 33-56 for the Typical value.
 - 2: See Table 33-52 for the Minimum value for the feedback resistor.
 - 3: See Table 33-59 and Table 33-60 for the Minimum Sample Time (TSAMP).
 - 4: CVREF10 or CVREF20 are two options that are available for supplying bias voltage to the op amps.

26.1.2 OP AMP CONFIGURATION B

Figure 26-6 shows a typical inverting amplifier circuit with the output of the op amp (OAxOUT) externally routed to a separate analog input pin (ANy) on the device. This op amp configuration is slightly different in terms of the op amp output and the ADCx input connection, therefore, RINT1 is not included in the transfer function. However, this configuration requires the designer to externally route the op amp output (OAxOUT) to another analog input pin (ANy). See Table 33-52 in Section 33.0 "Electrical Characteristics" for the typical value of RINT1. Table 33-57 and Table 33-58 in Section 33.0 "Electrical Characteristics" describe the minimum sample time (TSAMP) requirements for the ADCx module in this configuration.

Figure 26-6 also defines the equation to be used to calculate the expected voltage at point VOAXOUT. This is the typical inverting amplifier equation.

Op Amp/Comparator Resources 26.2


Many useful resources are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en555464

26.2.1 KEY RESOURCES

- "Op Amp/Comparator" (DS70357) in the "dsPIC33E/PIC24E Family Reference Manual"
- · Code Samples
- · Application Notes
- Software Libraries
- Webinars
- · All Related "dsPIC33E/PIC24E Family Reference Manual" Sections
- · Development Tools

FIGURE 26-6: OP AMP CONFIGURATION B

See Table 33-59 and Table 33-60 for the Minimum Sample Time (TSAMP).

CVREF10 or CVREF20 are two options that are available for supplying bias voltage to the op amps.

© 2013 Microchip Technology Inc.

2:

3:

26.3 Op Amp/Comparator Control Registers

REGISTER 26-1: CMSTAT: OP AMP/COMPARATOR STATUS REGISTER

R/W-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
PSIDL	_	_	C5EVT ⁽¹⁾	C4EVT ⁽¹⁾	C3EVT ⁽¹⁾	C2EVT ⁽¹⁾	C1EVT ⁽¹⁾
bit 15							bit 8

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
_	_	_	C5OUT ⁽²⁾	C4OUT ⁽²⁾	C3OUT ⁽²⁾	C2OUT ⁽²⁾	C1OUT ⁽²⁾
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **PSIDL:** Op Amp/Comparator Stop in Idle Mode bit

1 = Discontinues operation of all op amps/comparators when device enters Idle mode

0 = Continues operation of all op amps/comparators in Idle mode

bit 14-13 **Unimplemented:** Read as '0'

bit 12 C5EVT:C1EVT: Op Amp/Comparator 1-5 Event Status bit (1)

1 = Op amp/comparator event occurred

0 = Op amp/comparator event did not occur

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 **C5OUT:C1OUT:** Op Amp/Comparator 1-5 Output Status bit⁽²⁾

When CPOL = 0:

1 = VIN+ > VIN-

0 = VIN+ < VIN-

When CPOL = 1:

1 = VIN+ < VIN-0 = VIN+ > VIN-

Note 1: Reflects the value of the CEVT bit in the respective Op Amp/Comparator x Control register, CMxCON<9>.

2: Reflects the value of the COUT bit in the respective Op Amp/Comparator x Control register, CMxCON<8>.

REGISTER 26-2: CMxCON: OP AMP/COMPARATOR x CONTROL REGISTER (x = 1, 2, 3 OR 5)

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
CON	COE	CPOL	_	_	OPMODE ⁽²⁾	CEVT ⁽³⁾	COUT
bit 15							bit 8

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL<1:0>(3)		_	CREF ⁽¹⁾	_	_	CCH<	1:0> ⁽¹⁾
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15 CON: Op Amp/Comparator Enable bit

1 = Comparator is enabled0 = Comparator is disabled

bit 14 **COE:** Comparator Output Enable bit

1 = Comparator output is present on the CxOUT pin

0 = Comparator output is internal only

bit 13 CPOL: Comparator Output Polarity Select bit

1 = Comparator output is inverted0 = Comparator output is not inverted

bit 12-11 **Unimplemented:** Read as '0' bit 10 **OPMODE:** Op Amp Select bit⁽²⁾

1 = Op amp is enabled 0 = Op amp is disabled

bit 9 **CEVT**: Comparator Event bit⁽³⁾

1 = Comparator event, according to EVPOL<1:0> settings, occurred; disables future triggers and interrupts until the bit is cleared

0 = Comparator event did not occur

bit 8 COUT: Comparator Output bit

When CPOL = 0 (non-inverted polarity):

1 = VIN+ > VIN-

0 = VIN+ < VIN-

When CPOL = 1 (inverted polarity):

 $1 = VIN+ < \overline{VIN-}$

0 = VIN+ > VIN-

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.
 - 2: The op amp and the comparator can be used simultaneously in these devices. The OPMODE bit only enables the op amp while the comparator is still functional.
 - 3: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), **must be cleared** before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

REGISTER 26-2: CMxCON: OP AMP/COMPARATOR x CONTROL REGISTER (x = 1, 2, 3 OR 5) (CONTINUED)

bit 7-6 **EVPOL<1:0>:** Trigger/Event/Interrupt Polarity Select bits⁽³⁾

- 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0)
- 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)

If CPOL = 1 (inverted polarity):

Low-to-high transition of the comparator output.

If CPOL = 0 (non-inverted polarity):

High-to-low transition of the comparator output.

01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0)

If CPOL = 1 (inverted polarity):

High-to-low transition of the comparator output.

If CPOL = 0 (non-inverted polarity):

Low-to-high transition of the comparator output.

00 = Trigger/event/interrupt generation is disabled.

bit 5 **Unimplemented:** Read as '0'

bit 4 CREF: Comparator Reference Select bit (VIN+ input)⁽¹⁾

1 = VIN+ input connects to internal CVREFIN voltage

0 = VIN+ input connects to CxIN1+ pin

bit 3-2 **Unimplemented:** Read as '0'

bit 1-0 CCH<1:0>: Op Amp/Comparator Channel Select bits⁽¹⁾

- 11 = Inverting input of op amp/comparator connects to CxIN4- pin
- 10 = Inverting input of op amp/comparator connects to CxIN3- pin
- 01 = Inverting input of op amp/comparator connects to CxIN2- pin
- 00 = Inverting input of op amp/comparator connects to CxIN1- pin
- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.
 - **2:** The op amp and the comparator can be used simultaneously in these devices. The OPMODE bit only enables the op amp while the comparator is still functional.
 - 3: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

REGISTER 26-3: CM4CON: OP AMP/COMPARATOR 4 CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
CON	COE	CPOL	_	_	_	CEVT ⁽²⁾	COUT
bit 15							bit 8

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
EVPOL<1:0>(2)		_	CREF ⁽¹⁾	_	_	CCH<	1:0> ⁽¹⁾
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 CON: Op Amp/Comparator Enable bit

1 = Comparator is enabled0 = Comparator is disabled

bit 14 **COE:** Comparator Output Enable bit

1 = Comparator output is present on the CxOUT pin

0 = Comparator output is internal only

bit 13 **CPOL:** Comparator Output Polarity Select bit

1 = Comparator output is inverted

0 = Comparator output is not inverted

bit 12-10 **Unimplemented:** Read as '0' bit 9 **CEVT:** Comparator Event bit⁽²⁾

1 = Comparator event, according to the EVPOL<1:0> settings, occurred; disables future triggers and interrupts until the bit is cleared

0 = Comparator event did not occur

bit 8 **COUT:** Comparator Output bit

When CPOL = 0 (non-inverted polarity):

1 = VIN+ > VIN-

0 = VIN+ < VIN-

When CPOL = 1 (inverted polarity):

1 = VIN+ < VIN-

0 = VIN+ > VIN-

- **Note 1:** Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.
 - 2: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), must be cleared before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

REGISTER 26-3: CM4CON: OP AMP/COMPARATOR 4 CONTROL REGISTER (CONTINUED)

bit 7-6 **EVPOL<1:0>:** Trigger/Event/Interrupt Polarity Select bits⁽²⁾

- 11 = Trigger/event/interrupt generated on any change of the comparator output (while CEVT = 0)
- 10 = Trigger/event/interrupt generated only on high-to-low transition of the polarity selected comparator output (while CEVT = 0)

If CPOL = 1 (inverted polarity):

Low-to-high transition of the comparator output.

If CPOL = 0 (non-inverted polarity):

High-to-low transition of the comparator output.

01 = Trigger/event/interrupt generated only on low-to-high transition of the polarity selected comparator output (while CEVT = 0)

If CPOL = 1 (inverted polarity):

High-to-low transition of the comparator output.

If CPOL = 0 (non-inverted polarity):

Low-to-high transition of the comparator output.

00 = Trigger/event/interrupt generation is disabled

bit 5 **Unimplemented:** Read as '0'

bit 4 CREF: Comparator Reference Select bit (Vin+ input)⁽¹⁾

1 = VIN+ input connects to internal CVREFIN voltage

0 = VIN+ input connects to C4IN1+ pin

bit 3-2 Unimplemented: Read as '0'

bit 1-0 **CCH<1:0>:** Comparator Channel Select bits⁽¹⁾

11 = VIN- input of comparator connects to OA3/AN6

10 = VIN- input of comparator connects to OA2/AN0

01 = VIN- input of comparator connects to OA1/AN3

00 = VIN- input of comparator connects to C4IN1-

- Note 1: Inputs that are selected and not available will be tied to Vss. See the "Pin Diagrams" section for available inputs for each package.
 - 2: After configuring the comparator, either for a high-to-low or low-to-high COUT transition (EVPOL<1:0> (CMxCON<7:6>) = 10 or 01), the Comparator Event bit, CEVT (CMxCON<9>), and the Comparator Combined Interrupt Flag, CMPIF (IFS1<2>), **must be cleared** before enabling the Comparator Interrupt Enable bit, CMPIE (IEC1<2>).

REGISTER 26-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0
_	_	_	_		SELSRO	CC<3:0>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SELSRCB<3:0>				SELSRCA<3:0>				
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-8 SELSRCC<3:0>: Mask C Input Select bits

1111 = FLT4

1110 = FLT2

1101 = PTGO19

1100 = PTGO18

1011 **= PWM6H**

1010 = PWM6L

1001 = PWM5H

1000 **= PWM5L**

0111 = PWM4H

0110 = PWM4L

0101 = PWM3H

0100 **= PWM3L**

0011 = PWM2H 0010 = PWM2L

0001 = PWM1H

0000 = PWM1L

bit 7-4 SELSRCB<3:0>: Mask B Input Select bits

1111 = FLT4

1110 = FLT2

1101 = PTGO19

1100 = PTGO18

1011 **= PWM6H**

1010 = PWM6L

1001 **= PWM5H**

1000 = PWM5L

0111 **= PWM4H**

0110 = PWM4L

0101 = PWM3H

0100 = PWM3L

0011 = PWM2H

0010 = PWM2L

0001 = PWM1H

0000 = PWM1L

REGISTER 26-4: CMxMSKSRC: COMPARATOR x MASK SOURCE SELECT CONTROL REGISTER (CONTINUED)

bit 3-0 SELSRCA<3:0>: Mask A Input Select bits

1111 **= FLT4**

1110 **= FLT2**

1101 = PTGO19

1100 = PTGO18

1011 = PWM6H

1010 = PWM6L

1001 **= PWM5H**

1000 **= PWM5L**

0111 = PWM4H

0110 **= PWM4L**

0101 = PWM3H

0100 = PWM3L

0011 **= PWM2H**

0010 = PWM2L

0001 = PWM1H

0000 = PWM1L

REGISTER 26-5: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| NAGS | PAGS | ACEN | ACNEN | ABEN | ABNEN | AAEN | AANEN |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

-n = value a	FOR I - Bit is set 0 - Bit is cleared x - Bit is unknown
bit 15	HLMS: High or Low-Level Masking Select bit
	1 = The masking (blanking) function will prevent any asserted ('0') comparator signal from propagating 0 = The masking (blanking) function will prevent any asserted ('1') comparator signal from propagating
bit 14	Unimplemented: Read as '0'
bit 13	OCEN: OR Gate C Input Enable bit
	1 = MCI is connected to OR gate0 = MCI is not connected to OR gate
bit 12	OCNEN: OR Gate C Input Inverted Enable bit
	1 = Inverted MCI is connected to OR gate0 = Inverted MCI is not connected to OR gate
bit 11	OBEN: OR Gate B Input Enable bit
	1 = MBI is connected to OR gate 0 = MBI is not connected to OR gate
bit 10	OBNEN: OR Gate B Input Inverted Enable bit
	1 = Inverted MBI is connected to OR gate0 = Inverted MBI is not connected to OR gate
bit 9	OAEN: OR Gate A Input Enable bit
	1 = MAI is connected to OR gate 0 = MAI is not connected to OR gate
bit 8	OANEN: OR Gate A Input Inverted Enable bit
DIL O	1 = Inverted MAI is connected to OR gate
	0 = Inverted MAI is not connected to OR gate
bit 7	NAGS: AND Gate Output Inverted Enable bit
	1 = Inverted ANDI is connected to OR gate
1.11.0	0 = Inverted ANDI is not connected to OR gate
bit 6	PAGS: AND Gate Output Enable bit 1 = ANDI is connected to OR gate
	0 = ANDI is not connected to OR gate
bit 5	ACEN: AND Gate C Input Enable bit
	1 = MCI is connected to AND gate
L:4 4	0 = MCI is not connected to AND gate
bit 4	ACNEN: AND Gate C Input Inverted Enable bit
	1 = Inverted MCI is connected to AND gate0 = Inverted MCI is not connected to AND gate

REGISTER 26-5: CMxMSKCON: COMPARATOR x MASK GATING CONTROL REGISTER (CONTINUED)

bit 3 ABEN: AND Gate B Input Enable bit

1 = MBI is connected to AND gate

0 = MBI is not connected to AND gate

bit 1

bit 2 **ABNEN:** AND Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to AND gate 0 = Inverted MBI is not connected to AND gate

AAEN: AND Gate A Input Enable bit

1 = MAI is connected to AND gate 0 = MAI is not connected to AND gate

bit 0 AANEN: AND Gate A Input Inverted Enable bit

1 = Inverted MAI is connected to AND gate 0 = Inverted MAI is not connected to AND gate

REGISTER 26-6: CMxFLTR: COMPARATOR x FILTER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		CFSEL<2:0>		CFLTREN		CFDIV<2:0>	
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

```
bit 15-7
               Unimplemented: Read as '0'
bit 6-4
                CFSEL<2:0>: Comparator Filter Input Clock Select bits
                111 = T5CLK<sup>(1)</sup>
               110 = T4CLK(2)
               101 = T3CLK<sup>(1)</sup>
               100 = T2CLK(2)
               011 = SYNCO2
                010 = SYNCO1(3)
                001 = Fosc^{(4)}
               000 = FP^{(4)}
bit 3
               CFLTREN: Comparator Filter Enable bit
                1 = Digital filter is enabled
                0 = Digital filter is disabled
bit 2-0
               CFDIV<2:0>: Comparator Filter Clock Divide Select bits
                111 = Clock Divide 1:128
                110 = Clock Divide 1:64
               101 = Clock Divide 1:32
               100 = Clock Divide 1:16
               011 = Clock Divide 1:8
               010 = Clock Divide 1:4
                001 = Clock Divide 1:2
                000 = Clock Divide 1:1
Note 1: See the Type C Timer Block Diagram (Figure 13-2).
      2: See the Type B Timer Block Diagram (Figure 13-1).
```

3: See the PWMx Module Register Interconnect Diagram (Figure 16-2).

4: See the Oscillator System Diagram (Figure 9-1).

REGISTER 26-7: CVR1CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
_	_	_	_	CVRR1	VREFSEL	_	_
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CVREN	CVROE	CVRR0	CVRSS	CVR<3:0>			
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0'

bit 11 CVRR1: Comparator Voltage Reference Range Selection bit

See bit 5.

bit 10 VREFSEL: Voltage Reference Select bit

1 = CVREFIN = VREF+

0 = CVREFIN is generated by the resistor network

bit 9-8 **Unimplemented:** Read as '0'

bit 7 **CVREN:** Comparator Voltage Reference Enable bit

1 = Comparator voltage reference circuit is powered on0 = Comparator voltage reference circuit is powered down

bit 6 CVROE: Comparator Voltage Reference Output Enable on CVREF10 Pin bit

1 = Voltage level is output on the CVREF10 pin

0 = Voltage level is disconnected from the CVREF10 pin

bit (11)-5 CVRR<1:0>: Comparator Voltage Reference Range Selection bits

11 = 0.00 CVRSRC to 0.94, with CVRSRC/16 step-size 10 = 0.33 CVRSRC to 0.96, with CVRSRC/24 step-size 01 = 0.00 CVRSRC to 0.67, with CVRSRC/24 step-size 00 = 0.25 CVRSRC to 0.75, with CVRSRC/32 step-size

bit 4 CVRSS: Comparator Voltage Reference Source Selection bit

1 = Comparator voltage reference source, CVRSRC = CVREF+ - AVSS 0 = Comparator voltage reference source, CVRSRC = AVDD - AVSS

bit 3-0 CVR<3:0> Comparator Voltage Reference Value Selection 0 ≤ CVR<3:0> ≤ 15 bits

When CVRR<1:0> = 11:

CVREF = (CVR<3:0>/16) • (CVRSRC)

When CVRR<1:0> = 10:

CVREF = (1/3) • (CVRSRC) + (CVR<3:0>/24) • (CVRSRC)

When CVRR<1:0> = 01:

CVREF = (CVR<3:0>/24) • (CVRSRC)

When CVRR<1:0> = 00:

CVREF = (1/4) • (CVRSRC) + (CVR<3:0>/32) • (CVRSRC)

REGISTER 26-8: CVR2CON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	U-0
_	_	_	_	CVRR1	VREFSEL	_	_
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| CVREN | CVROE | CVRR0 | CVRSS | | CVR- | <3:0> | |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-12 **Unimplemented:** Read as '0'

bit 11 CVRR1: Comparator Voltage Reference Range Selection bit

See bit 5.

bit 10 VREFSEL: Voltage Reference Select bit

1 = Reference source for inverting input is from CVR2 0 = Reference source for inverting input is from CVR1

bit 9-8 **Unimplemented:** Read as '0'

bit 7 CVREN: Comparator Voltage Reference Enable bit

1 = Comparator voltage reference circuit is powered on0 = Comparator voltage reference circuit is powered down

bit 6 CVROE: Comparator Voltage Reference Output Enable on CVREF2O Pin bit

1 = Voltage level is output on the CVREF2O pin

0 = Voltage level is disconnected from the CVREF2O pin

bit (11)-5 **CVRR<1:0>:** Comparator Voltage Reference Range Selection bits

11 = 0.00 CVRSRC to 0.94, with CVRSRC/16 step-size 10 = 0.33 CVRSRC to 0.96, with CVRSRC/24 step-size 01 = 0.00 CVRSRC to 0.67, with CVRSRC/24 step-size 00 = 0.25 CVRSRC to 0.75, with CVRSRC/32 step-size

bit 4 CVRSS: Comparator Voltage Reference Source Selection bit

1 = Comparator voltage reference source, CVRSRC = CVREF+ - AVSS 0 = Comparator voltage reference source, CVRSRC = AVDD - AVSS

bit 3-0 CVR<3:0> Comparator Voltage Reference Value Selection 0 ≤ CVR<3:0> ≤ 15 bits

When CVRR<1:0> = 11:

 $CVREF = (CVR < 3:0 > /16) \bullet (CVRSRC)$

When CVRR<1:0> = 10:

 $CVREF = (1/3) \bullet (CVRSRC) + (CVR<3:0>/24) \bullet (CVRSRC)$

When CVRR<1:0> = 01:

CVREF = (CVR<3:0>/24) • (CVRSRC)

When CVRR<1:0> = 00:

CVREF = (1/4) • (CVRSRC) + (CVR<3:0>/32) • (CVRSRC)

NOTES:

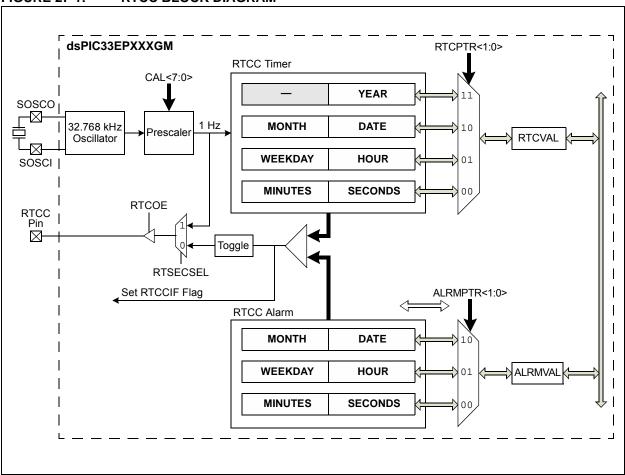
27.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Real-Time Clock and Calendar (RTCC)" (DS70584), which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter discusses the Real-Time Clock and Calendar (RTCC) module and its operation.

Some of the key features of this module are:


- · Time: Hours. Minutes and Seconds
- · 24-Hour Format (military time)
- · Calendar: Weekday, Date, Month and Year
- Alarm Configurable
- Year Range: 2000 to 2099
- · Leap Year Correction
- · BCD Format for Compact Firmware
- · Optimized for Low-Power Operation
- · User Calibration with Auto-Adjust
- · Calibration Range: ±2.64 Seconds Error per Month
- Requirements: External 32.768 kHz Clock Crystal
- · Alarm Pulse or Seconds Clock Output on RTCC Pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

FIGURE 27-1: RTCC BLOCK DIAGRAM

27.1 Writing to the RTCC Timer

Note:

To allow the RTCC module to be clocked by the secondary crystal oscillator, the Secondary Oscillator Enable (LPOSCEN) bit in the Oscillator Control (OSCCON<1>) register must be set. For further details, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Oscillator" (DS70580).

The user application can configure the time and calendar by writing the desired seconds, minutes, hours, weekday, date, month and year to the RTCC registers. Under normal operation, writes to the RTCC Timer registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To write to the RTCC register, the RTCWREN bit (RCFGCAL<13>) must be set. Setting the RTCWREN bit allows writes to the RTCC registers. Conversely, clearing the RTCWREN bit prevents writes.

To set the RTCWREN bit, the following procedure must be executed. The RTCWREN bit can be cleared at any time:

- Write 0x55 to NVMKEY.
- Write 0xAA to NVMKEY.
- Set the RTCWREN bit using a single-cycle instruction.

The RTCC module is enabled by setting the RTCEN bit (RCFGCAL<15>). To set or clear the RTCEN bit, the RTCWREN bit (RCFGCAL<13>) must be set.

If the entire clock (hours, minutes and seconds) needs to be corrected, it is recommended that the RTCC module should be disabled to avoid coincidental write operation when the timer increments. Therefore, it stops the clock from counting while writing to the RTCC Timer register.

27.2 RTCC Resources

Many useful resources related to RTCC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:

In the event you are not able to access the product page using the link above, enter this URL in your browser:

http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en554310

27.2.1 KEY RESOURCES

- "Real-Time Clock and Calendar (RTCC)" (DS70584) in the "dsPIC33E/PIC24E Family Reference Manual"
- · Code Samples
- · Application Notes
- · Software Libraries
- Webinars
- All related "dsPIC33E/PIC24E Family Reference Manual" Sections
- · Development Tools

27.3 RTCC Registers

REGISTER 27-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER(1)

R/W-0	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0
RTCEN ⁽²⁾	_	RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPTR<1:0>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CAL<7:0>								
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15

RTCEN: RTCC Enable bit⁽²⁾

1 = RTCC module is enabled
0 = RTCC module is disabled

bit 14

Unimplemented: Read as '0'

bit 13

RTCWREN: RTCC Value Registers Write Enable bit
1 = RTCVAL register can be written to by the user application
0 = RTCVAL register is locked out from being written to by the user application

RTCSYNC: RTCC Value Registers Read Synchronization bit

1 = A rollover is about to occur in 32 clock edges (approximately 1 ms)

0 = A rollover will not occur

bit 11 **HALFSEC:** Half-Second Status bit⁽³⁾

1 = Second half period of a second
0 = First half period of a second

bit 10 RTCOE: RTCC Output Enable bit 1 = RTCC output is enabled

0 = RTCC output is disabled

bit 9-8 RTCPTR<1:0>: RTCC Value Register Pointer bits

Points to the corresponding RTCC Value register when reading the RTCVAL register; the RTCPTR<1:0> value decrements on every access of the RTCVAL register until it reaches '00'.

bit 7-0 CAL<7:0>: RTCC Drift Calibration bits

01111111 = Maximum positive adjustment; adds 508 RTCC clock pulses every one minute

•

bit 12

00000001 = Minimum positive adjustment; adds four RTCC clock pulses every one minute 00000000 = No adjustment

11111111 = Minimum negative adjustment; subtracts four RTCC clock pulses every one minute

,

.

10000000 = Maximum negative adjustment; subtracts 512 RTCC clock pulses every one minute

Note 1: The RCFGCAL register is only affected by a POR.

2: A write to the RTCEN bit is only allowed when RTCWREN = 1.

3: This bit is read-only. It is cleared when the lower half of the MINSEC register is written.

REGISTER 27-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-2 **Unimplemented:** Read as '0'

bit 1 RTSECSEL: RTCC Seconds Clock Output Select bit (1)

1 = RTCC seconds clock is selected for the RTCC pin0 = RTCC alarm pulse is selected for the RTCC pin

bit 0 Not used by the RTCC module.

Note 1: To enable the actual RTCC output, the RTCOE bit (RCFGCAL<10>) must be set.

REGISTER 27-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME		AMAS	ALRMP'	TR<1:0>		
bit 15						bit 8	

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | | | ARPT | <7:0> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 ALRMEN: Alarm Enable bit

1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 0x00 and CHIME = 0)

0 = Alarm is disabled

bit 14 CHIME: Chime Enable bit

1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 0x00 to 0xFF

0 = Chime is disabled; ARPT<7:0> bits stop once they reach 0x00

bit 13-10 AMASK<3:0>: Alarm Mask Configuration bits

0000 = Every half second

0001 = Every second

0010 = Every 10 seconds

0011 = Every minute

0100 = Every 10 minutes

0101 = Every hour

0110 = Once a day

0111 = Once a week

1000 = Once a month

1001 = Once a year (except when configured for February 29th, once every 4 years)

101x = Reserved - do not use

11xx = Reserved - do not use

bit 9-8 **ALRMPTR<1:0>:** Alarm Value Register Window Pointer bits

Points to the corresponding Alarm Value registers when reading the ALRMVAL register. The ALRMPTR<1:0> value decrements on every read or write of ALRMVAL until it reaches '00'.

bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits

11111111 = Alarm will repeat 255 more times

.

.

00000000 = Alarm will not repeat

The counter decrements on any alarm event. The counter is prevented from rolling over from 0x00 to 0xFF unless CHIME = 1.

REGISTER 27-4: RTCVAL (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER(1)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
	YRTEN	l<3:0>		YRONE<3:0>				
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-8 **Unimplemented:** Read as '0'

bit 7-4 YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit bits

Contains a value from 0 to 9.

bit 3-0 YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit bits

Contains a value from 0 to 9.

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 27-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x
_	_	_	MTHTEN0		MTHON	IE<3:0>	
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	DAYTEN<1:0>		DAYONE<3:0>			
bit 7	_				_		bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit

Contains a value of 0 or 1.

bit 11-8 MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits

Contains a value from 0 to 9.

bit 7-6 **Unimplemented:** Read as '0'

bit 5-4 DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits

Contains a value from 0 to 3.

bit 3-0 DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits

Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 27-6: RTCVAL (WHEN RTCPTR<1:0> = 01): WEEKDAY AND HOURS VALUE REGISTER(1)

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
_	_	_	_	_		WDAY<2:0>	
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	_	HRTEN<1:0>		HRONE<3:0>				
bit 7							bit 0	

Legend:

bit 7-6

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-11 **Unimplemented:** Read as '0'

bit 10-8 WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits

Contains a value from 0 to 6. **Unimplemented:** Read as '0'

bit 5-4 HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits

Contains a value from 0 to 2.

bit 3-0 **HRONE<3:0>:** Binary Coded Decimal Value of Hour's Ones Digit bits

Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 27-7: RTCVAL (WHEN RTCPTR<1:0> = 00): MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_		MINTEN<2:0>		MINONE<3:0>				
bit 15							bit 8	

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_		SECTEN<2:0>		SECONE<3:0>				
bit 7							bit 0	

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **Unimplemented:** Read as '0'

bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits

Contains a value from 0 to 5.

bit 11-8 MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits

Contains a value from 0 to 9.

bit 7 **Unimplemented:** Read as '0'

bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits

Contains a value from 0 to 5.

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits

Contains a value from 0 to 9.

REGISTER 27-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER $^{(1)}$

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	_	MTHTEN0		MTHON	IE<3:0>	
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	DAYTE	N<1:0>	DAYONE<3:0>			
bit 7							bit 0

Legend:				
R = Readable bit	bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit bit
	Contains a value of 0 or 1.
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit bits
	Contains a value from 0 to 9.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit bits
	Contains a value from 0 to 3.
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 27-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER $^{(1)}$

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
_	_	_	_	_	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	_	HRTEN<1:0>		HRONE<3:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 27-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	MINTEN<2:0>			MINONE<3:0>			
bit 15							bit 8

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	SECTEN<2:0>			SECONE<3:0>			
bit 7							bit 0

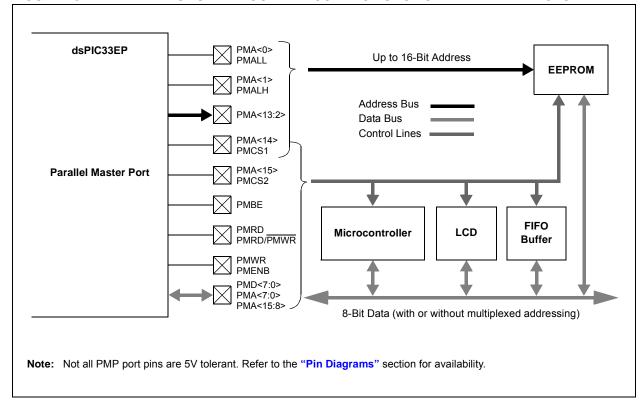
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0' bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits Contains a value from 0 to 5. bit 11-8 MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits Contains a value from 0 to 9. bit 7 Unimplemented: Read as '0' bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits Contains a value from 0 to 5. bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits Contains a value from 0 to 9.

Ν	0	Т	Ε	S	:

28.0 PARALLEL MASTER PORT (PMP)

Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Parallel Master Port (PMP)" (DS70576), which is available from the Microchip web site (www.microchip.com).


2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Key features of the PMP module include:

- · Eight Data Lines
- Up to 16 Programmable Address Lines
- · Up to 2 Chip Select Lines
- Programmable Strobe Options:
 - Individual read and write strobes, or
 - Read/Write strobe with enable strobe
- · Address Auto-Increment/Auto-Decrement
- Programmable Address/Data MultiplexingProgrammable Polarity on Control Signals
- Legacy Parallel Slave Port (PSP) Support
- Enhanced Parallel Slave Support:
- Address support
 - 4-byte deep auto-incrementing buffer
- · Programmable Wait States

FIGURE 28-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

28.1 PMP Control Registers

REGISTER 28-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER (3)

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PMPEN	_	PSIDL	ADRMU	JX<1:0>	PTBEEN	PTWREN	PTRDEN
bit 15							bit 8

R/W-0	R/W-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0
CSF-	<1:0>	ALP	CS2P	CS1P	BEP	WRSP	RDSP
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at Reset '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 **PMPEN:** Parallel Master Port Enable bit

1 = PMP module is enabled

0 = PMP module is disabled, no off-chip access is performed

bit 14 **Unimplemented:** Read as '0'

bit 13 PSIDL: PMP Stop in Idle Mode bit

1 = Discontinues module operation when device enters Idle mode

0 = Continues module operation in Idle mode

bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits

11 = Reserved

10 = All 16 bits of address are multiplexed on PMD<7:0> pins

01 = Lower eight bits of address are multiplexed on PMD<7:0> pins, upper eight bits are on PMA<15:8>

00 = Address and data appear on separate pins

bit 10 **PTBEEN:** Byte Enable Port Enable bit (16-Bit Master mode)

1 = PMBE port is enabled 0 = PMBE port is disabled

bit 9 PTWREN: Write Enable Strobe Port Enable bit

1 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled

bit 8 PTRDEN: Read/Write Strobe Port Enable bit

1 = PMRD/PMWR port is enabled 0 = PMRD/PMWR port is disabled

bit 7-6 **CSF<1:0>:** Chip Select Function bits

11 = Reserved

10 = PMCS1 and PMCS2 function as Chip Select

01 = PMCS2 functions as Chip Select, PMCS1 functions as Address Bit 14

00 = PMCS1 and PMCS2 function as Address Bits 15 and 14

bit 5 ALP: Address Latch Polarity bit⁽¹⁾

1 = Active-high (PMALL and PMALH)

0 = Active-low (PMALL and PMALH)

bit 4 CS2P: Chip Select 1 Polarity bit⁽¹⁾

1 = Active-high (PMCS2)

 $0 = Active-low (\overline{PMCS2})$

Note 1: These bits have no effect when their corresponding pins are used as address lines.

2: PMCS1 applies to Master mode and PMCS applies to Slave mode.

3: This register is not available on 44-pin devices.

REGISTER 28-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER⁽³⁾ (CONTINUED)

- bit 3 **CS1P:** Chip Select 0 Polarity bit⁽¹⁾
 - 1 = Active-high (PMCS1/PMCS)(2)
 - $0 = Active-low (\overline{PMCS1/PMCS})$
- bit 2 **BEP:** Byte Enable Polarity bit
 - 1 = Byte enable is active-high (PMBE)
 - $0 = Byte enable is active-low (\overline{PMBE})$
- bit 1 WRSP: Write Strobe Polarity bit

For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10):

- 1 = Write strobe is active-high (PMWR)
- 0 = Write strobe is active-low (PMWR)

For Master Mode 1 (PMMODE<9:8> = 11):

- 1 = Enables strobe active-high (PMENB)
- 0 = Enables strobe active-low (PMENB)
- bit 0 RDSP: Read Strobe Polarity bit

For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10):

- 1 = Read strobe is active-high (PMRD)
- 0 = Read strobe is active-low (PMRD)

For Master Mode 1 (PMMODE<9:8> = 11):

- 1 = Enables strobe active-high (PMRD/ \overline{PMWR})
- 0 = Enables strobe active-low (PMRD/PMWR)
- Note 1: These bits have no effect when their corresponding pins are used as address lines.
 - 2: PMCS1 applies to Master mode and PMCS applies to Slave mode.
 - 3: This register is not available on 44-pin devices.

REGISTER 28-2: PMMODE: PARALLEL MASTER PORT MODE REGISTER (4)

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUSY	IRQM<1:0>		INCM<1:0>		MODE16	MODE<1:0>	
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAITB<1:0>(1,2,3)		WAITM<3:0>			WAITE<1:0>(1,2,3)		
bit 7							bit 0

Legend:						
R = Readable bit	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15 **BUSY:** Busy bit (Master mode only)

1 = Port is busy

0 = Port is not busy

bit 14-13 IRQM<1:0>: Interrupt Request Mode bits

11 = Interrupt is generated when Read Buffer 3 is read or Write Buffer 3 is written (Buffered PSP mode), or on a read/write operation when PMA<1:0> = 11 (Addressable PSP mode only)

10 = Reserved

01 = Interrupt is generated at the end of the read/write cycle

00 = No Interrupt is generated

bit 12-11 **INCM<1:0>:** Increment Mode bits

11 = PSP read and write buffers auto-increment (Legacy PSP mode only)

10 = Decrement ADDR by 1 every read/write cycle

01 = Increment ADDR by 1 every read/write cycle

00 = No increment or decrement of address

bit 10 MODE16: 8/16-Bit Mode bit

1 = 16-Bit Mode: Data register is 16 bits, a read/write to the Data register invokes two 8-bit transfers

0 = 8-Bit Mode: Data register is 8 bits, a read/write to the Data register invokes one 8-bit transfer

bit 9-8 MODE<1:0>: Parallel Slave Port Mode Select bits

11 = Master Mode 1 (PMCSx, PMRD/PMWR, PMENB, PMBE, PMA<x:0> and PMD<7:0>)

10 = Master Mode 2 (PMCSx, PMRD, PMWR, PMBE, PMA<x:0> and PMD<7:0>)

01 = Enhanced PSP, control signals (PMRD, PMWR, PMCSx, PMD<7:0> and PMA<1:0>)

00 = Legacy Parallel Slave Port, control signals (PMRD, PMWR, PMCSx and PMD<7:0>)

bit 7-6 WAITB<1:0>: Data Setup to Read/Write/Address Phase Wait State Configuration bits(1,2,3)

11 = Data Wait of 4 TP (demultiplexed/multiplexed); address phase of 4 TP (multiplexed)

10 = Data Wait of 3 TP (demultiplexed/multiplexed); address phase of 3 TP (multiplexed)

01 = Data Wait of 2 TP (demultiplexed/multiplexed); address phase of 2 TP (multiplexed)

00 = Data Wait of 1 TP (demultiplexed/multiplexed); address phase of 1 TP (multiplexed)

Note 1: The applied Wait state depends on whether data and address are multiplexed or demultiplexed. See Section 4.1.8 "Wait States" in the "Parallel Master Port (PMP)" (DS70576) in the "dsPIC33E/PIC24E Family Reference Manual" for more information.

2: WAITB<1:0> and WAITE<1:0> bits are ignored whenever WAITM<3:0> = 0000.

3: TP = 1/FP.

4: This register is not available on 44-pin devices.

REGISTER 28-2: PMMODE: PARALLEL MASTER PORT MODE REGISTER⁽⁴⁾ (CONTINUED)

```
bit 5-2

WAITM<3:0>: Read to Byte Enable Strobe Wait State Configuration bits

1111 = Wait of additional 15 TP

0

0001 = Wait of additional 1 TP

0000 = No additional Wait cycles (operation forced into one TP)

bit 1-0

WAITE<1:0>: Data Hold After Strobe Wait State Configuration bits

(1,2,3)

11 = Wait of 4 TP

10 = Wait of 3 TP

01 = Wait of 2 TP

00 = Wait of 1 TP
```

- Note 1: The applied Wait state depends on whether data and address are multiplexed or demultiplexed. See Section 4.1.8 "Wait States" in the "Parallel Master Port (PMP)" (DS70576) in the "dsPIC33E/PIC24E Family Reference Manual" for more information.
 - 2: WAITB<1:0> and WAITE<1:0> bits are ignored whenever WAITM<3:0> = 0000.
 - **3:** TP = 1/FP.
 - 4: This register is not available on 44-pin devices.

REGISTER 28-3: PMADDR: PARALLEL MASTER PORT ADDRESS REGISTER (MASTER MODES ONLY)^(1,2)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CS2	CS1			ADDR	<13:8>		
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ADDR<7:0>								
bit 7 bit 0								

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at Reset '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 CS2: Chip Select 2 bit

If PMCON<7:6> = 10 or 01:

1 = Chip Select 2 is active

0 = Chip Select 2 is inactive

If PMCON<7:6> = 11 or 00:

Bit functions as ADDR<15>.

bit 14 CS1: Chip Select 1 bit

If PMCON<7:6> = 10:

1 = Chip Select 1 is active

0 = Chip Select 1 is inactive

If PMCON<7:6> = 11 or 0x:

Bit functions as ADDR<14>.

bit 13-0 ADDR<13:0>: Destination Address bits

Note 1: In Enhanced Slave mode, PMADDR functions as PMDOUT1, one of the two Data Buffer registers.

2: This register is not available on 44-pin devices.

REGISTER 28-4: PMAEN: PARALLEL MASTER PORT ADDRESS ENABLE REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PTEN7 | PTEN6 | PTEN5 | PTEN4 | PTEN3 | PTEN2 | PTEN1 | PTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at Reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15 **PTEN15:** PMCS2 Strobe Enable bit

1 = PMA15 functions as either PMA<15> or PMCS2

0 = PMA15 functions as port I/O

bit 14 PTEN14: PMCS1 Strobe Enable bit

1 = PMA14 functions as either PMA<14> or PMCS1

0 = PMA14 functions as port I/O

bit 13-2 PTEN<13:2>: PMP Address Port Enable bits

1 = PMA<13:2> function as PMP address lines

0 = PMA<13:2> function as port I/Os

bit 1-0 PTEN<1:0>: PMALH/PMALL Strobe Enable bits

1 = PMA1 and PMA0 function as either PMA<1:0> or PMALH and PMALL

0 = PMA1 and PMA0 function as port I/Os

Note 1: This register is not available on 44-pin devices.

REGISTER 28-5: PMSTAT: PARALLEL MASTER PORT STATUS REGISTER (SLAVE MODE ONLY)(1)

R-0	R/W-0, HS	U-0	U-0	R-0	R-0	R-0	R-0
IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F
bit 15							bit 8

R-1	R/W-0, HS	U-0	U-0	R-1	R-1	R-1	R-1
OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E
bit 7							bit 0

Legend: HS = Hardware Settable bit

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at Reset '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15 IBF: Input Buffer Full Status bit

1 = All writable Input Buffer registers are full

0 = Some or all of the writable Input Buffer registers are empty

bit 14 IBOV: Input Buffer Overflow Status bit

1 = A write attempt to a full Input Byte register occurred (must be cleared in software)

0 = No overflow occurred

bit 13-12 **Unimplemented:** Read as '0'

bit 11-8 **IB3F:IB0F:** Input Buffer x Status Full bit

1 = Input buffer contains data that has not been read (reading buffer will clear this bit)

0 = Input buffer does not contain any unread data

bit 7 OBE: Output Buffer Empty Status bit

1 = All readable Output Buffer registers are empty

0 = Some or all of the readable Output Buffer registers are full

bit 6 **OBUF:** Output Buffer Underflow Status bit

1 = A read occurred from an empty Output Byte register (must be cleared in software)

0 = No underflow occurred

bit 5-4 **Unimplemented:** Read as '0'

bit 3-0 **OB3E:OB0E:** Output Buffer x Status Empty bit

1 = Output buffer is empty (writing data to the buffer will clear this bit)

0 = Output buffer contains data that has not been transmitted

Note 1: This register is not available on 44-pin devices.

REGISTER 28-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	_	_	_	_	_	RTSECSEL	PMPTTL
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-2 **Unimplemented:** Read as '0' bit 1 Not used by the PMP module.

bit 0 PMPTTL: PMP Module TTL Input Buffer Select bit

1 = PMP module uses TTL input buffers

0 = PMP module uses Schmitt Trigger input buffers

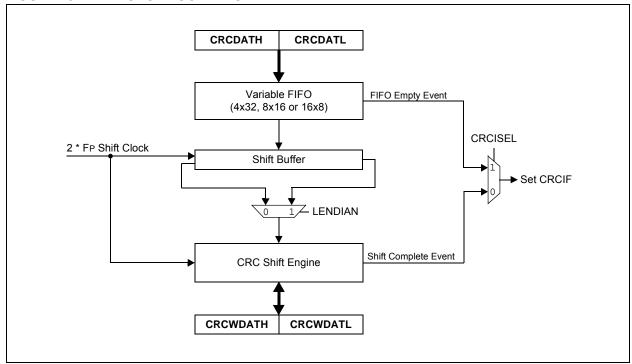
N	0	Т	= 0	٠.
IV	u		_3	Э.

29.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

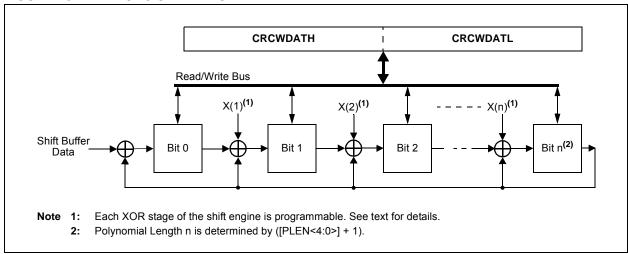
Note 1: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33E/PIC24E Family Reference Manual", "Programmable Cyclic Redundancy Check (CRC)" (DS70346), which is available from the Microchip web site (www.microchip.com).

2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The programmable CRC generator offers the following features:


- User-programmable (up to 32nd order) polynomial CRC equation
- · Interrupt output
- Data FIFO

The programmable CRC generator provides a hardware-implemented method of quickly generating checksums for various networking and security applications. It offers the following features:


- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- · Configurable interrupt output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 29-1. A simple version of the CRC shift engine is shown in Figure 29-2.

FIGURE 29-1: CRC BLOCK DIAGRAM

FIGURE 29-2: CRC SHIFT ENGINE DETAIL

29.1 Overview

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit equation and the other a 32-bit equation:

$$x16 + x12 + x5 + 1$$
 and
$$x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1$$

To program these polynomials into the CRC generator, set the register bits as shown in Table 29-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N, it is assumed that the Nth bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.

TABLE 29-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIAL

CRC Control	Bit V	Bit Values					
Bits	16-Bit Polynomial	32-Bit Polynomial					
PLEN<4:0>	01111	11111					
X<31:16>	0000 0000 0000 000x	0000 0100 1100 0001					
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x					

29.2 Programmable CRC Control Registers

REGISTER 29-1: CRCCON1: CRC CONTROL REGISTER 1

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
CRCEN	_	CSIDL			VWORD<4:0>	•	
bit 15							bit 8

R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	_	_
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15 CRCEN: CRC Enable bit

1 = CRC module is enabled

0 = CRC module is disabled; all state machines, pointers and CRCWDAT/CRCDAT are reset, other

SFRs are not reset

bit 14 Unimplemented: Read as '0'

bit 13 CSIDL: CRC Stop in Idle Mode bit

1 = Discontinues module operation when device enters Idle mode

0 = Continues module operation in Idle mode

bit 12-8 **VWORD<4:0>:** Valid Word Pointer Value bits

Indicates the number of valid words in the FIFO; has a maximum value of 8 when PLEN<4:0> > 7 or

16 when PLEN<4:0> ≤ 7

bit 7 CRCFUL: CRC FIFO Full bit

1 = FIFO is full 0 = FIFO is not full

bit 6 CRCMPT: CRC FIFO Empty Bit

1 = FIFO is empty
0 = FIFO is not empty

bit 5 CRCISEL: CRC Interrupt Selection bit

1 = Interrupt on FIFO empty; final word of data is still shifting through CRC

0 = Interrupt on shift complete and CRCWDAT results are ready

bit 4 CRCGO: CRC Start bit

1 = Start CRC serial shifter

0 = CRC serial shifter is turned off

bit 3 **LENDIAN:** Data Word Little-Endian Configuration bit

1 = Data word is shifted into the CRC starting with the LSb (little endian)

0 = Data word is shifted into the CRC starting with the MSb (big endian)

bit 2-0 **Unimplemented:** Read as '0'

REGISTER 29-2: CRCCON2: CRC CONTROL REGISTER 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			DWIDTH<4:0	>	
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	_			PLEN<4:0>		
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **DWIDTH<4:0>:** Data Width Select bits

These bits set the width of the data word (DWIDTH<4:0> + 1).

bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 **PLEN<4:0>:** Polynomial Length Select bits

These bits set the length of the polynomial (Polynomial Length = PLEN<4:0> + 1).

REGISTER 29-3: CRCXORH: CRC XOR POLYNOMIAL HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			X<31	1:24>			
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| | | | X<23 | 3:16> | | | |
| bit 7 | | | | | | | bit 0 |

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-0 X<31:16>: XOR of Polynomial Term Xⁿ Enable bits

REGISTER 29-4: CRCXORL: CRC XOR POLYNOMIAL LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
X<15:8>									
bit 15							bit 8		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				_
bit 7							bit 0

Legend:

R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 **Unimplemented:** Read as '0'

N	0	Т	= 0	٠.
IV	u		_3	Э.

30.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

dsPIC33EPXXXGM3XX/6XX/7XX devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- · Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard™ Security
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming™ (ICSP™)
- In-Circuit Emulation

30.1 Configuration Bits

In dsPIC33EPXXXGM3XX/6XX/7XX devices, the Configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored at the top of the on-chip program memory space, known as the Flash Configuration bytes. Their specific locations are shown in Table 30-1. The configuration data is automatically loaded from the Flash Configuration bytes to the proper Configuration Shadow registers during device Resets.

Note: Configuration data is reloaded on all types of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration bytes for configuration data in their code for the compiler. This is to make certain that program code is not stored in this address when the code is compiled.

The upper 2 bytes of all Flash Configuration Words in program memory should always be '1111 1111 1111 1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration bytes, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

The Configuration Flash bytes map is shown in Table 30-1.

TABLE 30-1: CONFIGURATION BYTE REGISTER MAP

File Name	Address	Device Memory Size (Kbytes)	Bits 23-8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	0157EC	128									
	02AFEC	256	l –	_	_	_	_	_	_	_	_
	0557EC	512									
Reserved	0157EE	128									
	02AFEE	256	_	_	_	_	_	_	_	_	_
	0557EE	512									
FICD	0157F0	128									
	02AFF0	256	_	Reserved ⁽²⁾	_	JTAGEN	Reserved ⁽¹⁾	Reserved ⁽²⁾	_	ICS<1:0>	
	0557F0	512									
FPOR	0157F2	128									
	02AFF2	256	_	WDTWIN<1:0>		ALTI2C2	ALTI2C1	BOREN	_	_	_
	0557F2	512									
FWDT	0157F4	128							WDTPOST<3:0>		
	02AFF4	256	_	FWDTEN	WINDIS	PLLKEN	WDTPRE				
	0557F4	512									
FOSC	0157F6	128									
	02AFF6	256	_	FCKS	√<1:0>	IOL1WAY	_	_	OSCIOFNC	POSCM	ID<1:0>
	0557F6	512									
FOSCSEL	0157F8	128									
	02AFF8	256	_	IESO	PWMLOCK	_	_	_	FNC	OSC<2:0>	
	0557F8	512									
FGS	0157FA	128									
	02AFFA	256	_	_	_	_	_	_	_	GCP	GWRP
	0557FA	512									
Reserved	0157FC	128									
	02AFFC	256	_	_	_	-	_	_	_	_	_
	0557FC	512									
Reserved	0157FE	128									
	02AFFE	256	_	_	_	_	_	_	_	_	_
	0557FE	512									

Legend: — = unimplemented, read as '1'.

Note 1: This bit is reserved and must be programmed as '0'.

2: This bit is reserved and must be programmed as '1'.

TABLE 30-2: CONFIGURATION BITS DESCRIPTION

Bit Field	Description
GCP	General Segment Code-Protect bit
	1 = User program memory is not code-protected
	0 = Code protection is enabled for the entire program memory space
GWRP	General Segment Write-Protect bit
	1 = User program memory is not write-protected
	0 = User program memory is write-protected
IESO	Two-Speed Oscillator Start-up Enable bit ⁽¹⁾
	1 = Starts up device with FRC, then automatically switches to the user-selected oscillator
	source when ready
	0 = Starts up device with user-selected oscillator source
PWMLOCK	PWM Lock Enable bit
	1 = Certain PWM registers may only be written after a key sequence
	0 = PWM registers may be written without a key sequence
FNOSC<2:0>	Oscillator Selection bits
	111 = Fast RC Oscillator with Divide-by-N (FRCDIVN)
	110 = Reserved
	101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (SOSC)
	011 = Primary Oscillator with PLL module (XT + PLL, HS + PLL, EC + PLL)
	010 = Primary Oscillator (XT, HS, EC)
	001 = Fast RC Oscillator with Divide-by-N with PLL module (FRCPLL)
	000 = Fast RC Oscillator (FRC)
FCKSM<1:0>	Clock Switching Mode bits
	1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
	01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
	00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Peripheral Pin Select Configuration bit
	1 = Allows only one reconfiguration
	0 = Allows multiple reconfigurations
OSCIOFNC	OSC2 Pin Function bit (except in XT and HS modes)
	1 = OSC2 is the clock output
	0 = OSC2 is the general purpose digital I/O pin
POSCMD<1:0>	Primary Oscillator Mode Select bits
	11 = Primary Oscillator mode is disabled
	10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode
	00 = EC (External Clock) mode
FWDTEN	Watchdog Timer Enable bit
IVIDILIN	1 = Watchdog Timer is always enabled (LPRC oscillator cannot be disabled. Clearing the
	SWDTEN bit in the RCON register will have no effect.)
	0 = Watchdog Timer is enabled/disabled by user software (LPRC can be disabled by
	clearing the SWDTEN bit in the RCON register.)
WINDIS	Watchdog Timer Window Enable bit
	1 = Watchdog Timer in Non-Window mode
	0 = Watchdog Timer in Window mode
PLLKEN	PLL Lock Enable bit
PLLKEN	PLL Lock Enable bit 1 = PLL lock is enabled

Note 1: The Two-Speed Start-up is not enabled when EC mode is used since the EC clocks will be ready immediately.

TABLE 30-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Bit Field	Description
WDTPRE	Watchdog Timer Prescaler bit
	1 = 1:128
	0 = 1:32
WDTPOST<3:0>	Watchdog Timer Postscaler bits
	1111 = 1:32,768
	1110 = 1:16,384
	•
	•
	•
	0001 = 1:2
	0000 = 1:1
WDTWIN<1:0>	Watchdog Timer Window Select bits
	11 = WDT Window is 25% of WDT Period
	10 = WDT Window is 37.5% of WDT Period
	01 = WDT Window is 50% of WDT Period
1171001	00 = WDT Window is 75% of WDT Period
ALTI2C1	Alternate I2C1 Pins bit
	1 = I2C1 is mapped to SDA1/SCL1 pins
	0 = I2C1 is mapped to ASDA1/ASCL1 pins
ALTI2C2	Alternate I2C2 Pins bit
	1 = I2C2 is mapped to SDA2/SCL2 pins
	0 = I2C2 is mapped to ASDA2/ASCL2 pins
BOREN	Brown-out Reset (BOR) Detection Enable bit
	1 = BOR is enabled
	0 = BOR is disabled
JTAGEN	JTAG Enable bit
	1 = JTAG is enabled
	0 = JTAG is disabled
ICS<1:0>	ICD Communication Channel Select bits
	11 = Communicates on PGEC1 and PGED1
	10 = Communicates on PGEC2 and PGED2
	01 = Communicates on PGEC3 and PGED3
	00 = Reserved, do not use

Note 1: The Two-Speed Start-up is not enabled when EC mode is used since the EC clocks will be ready immediately.

REGISTER 30-1: DEVID: DEVICE ID REGISTER

R	R	R	R	R	R	R	R
			DEVID<	23:16> ⁽¹⁾			
bit 23				_			bit 16

R	R	R	R	R	R	R	R
			DEVID<	:15:8> ⁽¹⁾			
bit 15							bit 8

R	R	R	R	R	R	R	R
			DEVID:	<7:0> ⁽¹⁾			
bit 7							bit 0

Legend: R = Read-Only bit U = Unimplemented bit

bit 23-0 **DEVID<23:0>:** Device Identifier bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for the list of device ID values.

REGISTER 30-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R	
			DEVREV-	<23:16> ⁽¹⁾				
bit 23 bit								

R	R	R	R	R	R	R	R
			DEVREV	<15:8> ⁽¹⁾			
bit 15							

R	R	R	R	R	R	R	R
			DEVRE\	/<7:0> ⁽¹⁾			
bit 7							

Legend: R = Read-only bit U = Unimplemented bit

bit 23-0 **DEVREV<23:0>:** Device Revision bits⁽¹⁾

Note 1: Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for the list of device revision values.

30.2 User ID Words

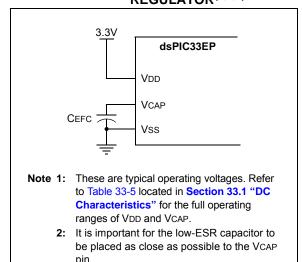
dsPIC33EPXXXGM3XX/6XX/7XX devices contain four User ID Words, located at addresses, 0x800FF8 through 0x800FFE. The User ID Words can be used for storing product information, such as serial numbers, system manufacturing dates, manufacturing lot numbers and other application-specific information.

The User ID Words register map is shown in Table 30-3.

TABLE 30-3: USER ID WORDS REGISTER MAP

File Name	Address	Bits<23:16>	Bits<15:0>
FUID0	0x800FF8	_	UID0
FUID1	0x800FFA	_	UID1
FUID2	0x800FFC	_	UID2
FUID3	0x800FFE	_	UID3

Legend: — = unimplemented, read as '1'.


30.3 On-Chip Voltage Regulator

All of the dsPIC33EPXXXGM3XX/6XX/7XX devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33EPXXXGM3XX/6XX/7XX family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohm) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 30-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 33-5, located in Section 33.0 "Electrical Characteristics".

Note: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin.

FIGURE 30-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

3: Typical VCAP pin voltage = 1.8V when VDD ≥ VDDMIN

30.4 Brown-out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage, VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the Power-up Timer (PWRT) Time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to Parameter SY35 in Table 33-21 of Section 33.0 "Electrical Characteristics" for specific TFSCM values.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle mode and resets the device should VDD fall below the BOR threshold voltage.

30.5 Watchdog Timer (WDT)

For dsPIC33EPXXXGM3XX/6XX/7XX devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

30.5.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5 (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a WDT time-out period (TWDT), as shown in Parameter SY12 in Table 33-21.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSCx bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

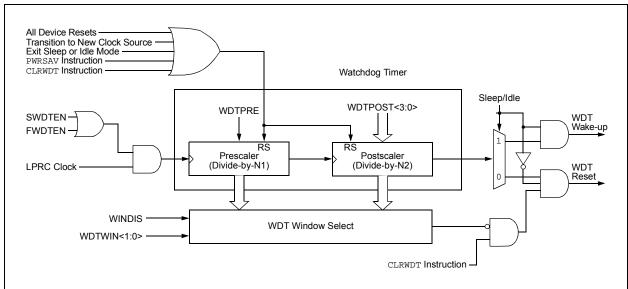
Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

30.5.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3,2>) needs to be cleared in software after the device wakes up.

30.5.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.


The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

30.5.4 WDT WINDOW

The Watchdog Timer has an optional Windowed mode enabled by programming the WINDIS bit in the WDT Configuration register (FWDT<6>). In the Windowed mode (WINDIS = 0), the WDT should be cleared based on the settings in the programmable Watchdog Timer Window select bits (WDTWIN<1:0>).

FIGURE 30-2: WDT BLOCK DIAGRAM

30.6 JTAG Interface

dsPIC33EPXXXGM3XX/6XX/7XX devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note:

Refer to the "dsPIC33E/PIC24E Family Reference Manual", "Programming and Diagnostics" (DS70608) for further information on usage, configuration and operation of the JTAG interface.

30.7 In-Circuit Serial Programming

The dsPIC33EPXXXGM3XX/6XX/7XX devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data, and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the device just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the "dsPIC33E/PIC24E Flash Programming Specification for Devices with Volatile Configuration Bits" (DS70663) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGFC1 and PGFD1
- · PGEC2 and PGED2
- · PGEC3 and PGED3

30.8 In-Circuit Debugger

When MPLAB® ICD 3 or REAL ICE™ is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- · PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, Vss and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins (PGECx and PGEDx).

30.9 Code Protection and CodeGuard™ Security

The dsPIC33EPXXXGM3XX/6XX/7XX devices offer basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property.

Note: Refer to the "dsPIC33E/PIC24E Family Reference Manual", "CodeGuard™ Security" (DS70634) for further information on usage, configuration and operation of CodeGuard Security.

31.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EPXXXGM3XX/6XX/7XX family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- Literal operations
- · DSP operations
- Control operations

Table 31-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 31-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- · The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the Program Counter is changed as a result of the instruction, or a PSV or table read is performed. In these cases, the execution takes multiple instruction cycles

with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the "16-bit MCU and DSC Programmer's Reference Manual" (DS70157).

TABLE 31-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
a ∈ {b, c, d}	a is selected from the set of values b, c, d
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal $\in \{0255\}$ for Byte mode, $\{0:1023\}$ for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor Working register pair (direct addressing)

TABLE 31-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Field	Description
Wm*Wm	Multiplicand and Multiplier Working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier Working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 Working registers ∈ {W0W15}
Wnd	One of 16 Destination Working registers ∈ {W0W15}
Wns	One of 16 Source Working registers ∈ {W0W15}
WREG	W0 (Working register used in File register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
Wy	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

TABLE 31-2: INSTRUCTION SET OVERVIEW

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,S B
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,S B
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f.AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb, Wns, Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (4)	None
		BRA	GE,Expr	Branch if greater than or equal	1	1 (4)	None
		BRA	GEU,Expr	Branch if unsigned greater than or equal	1	1 (4)	None
		BRA	GT,Expr	Branch if greater than	1	1 (4)	None
		BRA	GTU,Expr	Branch if unsigned greater than	1	1 (4)	None
		BRA	LE,Expr	Branch if less than or equal	1	1 (4)	None
		BRA	LEU,Expr	Branch if unsigned less than or equal	1	1 (4)	None
		BRA	LT,Expr	Branch if less than	1	1 (4)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (4)	None
		BRA	N,Expr	Branch if Negative	1	1 (4)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (4)	None
		BRA	NN,Expr	Branch if Not Negative	1	1 (4)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (4)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (4)	None
		BRA	OA,Expr	Branch if Accumulator A overflow	1	1 (4)	None
		BRA	OB,Expr	Branch if Accumulator B overflow	1	1 (4)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (4)	None
		BRA	SA,Expr	Branch if Accumulator A saturated	1	1 (4)	None
		BRA	SB,Expr	Branch if Accumulator B saturated	1	1 (4)	None
		BRA	Expr	Branch Unconditionally	1	4	None
		BRA	Z,Expr	Branch if Zero	1	1 (4)	None
		BRA	Wn	Computed Branch	1	4	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc, Wx, Wxd, Wy, Wyd, AWB	Clear Accumulator	1	1	OA,OB,SA,S B
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	$f = \overline{f}$	1	1	N,Z
		COM	f,WREG	WREG = \overline{f}	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
	CPBNE	CPBNE	Wb,Wn,Expr	Compare Wb with Wn, branch if ≠	1	1 (5)	None

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit15,Expr	Do code to PC + Expr, lit15 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns, Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws, Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws, Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws, Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	4	None
		GOTO	Wn	Go to indirect	1	4	None
		GOTO.L	Wn	Go to indirect (long address)	1	4	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb, Wns, Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws, Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAGW	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAGW	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None
		MOVPAGW	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
48	MOVSAC	MOVSAC	Acc, Wx, Wxd, Wy, Wyd, AWB	Prefetch and store accumulator	1	1	None
49	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
50	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
51	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd,AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
52	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb,#lit5,Acc	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb, Ws, Acc	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
		MULW.SS	Wb, Ws, Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
		MULW.SU	Wb, Ws, Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
		MULW.US	Wb, Ws, Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU	Wb, Ws, Wnd	Wnd = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
53	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \bar{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
54	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
55	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
56	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
57	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
58	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
59	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
60	RESET	RESET		Software device Reset	1	1	None
61	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA
62	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA
63	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
64	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
65	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
66	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
67	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
68	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
69	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
70	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
71	SFTAC	SFTAC	Acc, Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

TABLE 31-2: INSTRUCTION SET OVERVIEW (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
72	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb, Wns, Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
73	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
74	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb, Ws, Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
75	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws - Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
76	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
77	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
78	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
79	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
80	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
81	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
82	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
83	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
84	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

		_	_^
N	. 1		- ~ .

32.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers (MCU) and dsPIC[®] digital signal controllers (DSC) are supported with a full range of software and hardware development tools:

- · Integrated Development Environment
 - MPLAB® X IDE Software
- · Compilers/Assemblers/Linkers
 - MPLAB XC Compiler
 - MPASMTM Assembler
 - MPLINK™ Object Linker/ MPLIB™ Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB X SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- · In-Circuit Debuggers/Programmers
 - MPLAB ICD 3
 - PICkit™ 3
- · Device Programmers
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits and Starter Kits
- · Third-party development tools

32.1 MPLAB X Integrated Development Environment Software

The MPLAB X IDE is a single, unified graphical user interface for Microchip and third-party software, and hardware development tool that runs on Windows[®], Linux and Mac OS[®] X. Based on the NetBeans IDE, MPLAB X IDE is an entirely new IDE with a host of free software components and plug-ins for high-performance application development and debugging. Moving between tools and upgrading from software simulators to hardware debugging and programming tools is simple with the seamless user interface.

With complete project management, visual call graphs, a configurable watch window and a feature-rich editor that includes code completion and context menus, MPLAB X IDE is flexible and friendly enough for new users. With the ability to support multiple tools on multiple projects with simultaneous debugging, MPLAB X IDE is also suitable for the needs of experienced users.

Feature-Rich Editor:

- Color syntax highlighting
- Smart code completion makes suggestions and provides hints as you type
- Automatic code formatting based on user-defined rules
- · Live parsing

User-Friendly, Customizable Interface:

- Fully customizable interface: toolbars, toolbar buttons, windows, window placement, etc.
- · Call graph window

Project-Based Workspaces:

- · Multiple projects
- · Multiple tools
- · Multiple configurations
- · Simultaneous debugging sessions

File History and Bug Tracking:

- · Local file history feature
- · Built-in support for Bugzilla issue tracker

32.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16 and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB X IDE compatibility

32.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel® standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB X IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

32.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

32.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB X IDE compatibility

32.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

32.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

32.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

32.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a full-speed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming™ (ICSP™).

32.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

32.11 Demonstration/Development Boards, Evaluation Kits and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELoQ® security ICs, CAN, IrDA®, PowerSmart battery management, SEEVAL® evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

32.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

33.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGM3XX/6XX/7XX electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EPXXXGM3XX/6XX/7XX family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings

(See Note 1)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD $\geq 3.0V^{(3)}$	0.3V to +5.5V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	0.3V to +3.6V
Voltage on VCAP with respect to Vss	1.62V to 1.98V
Maximum current out of Vss pin	350 mA
Maximum current into VDD pin ⁽²⁾	350 mA
Maximum current sunk by any I/O pin	20 mA
Maximum current sourced by I/O pin	18 mA
Maximum current sourced/sunk by all ports ^(2,4)	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 33-2).
 - 3: See the "Pin Diagrams" section for the 5V tolerant pins.
 - **4:** Exceptions are: RA3, RA4, RA7, RA9, RA10, RB7-RB15, RC3, RC15, RD1-RD4, which are able to sink 30 mA and source 20 mA.

33.1 DC Characteristics

TABLE 33-1: OPERATING MIPS vs. VOLTAGE

Characteristic	VDD Range	Temperature Range	Maximum MIPS		
Characteristic	(in Volts)	(in °C)	dsPIC33EPXXXGM3XX/6XX/7XX		
I-Temp	3.0V to 3.6V ⁽¹⁾	-40°C to +85°C	70		
E-Temp	3.0V to 3.6V ⁽¹⁾	-40°C to +125°C	60		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

TABLE 33-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min.	Тур.	Max.	Unit
Industrial Temperature Devices:					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	_	+85	°C
Extended Temperature Devices:					
Operating Junction Temperature Range	TJ	-40	_	+140	°C
Operating Ambient Temperature Range	TA	-40	_	+125	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD \ x \ (IDD - \Sigma \ IOH)$ I/O Pin Power Dissipation:	PD PINT + PI/O			W	
I/O = Σ ({VDD - VOH} x IOH) + Σ (VOL x IOL)					
Maximum Allowed Power Dissipation	PDMAX	(ΓJ − TA)/θJ	IA	W

TABLE 33-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур.	Max.	Unit	Notes
Package Thermal Resistance, 124-Pin TLA	θЈА		_	°C/W	1
Package Thermal Resistance, 121-Pin BGA	θЈА	40	_	°C/W	1
Package Thermal Resistance, 100-Pin TQFP 12x12 mm	θЈА	43	_	°C/W	1
Package Thermal Resistance, 100-Pin TQFP 14x14 mm	θЈА		_	°C/W	1
Package Thermal Resistance, 64-Pin QFN	θЈА	28.0	_	°C/W	1
Package Thermal Resistance, 64-Pin TQFP 10x10 mm	θЈА	48.3	_	°C/W	1
Package Thermal Resistance, 44-Pin QFN	θЈА	29.0	_	°C/W	1
Package Thermal Resistance, 44-Pin TQFP 10x10 mm	θЈА	49.8	_	°C/W	1
Package Thermal Resistance, 44-Pin VTLA 6x6 mm	θЈА	25.2	_	°C/W	1
Package Thermal Resistance, 36-Pin VTLA 5x5 mm	θЈА	28.5	_	°C/W	1
Package Thermal Resistance, 28-Pin QFN-S	θЈА	30.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SSOP	θЈА	71.0	_	°C/W	1
Package Thermal Resistance, 28-Pin SOIC	θЈА	69.7	_	°C/W	1
Package Thermal Resistance, 28-Pin SPDIP	θЈА	60.0	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 33-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS		Standard Operating Conditions (see Note 3): 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol Characteristic			Typ. ⁽¹⁾	Max.	Units	Conditions
Operati	ng Voltag	e					
DC10	VDD	Supply Voltage ⁽³⁾	3.0	_	3.6	V	
DC12	VDR	RAM Data Retention Voltage ⁽²⁾	1.95	_		V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	_	_	Vss	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.03	_	_	V/ms	0V-3.0V in 3 ms
DC18	VCORE	VDD Core ⁽³⁾ Internal Regulator Voltage	1.62	1.8	1.98	V	Voltage is dependent on load, temperature and VDD

- Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.
 - 2: This is the limit to which VDD may be lowered without losing RAM data.
 - **3:** Device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but not characterized. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

TABLE 33-5: FILTER CAPACITOR (CEFC) SPECIFICATIONS

				Standard Operating Conditions (unless otherwise stated): Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended			
Param No.	Symbol	Characteristics	Min. Typ. Max. Units Comments				
	CEFC	External Filter Capacitor Value ⁽¹⁾	4.7	10		μF	Capacitor must have a low series resistance (<1 ohm)

Note 1: Typical VCAP voltage = 1.8 volts when VDD \geq VDDMIN.

TABLE 33-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param.	Typ. ⁽²⁾	Max.	Units	nits Conditions				
Operating Cur	rrent (IDD) ⁽¹⁾							
DC20d	6.0	18.0	mA	-40°C				
DC20a	6.0	18.0	mA	+25°C	3.3V	10 MIPS		
DC20b	6.0	18.0	mA	+85°C	3.3V	10 WIFS		
DC20c	6.0	18.0	mA	+125°C				
DC21d	11.0	20.0	mA	-40°C				
DC21a	11.0	20.0	mA	+25°C	2 2 1	20 MIPS		
DC21b	11.0	20.0	mA	+85°C	3.3V	20 WIPS		
DC21c	11.0	20.0	mA	+125°C				
DC22d	17.0	30.0	mA	-40°C				
DC22a	17.0	30.0	mA	+25°C	3.3V	40 MIPS		
DC22b	17.0	30.0	mA	+85°C	3.3V	40 WIPS		
DC22c	17.0	30.0	mA	+125°C				
DC23d	25.0	50.0	mA	-40°C				
DC23a	25.0	50.0	mA	+25°C	3.3V	60 MIPS		
DC23b	25.0	50.0	mA	+85°C	3.3V	60 IVIIPS		
DC23c	25.0	50.0	mA	+125°C				
DC24d	30.0	60.0	mA	-40°C				
DC24a	30.0	60.0	mA	+25°C	3.3V	70 MIPS		
DC24b	30.0	60.0	mA	+85°C				

- Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:
 - Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
 - CLKO is configured as an I/O input pin in the Configuration Word
 - · All I/O pins are configured as outputs and driving low
 - MCLR = VDD, WDT and FSCM are disabled
 - CPU, SRAM, program memory and data memory are operational
 - No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
 - CPU executing
 while(1)
 {
 NOP();
 }
 - · JTAG is disabled
 - 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

TABLE 33-7: DC CHARACTERISTICS: IDLE CURRENT (IDLE)

DC CHARACTI	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended							
Parameter No.	Typ. ⁽²⁾	Max.	Units	Conditions						
Idle Current (III	DLE) ⁽¹⁾									
DC40d	1.5	8.0	mA	-40°C						
DC40a	1.5	8.0	mA	+25°C	3.3V	10 MIPS				
DC40b	1.5	8.0	mA	+85°C	3.5 V	10 WIFS				
DC40c	1.5	8.0	mA	+125°C						
DC41d	2.0	12.0	mA	-40°C						
DC41a	2.0	12.0	mA	+25°C	3.3V	20 MIPS				
DC41b	2.0	12.0	mA	+85°C	3.5 V	20 WIF 3				
DC41c	2.0	12.0	mA	+125°C						
DC42d	5.5	15.0	mA	-40°C						
DC42a	5.5	15.0	mA	+25°C	3.3V	40 MIPS				
DC42b	5.5	15.0	mA	+85°C	3.5 V	40 101173				
DC42c	5.5	15.0	mA	+125°C						
DC43d	9.0	20.0	mA	-40°C						
DC43a	9.0	20.0	mA	+25°C	3.3V	60 MIPS				
DC43b	9.0	20.0	mA	+85°C	3.3 v	UU WIIF 3				
DC43c	9.0	20.0	mA	+125°C						
DC44d	10.0	25.0	mA	-40°C						
DC44a	10.0	25.0	mA	+25°C	3.3V	70 MIPS				
DC44b	10.0	25.0	mA	+85°C						

Note 1: Base Idle current (IIDLE) is measured as follows:

- CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
- The NVMSIDL bit (NVMCON<12>) = 1 (i.e., Flash regulator is set to standby while the device is in Idle mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- · JTAG is disabled
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise specified.

TABLE 33-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		(unless oth	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended						
Parameter No.	Typ. ⁽²⁾	Max.	Units	Conditions						
Power-Down Current (IPD) ⁽¹⁾										
DC60d	35	100	μΑ	-40°C		Base Power-Down Current				
DC60c	40	200	μΑ	+25°C	3.3V					
DC60b	250	500	μΑ	+85°C	3.34	base Fower-Down Current				
DC60c	1000	2500	μΑ	+125°C						
DC61d	8	10	μΑ	-40°C						
DC61c	10	15	μΑ	+25°C	3.3V	Watchdog Timer Current: ∆IwDT ⁽³⁾				
DC61b	12	20	μΑ	+85°C	3.34	Watchdog Timer Current. Alwards				
DC61c	13	25	μΑ	+125°C						

Note 1: IPD (Sleep) current is measured as follows:

- CPU core is off, oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
- · CLKO is configured as an I/O input pin in the Configuration Word
- · All I/O pins are configured as outputs and driving low
- MCLR = VDD, WDT and FSCM are disabled
- All peripheral modules are disabled (PMDx bits are all ones)
- The VREGS bit (RCON<8>) = 0 (i.e., core regulator is set to standby while the device is in Sleep mode)
- The VREGSF bit (RCON<11>) = 0 (i.e., Flash regulator is set to standby while the device is in Sleep mode)
- · JTAG is disabled
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise specified.
- 3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

TABLE 33-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTER	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended							
Parameter No.	Doze Ratio	Units		Conditions				
Doze Current (IDOZE) ⁽¹⁾								
DC73a	20	53	1:2	mA	-40°C	3.3V	70 MIPS	
DC73g	8	30	1:128	mA	-40 C			
DC70a	19	53	1:2	mA	+25°C	3.3V	60 MIPS	
DC70g	8	30	1:128	mA	+25 C	3.34		
DC71a	20	53	1:2	mA	+85°C	3.3V	60 MIDS	
DC71g	10	30	1:128	mA	+65 C	3.37	60 MIPS	
DC72a	25	42	1:2	mA	+125°C	3.3V	EO MIDO	
DC72g	12	30	1:128	mA	+125 C	3.3V	50 MIPS	

- Note 1: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:
 - Oscillator is configured in EC mode and external clock is active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)
 - · CLKO is configured as an I/O input pin in the Configuration Word
 - · All I/O pins are configured as outputs and driving low
 - MCLR = VDD, WDT and FSCM are disabled
 - CPU, SRAM, program memory and data memory are operational
 - No peripheral modules are operating or being clocked (defined PMDx bits are all ones)
 - CPU executing
 while(1)
 {
 NOP();
 }
 - JTAG is disabled
 - 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise specified.

TABLE 33-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended						
Param No.	Symbol	Characteristic	Min.	Min. Typ. Max. Units Cor					
	VIL	Input Low Voltage							
DI10		Any I/O Pin and MCLR	Vss	_	0.2 VDD	V			
DI18		I/O Pins with SDAx, SCLx	Vss	_	0.3 VDD	V	SMBus disabled		
DI19		I/O Pins with SDAx, SCLx	Vss		0.8	V	SMBus enabled		
	VIH	Input High Voltage							
DI20		I/O Pins Not 5V Tolerant	0.8 VDD	_	VDD	V	(Note 3)		
		I/O Pins 5V Tolerant and MCLR	0.8 VDD	_	5.5	V	(Note 3)		
		I/O Pins with SDAx, SCLx	0.8 VDD	_	5.5	V	SMBus disabled		
		I/O Pins with SDAx, SCLx	2.1		5.5	V	SMBus enabled		
	ICNPU	Change Notification Pull-up Current							
DI30			150	250	550	μΑ	VDD = 3.3V, VPIN = VSS		
	ICNPD	Change Notification Pull-Down Current ⁽⁴⁾							
DI31			20	50	100	μΑ	VDD = 3.3V, VPIN = VDD		

- Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
 - 2: Negative current is defined as current sourced by the pin.
 - 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
 - **4:** VIL source < (VSS 0.3). Characterized but not tested.
 - 5: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
 - 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
 - 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
 - **8:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

Standard Operating Conditions: 3.0V to 3.6V

TABLE 33-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

DC CH	DC CHARACTERISTICS		(unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended					
Param No.	Symbol	Characteristic	Min.	Min. Typ. Max. Ur		Units	Conditions	
	lıL	Input Leakage Current ^(1,2)						
DI50		I/O Pins 5V Tolerant ⁽³⁾	-1	_	+1	μА	Vss ≤ VPIN ≤ 5V, Pin at high-impedance	
DI51		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μΑ	$Vss \leq VPIN \leq VDD, \\ Pin at high-impedance, \\ -40^{\circ}C \leq TA \leq +85^{\circ}C$	
DI51a		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μΑ	Analog pins shared with external reference pins, -40°C ≤ TA ≤ +85°C	
DI51b		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μΑ	$Vss \leq VPIN \leq VDD, \\ Pin at high-impedance, \\ -40^{\circ}C \leq TA \leq +125^{\circ}C$	
DI51c		I/O Pins Not 5V Tolerant ⁽³⁾	-1	_	+1	μΑ	Analog pins shared with external reference pins, -40°C ≤ TA ≤ +125°C	
DI55		MCLR	-5	_	+5	μΑ	$Vss \leq Vpin \leq Vdd$	
DI56		OSC1	-5	_	+5	μΑ	VSS ≤ VPIN ≤ VDD, XT and HS modes	

- Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
 - 2: Negative current is defined as current sourced by the pin.
 - 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
 - 4: VIL source < (Vss 0.3). Characterized but not tested.
 - 5: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
 - 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
 - 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
 - 8: Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 33-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic	Min. Typ. Max. Units Conditions					
DI60a	licl	Input Low Injection Current	0	_	₋₅ (4,7)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP and RB7	
DI60b	lich	Input High Injection Current	0	-	+5(5,6,7)	mA	All pins except VDD, VSS, AVDD, AVSS, MCLR, VCAP, RB7 and all 5V tolerant pins ⁽⁶⁾	
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁸⁾	_	+20(8)	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \Sigma$ IICT	

- Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
 - 2: Negative current is defined as current sourced by the pin.
 - 3: See the "Pin Diagrams" section for the 5V tolerant I/O pins.
 - 4: VIL source < (Vss 0.3). Characterized but not tested.
 - 5: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
 - 6: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
 - 7: Non-zero injection currents can affect the ADC results by approximately 4-6 counts.
 - **8:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

TABLE 33-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHA	DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param.	Symbol	Characteristic	Min. Typ. Max. Units Conditions						
DO10 Vol		Output Low Voltage 4x Sink Driver Pins ⁽¹⁾	_	_	0.4	V	$\begin{aligned} &V_{DD} = 3.3V, \\ &I_{OL} \le 6 \text{ mA, } -40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C} \\ &I_{OL} \le 5 \text{ mA, } +85^{\circ}\text{C} < \text{Ta} \le +125^{\circ}\text{C} \end{aligned}$		
		Output Low Voltage 8x Sink Driver Pins ⁽²⁾		_	0.4	V	$\begin{split} V_{DD} &= 3.3 V, \\ I_{OL} &\leq 12 \text{ mA, } -40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C} \\ I_{OL} &\leq 8 \text{ mA, } +85^{\circ}\text{C} < \text{TA} \leq +125^{\circ}\text{C} \end{split}$		
DO20	Vон	Output High Voltage 4x Source Driver Pins ⁽¹⁾	2.4	_	_	V	IOH ≥ -10 mA, VDD = 3.3V		
		Output High Voltage 8x Source Driver Pins ⁽²⁾	2.4	_	_	V	IOH ≥ -15 mA, VDD = 3.3V		
DO20A	Vон1	Output High Voltage 4x Source Driver Pins ⁽¹⁾	1.5	_	_	V	IOH ≥ -14 mA, VDD = 3.3V		
		4x Source Driver Pinser	2.0	_	_	-	IOH ≥ -12 mA, VDD = 3.3V		
			3.0	_	_		IOH ≥ -7 mA, VDD = 3.3V		
		Output High Voltage	1.5	_	_	V	IOH ≥ -22 mA, VDD = 3.3V		
		8x Source Driver Pins ⁽²⁾	2.0	_	_		IOH ≥ -18 mA, VDD = 3.3V		
			3.0	_	_		IOH ≥ -10 mA, VDD = 3.3V		

Note 1: Includes all I/O pins that are not 8x Sink Driver pins (see below).

2: Includes the following pins:

For 44-pin devices: RA3, RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1 and RC<9:3>

For 64-pin devices: RA4, RA7, RA<10:9>, RB7, RB<15:9>, RC1, RC<9:3>, RC15 and RG<8:7>

For 100-pin devices: RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1, RC<9:3>, RC15, RD<3:1> and RG<8:6>

TABLE 33-12: ELECTRICAL CHARACTERISTICS: BOR

DC CHAR	DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended				
Param No.	Symbol	Characteristic	Min. ⁽¹	Тур.	Max.	Units	Conditions	
BO10	VBOR	BOR Event on VDD Transition High-to-Low	2.7	_	2.95	V	VDD (Note 2, Note 3)	
PO10	VPOR	POR Event on VDD Transition High-to-Low	1.75		1.95	V	(Note 2)	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

2: The VBOR specification is relative to VDD.

3: The device is functional at VBORMIN < VDD < VDDMIN. Analog modules: ADC, op amp/comparator and comparator voltage reference will have degraded performance. Device functionality is tested but not characterized.

TABLE 33-13: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS			Standard Operating Conditions: VBOR (min)V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
		Program Flash Memory						
D130	EР	Cell Endurance	10,000		_	E/W	-40°C to +125°C	
D131	VPR	VDD for Read	VBOR (min)	_	3.6	V		
D132b	VPEW	VDD for Self-Timed Write	3.0	_	3.6	V		
D134	TRETD	Characteristic Retention	20	_	_	Year	Provided no other specifications are violated, -40°C to +125°C	
D135	IDDP	Supply Current During Programming	_	10	_	mA		
D138a	Tww	Word Write Cycle Time	46.5	46.9	47.4	μs	Tww = 346 FRC cycles, TA = +85°C (Note 2)	
D138b	Tww	Word Write Cycle Time	46.0	_	47.9	μs	Tww = 346 FRC cycles, TA = +125°C (Note 2)	
D136a	TPE	Row Write Time	0.667	0.673	0.680	ms	TRW = 4965 FRC cycles, TA = +85°C (Note 2)	
D136b	TPE	Row Write Time	0.660	_	0.687	ms	TRW = 4965 FRC cycles, TA = +125°C (Note 2)	
D137a	TPE	Page Erase Time	19.6	20	20.1	ms	TPE = 146893 FRC cycles, TA = +85°C (Note 2)	
D137b	TPE	Page Erase Time	19.5	_	20.3	ms	TPE = 146893 FRC cycles, TA = +125°C (Note 2)	

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

^{2:} Other conditions: FRC = 7.3728 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 33-19) and the value of the FRC Oscillator Tuning register.

33.2 AC Characteristics and Timing Parameters

This section defines the dsPIC33EPXXXGM3XX/6XX/7XX AC characteristics and timing parameters.

TABLE 33-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V						
	(unless otherwise stated)						
AC CHARACTERISTICS	Operating temperature -40°C ≤ TA ≤ +85°C for Industrial						
AG GIIMITAGI EMBIRGO	-40°C ≤ TA ≤ +125°C for Extended						
	Operating voltage VDD range as described in Section 33.1 "DC						
	Characteristics".						

FIGURE 33-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

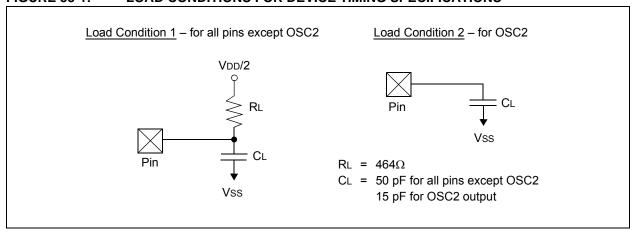
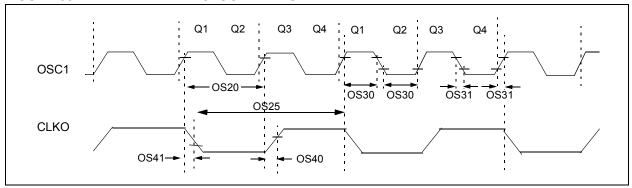



TABLE 33-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
DO50	Cosco	OSC2 Pin	_	_	15	pF	In XT and HS modes, when external clock is used to drive OSC1
DO56	Сю	All I/O Pins and OSC2	_	_	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

FIGURE 33-2: EXTERNAL CLOCK TIMING

TABLE 33-16: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended						
Param No.	Symb	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions			
OS10 FIN		External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	60	MHz	EC			
		Oscillator Crystal Frequency	3.5 10 32.4	 32.768	10 40 33.1	MHz MHz kHz	XT HS SOSC			
OS20	Tosc	Tosc = 1/Fosc	8.33	_	DC	ns	TA = +125°C			
		Tosc = 1/Fosc	7.14	_	DC	ns	TA = +85°C			
OS25	Tcy	Instruction Cycle Time ⁽²⁾	16.67	_	DC	ns	TA = +125°C			
			14.28	_	DC	ns	TA = +85°C			
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	_	0.625 x Tosc	ns	EC			
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	_	_	20	ns	EC			
OS40	TckR	CLKO Rise Time ⁽³⁾	_	5.2	_	ns				
OS41	TckF	CLKO Fall Time ⁽³⁾	_	5.2	_	ns				
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	_	12	_	mA/V	HS, V _{DD} = 3.3V, T _A = +25°C			
			_	6	_	mA/V	XT, VDD = 3.3V, TA = +25°C			

- **Note 1:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.
 - 2: Instruction cycle period (TcY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Minimum" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Maximum" cycle time limit is "DC" (no clock) for all devices.
 - 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
 - **4:** This parameter is characterized, but not tested in manufacturing.

TABLE 33-17: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions	
OS50	FPLLI	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8	_	8.0	MHz	ECPLL, XTPLL modes	
OS51	Fsys	On-Chip VCO System Frequency	120	_	340	MHz		
OS52	TLOCK	PLL Start-up Time (Lock Time)	0.9	1.5	3.1	ms		
OS53	DCLK	CLKO Stability (Jitter) ⁽²⁾	-3	0.5	3	%		

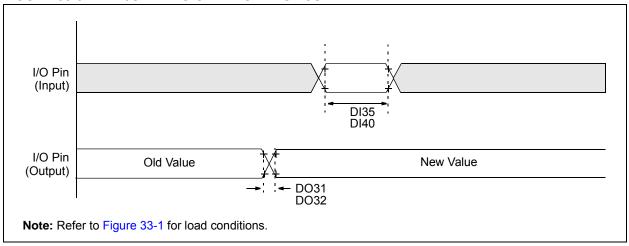
- **Note 1:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
 - 2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

$$Effective \ Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Time \ Base \ or \ Communication \ Clock}}}$$

For example, if Fosc = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}}$$
 = $\frac{DCLK}{\sqrt{12}}$ = $\frac{DCLK}{3.464}$

TABLE 33-18: INTERNAL FRC ACCURACY


.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	IABLE 00 10. INTERNAL THE ACCORDA									
AC CHA	RACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended								
Param No.	Characteristic	Min.	Тур.	Max.	Units	Jnits Conditions				
Internal	FRC Accuracy @ FRC Fre	equency	= 7.3728	MHz ⁽¹⁾						
F20a	FRC	-1.5	0.5	+1.5	%	$-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ VDD = 3.0-3.6V				
F20b	F20b FRC		1.5	+2	%	$-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$	VDD = 3.0-3.6V			

Note 1: Frequency calibrated at +25°C and 3.3V. TUNx bits can be used to compensate for temperature drift.

TABLE 33-19: INTERNAL LPRC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended						
Param No.	Characteristic	Min.	Тур.	Max.	Units	Conditions		
LPRC (@ 32.768 kHz							
F21a	LPRC	-15	5	+15	%	-40°C ≤ TA ≤ +85°C	VDD = 3.0-3.6V	
F21b	LPRC	-30	10	+30	%	$-40^{\circ}C \leq TA \leq +125^{\circ}C$	VDD = 3.0-3.6V	

FIGURE 33-3: I/O TIMING CHARACTERISTICS

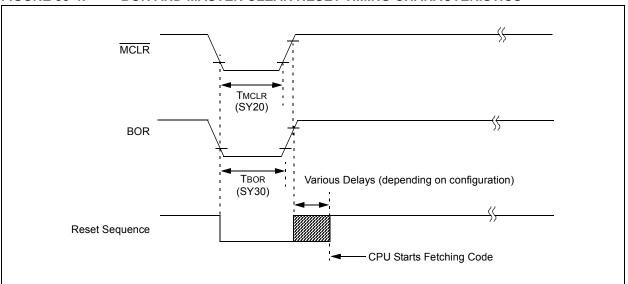


TABLE 33-20: I/O TIMING REQUIREMENTS

AC CHA	AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C} \text{ for Industrial} \\ -40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C} \text{ for Extended}$				
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions		
DO31	TioR	Port Output Rise Time	_	5	10	ns			
DO32	TioF	Port Output Fall Time	_	5	10	ns			
DI35	TINP	INTx Pin High or Low Time (input)	20		_	ns			
DI40	TRBP	CNx High or Low Time (input)	2	_	_	Tcy			

Note 1: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 33-4: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

FIGURE 33-5: POWER-ON RESET TIMING CHARACTERISTICS

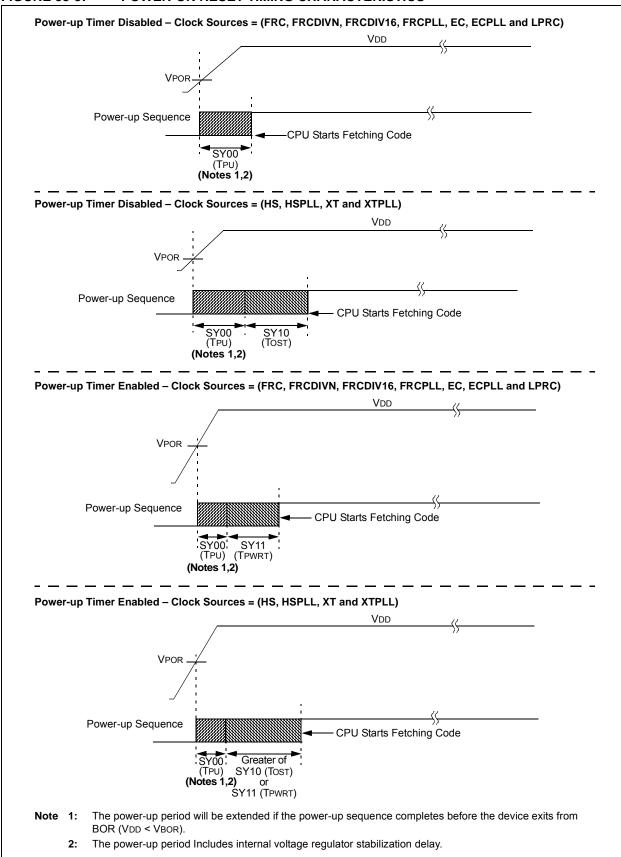


TABLE 33-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING REQUIREMENTS

AC CH	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions			
SY00	Tpu	Power-up Period	_	400	600	μs				
SY10	Tost	Oscillator Start-up Time	_	1024 Tosc	_	_	Tosc = OSC1 period			
SY12	TWDT	Watchdog Timer Time-out Period	0.85	_	1.15	ms	WDTPRE = 0, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 33-19) at +85°C			
			3.4	_	4.6	ms	WDTPRE = 1, WDTPOST<3:0> = 0000, using LPRC tolerances indicated in F21 (see Table 33-19) at +85°C			
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs				
SY20	TMCLR	MCLR Pulse Width (low)	2	_	_	μs				
SY30	TBOR	BOR Pulse Width (low)	1	_	_	μs				
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μs	-40°C to +85°C			
SY36	TVREG	Voltage Regulator Standby-to-Active Mode Transition Time	_	_	30	μs				
SY37	Toscdfrc	FRC Oscillator Start-up Delay	_	_	29	μs				
SY38	Toscolprc	LPRC Oscillator Start-up Delay	_	_	70	μs				

Note 1: These parameters are characterized but not tested in manufacturing.

^{2:} Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

FIGURE 33-6: TIMER1-TIMER5 EXTERNAL CLOCK TIMING CHARACTERISTICS

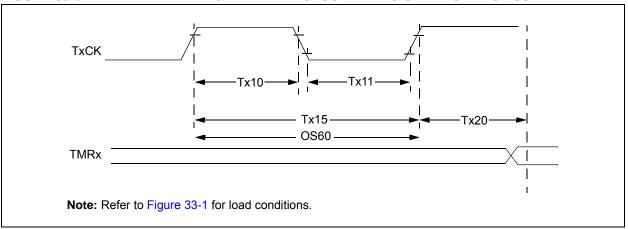


TABLE 33-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

AC CH	AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for Extended						
Param No.	Symbol	Charae	cteristic ⁽²⁾	Min.	Тур.	Max.	Units	Conditions			
TA10	ТтхН	T1CK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)			
			Asynchronous	35	_	_	ns				
TA11	TTXL	T1CK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TA15, N = prescaler value (1, 8, 64, 256)			
			Asynchronous	10	_	_	ns				
TA15	ТтхР	T1CK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = prescale value (1, 8, 64, 256)			
OS60	Ft1	T1CK Oscilla Frequency F enabled by s (T1CON<1>	Range (oscillator setting TCS	DC	_	50	kHz				
TA20	TCKEXTMRL	Delay from E Clock Edge Increment	External T1CK to Timer	0.75 Tcy + 40	_	1.75 Tcy + 40	ns				

Note 1: Timer1 is a Type A.

TABLE 33-23: TIMER2 AND TIMER4 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Charac	cteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
TB10	ТтхН	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15, N = prescale value (1, 8, 64, 256)	
TB11	TTXL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet Parameter TB15, N = prescale value (1, 8, 64, 256)	
TB15	ТтхР	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = prescale value (1, 8, 64, 256)	
TB20	TCKEXTMRL	Delay from B Clock Edge Increment	External TxCK to Timer	0.75 Tcy + 40	_	1.75 Tcy + 40	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 33-24: TIMER3 AND TIMER5 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol Characteristic //			Min.	Тур.	Max.	Units	Conditions	
TC10	ТтхН	TxCK High Time	Synchronous	Tcy + 20	_	_	ns	Must also meet Parameter TC15	
TC11	TTXL	TxCK Low Time	Synchronous	Tcy + 20	_	_	ns	Must also meet Parameter TC15	
TC15	ТтхР	TxCK Input Period	Synchronous, with Prescaler	2 Tcy + 40	_	_	ns	N = prescale value (1, 8, 64, 256)	
TC20	TC20 TCKEXTMRL Delay from External TxCK Clock Edge to Timer Increment		0.75 Tcy + 40	_	1.75 Tcy + 40	ns			

Note 1: These parameters are characterized, but are not tested in manufacturing.

FIGURE 33-7: INPUT CAPTURE x (ICx) TIMING CHARACTERISTICS

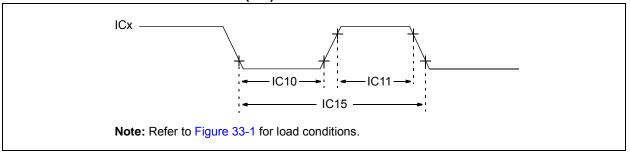
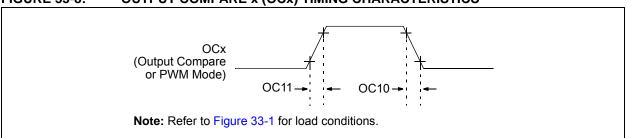



TABLE 33-25: INPUT CAPTURE x (ICx) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended						
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Max.	Units	Cond	litions		
IC10	TccL	ICx Input Low Time	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	_	ns	Must also meet Parameter IC15			
IC11	TccH	ICx Input High Time	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	_	ns	Must also meet Parameter IC15 N = prescale value (1, 4, 16			
IC15	TccP	ICx Input Period	Greater of 25 + 50 or (1 Tcy/N) + 50	_	ns				

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 33-8: OUTPUT COMPARE x (OCx) TIMING CHARACTERISTICS

TABLE 33-26: OUTPUT COMPARE x (OCx) TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions						
OC10	TccF	OCx Output Fall Time		_	_	ns	See Parameter DO32		
OC11	TccR	OCx Output Rise Time	_	_	_	ns	See Parameter DO31		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 33-9: OCx/PWMx MODULE TIMING CHARACTERISTICS

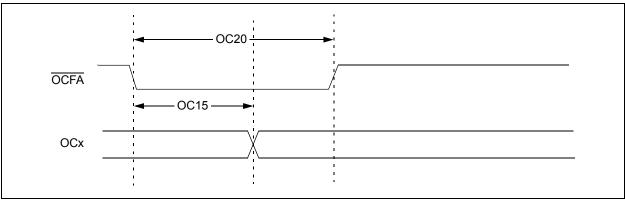


TABLE 33-27: OCx/PWMx MODE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions		
OC15	TFD	Fault Input to PWMx I/O Change	— — Tcy + 20 ns						
OC20	TFLT	Fault Input Pulse Width	Tcy + 20 — ns						

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 33-10: HIGH-SPEED PWMx MODULE FAULT TIMING CHARACTERISTICS

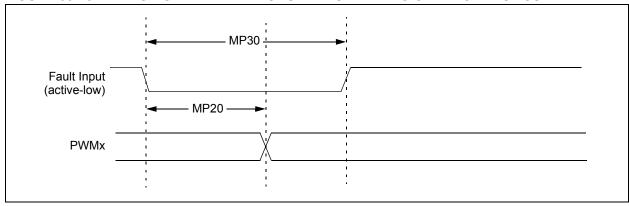


FIGURE 33-11: HIGH-SPEED PWMx MODULE TIMING CHARACTERISTICS

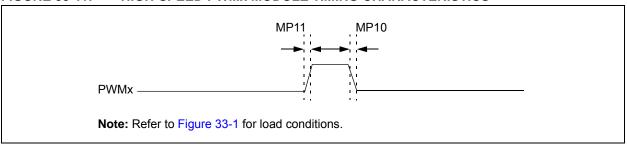


TABLE 33-28: HIGH-SPEED PWMx MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			(unless	rd Opera otherwis	se stated rature -	d) -40°C ≤ T	3.0V to 3.6V A ≤ +85°C for Industrial A ≤ +125°C for Extended	
Param No.	Symbol	Characteristic ⁽¹⁾	Min.	Min. Typ. Max. Units Conditio				
MP10	TFPWM	PWMx Output Fall Time	_	_	_	ns	See Parameter DO32	
MP11	TRPWM	PWMx Output Rise Time	_	_	_	ns	See Parameter DO31	
MP20	TFD	Fault Input ↓ to PWMx I/O Change	_	_	15	ns		
MP30	TFH	Fault Input Pulse Width	15	_	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 33-12: TIMERQ (QEIX MODULE) EXTERNAL CLOCK TIMING CHARACTERISTICS

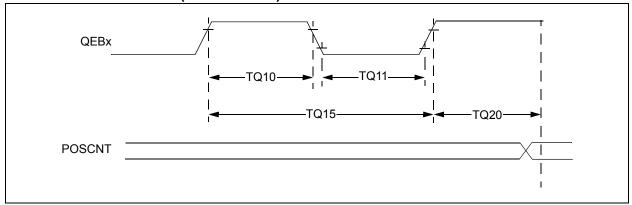


TABLE 33-29: QEIX MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended				
Param No.	Symbol	Charac	cteristic ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
TQ10	TtQH	TQCK High Time	Synchronous, with Prescaler	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25		_	ns	Must also meet Parameter TQ15
TQ11	TtQL	TQCK Low Time	Synchronous, with Prescaler	Greater of 12.5 + 25 or (0.5 Tcy/N) + 25	_	_	ns	Must also meet Parameter TQ15
TQ15	TtQP	TQCP Input Period	Synchronous, with Prescaler	Greater of 25 + 50 or (1 Tcy/N) + 50	_	_	ns	
TQ20	TCKEXTMRL	Delay from External TxCK Clock Edge to Timer Increment		_	1	Tcy	_	

Note 1: These parameters are characterized but not tested in manufacturing.

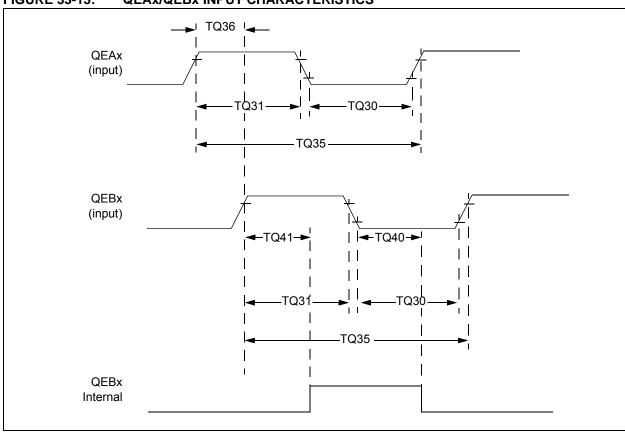


FIGURE 33-13: QEAX/QEBX INPUT CHARACTERISTICS

TABLE 33-30: QUADRATURE DECODER TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Indus- $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extension (unless otherwise stated)				
Param No.	Symbol	Characteristic ⁽¹⁾	Typ. ⁽²⁾	Max.	Units	Conditions	
TQ30	TQUL	Quadrature Input Low Time	6 Tcy	_	ns		
TQ31	TQUH	Quadrature Input High Time	6 Tcy	_	ns		
TQ35	TQUIN	Quadrature Input Period	12 Tcy	_	ns		
TQ36	TQUP	Quadrature Phase Period	3 Tcy	_	ns		
TQ40	TQUFL	Filter Time to Recognize Low with Digital Filter	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	
TQ41	TQUFH	Filter Time to Recognize High with Digital Filter	3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	

- **Note 1:** These parameters are characterized but not tested in manufacturing.
 - **2:** Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
 - 3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to the "dsPIC33E/PIC24E Family Reference Manual", "Quadrature Encoder Interface (QEI)" (DS70601). Please see the Microchip web site for the latest "dsPIC33E/PIC24E Family Reference Manual" sections.

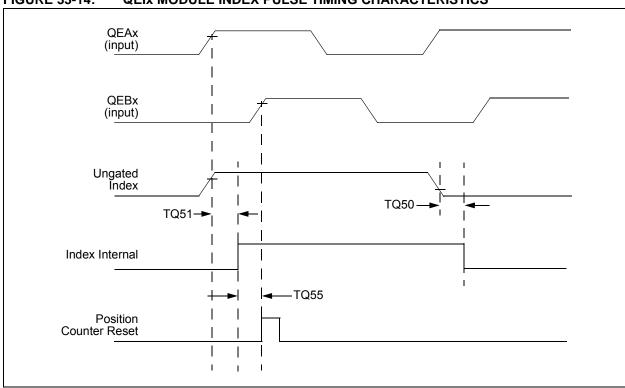


FIGURE 33-14: QEIX MODULE INDEX PULSE TIMING CHARACTERISTICS

TABLE 33-31: QEIX INDEX PULSE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Max. Units			Conditions	
TQ50	TqIL	Filter Time to Recognize Low with Digital Filter	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ51	TqiH	Filter Time to Recognize High with Digital Filter	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ55	Tqidxr	Index Pulse Recognized to Position Counter Reset (ungated index)	3 Tcy	_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

^{2:} Alignment of index pulses to QEAx and QEBx is shown for Position Counter Reset timing only. Shown for forward direction only (QEAx leads QEBx). Same timing applies for reverse direction (QEAx lags QEBx) but index pulse recognition occurs on falling edge.

TABLE 33-32: SPI2 AND SPI3 MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARA	CTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 MHz	Table 33-33	_	_	0,1	0,1	0,1		
9 MHz		Table 33-34	_	1	0,1	1		
9 MHz		Table 33-35	_	0	0,1	1		
15 MHz	1		Table 33-36	1	0	0		
11 MHz		_	Table 33-37	1	1	0		
15 MHz		_	Table 33-38	0	1	0		
11 MHz		_	Table 33-39	0	0	0		

FIGURE 33-15: SPI2 AND SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

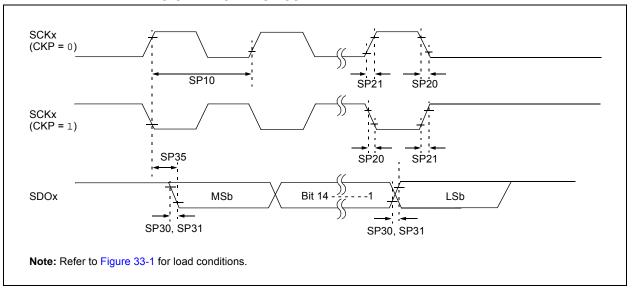


FIGURE 33-16: SPI2 AND SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

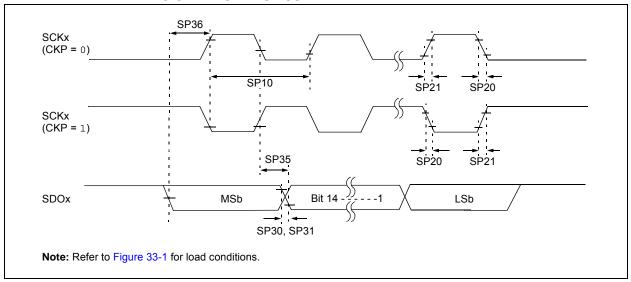


TABLE 33-33: SPI2 AND SPI3 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

	THINKS REGUINERTS									
AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended							
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions			
SP10	FscP	Maximum SCKx Frequency	_	_	15	MHz	(Note 3)			
SP20	TscF	SCKx Output Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)			
SP21	TscR	SCKx Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)			
SP30	TdoF	SDOx Data Output Fall Time	_		_	ns	See Parameter DO32 (Note 4)			
SP31	TdoR	SDOx Data Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns				
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns				

- 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

FIGURE 33-17: SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

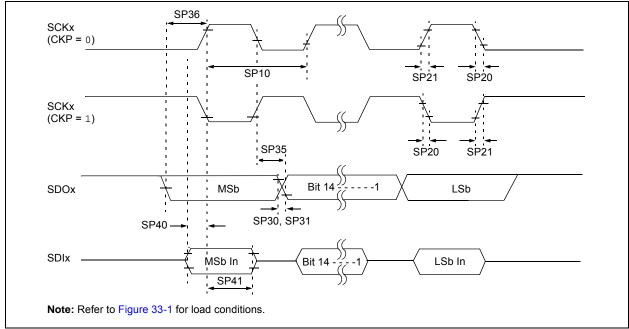


TABLE 33-34: SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING REQUIREMENTS

AC CHA	RACTERIST	ics	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCKx Frequency	_	_	9	MHz	(Note 3)	
SP20	TscF	SCKx Output Fall Time	_		_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCKx Output Rise Time			_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	_		_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time				ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns		
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns		

- **Note 1:** These parameters are characterized, but are not tested in manufacturing.
 - 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.
 - **3:** The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
 - 4: Assumes 50 pF load on all SPIx pins.

FIGURE 33-18: SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

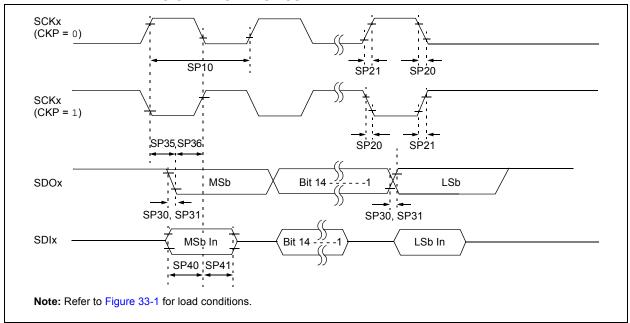


TABLE 33-35: SPI2 AND SPI3 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS

AC CHA	RACTERIST	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended						
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditions					
SP10	FscP	Maximum SCKx Frequency		_	9	MHz	-40°C to +125°C (Note 3)	
SP20	TscF	SCKx Output Fall Time	-	_	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCKx Output Rise Time		_	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

^{2:} Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

^{3:} The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.

^{4:} Assumes 50 pF load on all SPIx pins.

FIGURE 33-19: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

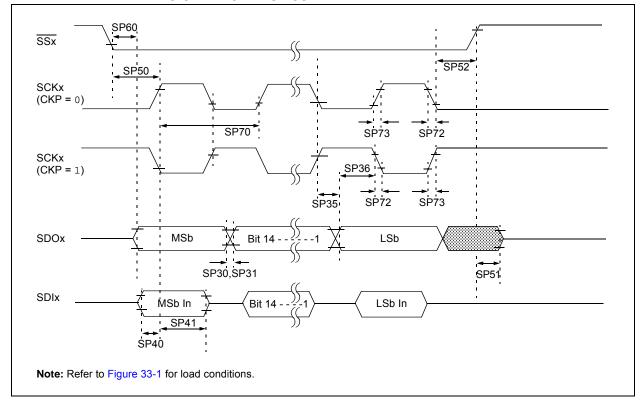


TABLE 33-36: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCKx Input Frequency	_	_	15	MHz	(Note 3)
SP72	TscF	SCKx Input Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCKx Input Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDOx Data Output Fall Time	_	_	-	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDOx Data Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	_	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	_	ns	(Note 4)
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_		50	ns	

- Note 1: These parameters are characterized, but are not tested in manufacturing.
 - 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.
 - **3:** The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.
 - 4: Assumes 50 pF load on all SPIx pins.

FIGURE 33-20: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

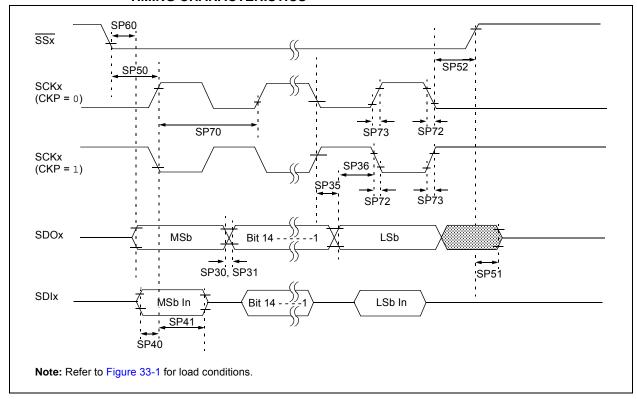


TABLE 33-37: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING REQUIREMENTS

AC CHA	ARACTERIST	rics	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. U			Units	Conditions	
SP70	FscP	Maximum SCKx Input Frequency	_	_	11	MHz	(Note 3)	
SP72	TscF	SCKx Input Fall Time	_	_		ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCKx Input Rise Time	_	_	1	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	_		_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120		_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	_	ns	(Note 4)	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	50	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

^{2:} Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

^{3:} The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

^{4:} Assumes 50 pF load on all SPIx pins.

FIGURE 33-21: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

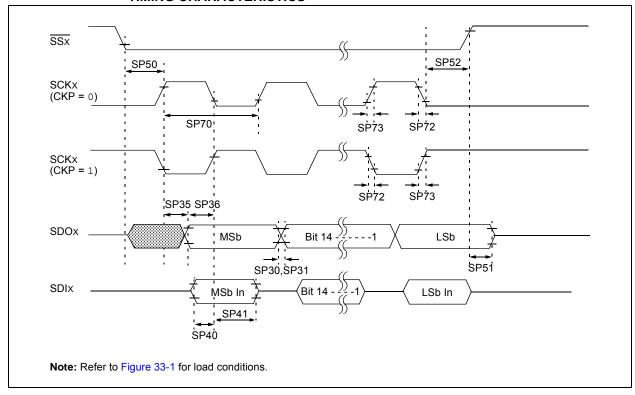


TABLE 33-38: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Min. Typ. ⁽²⁾ Max. Units			
SP70	FscP	Maximum SCKx Input Frequency	_	_	15	MHz	(Note 3)
SP72	TscF	SCKx Input Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCKx Input Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDOx Data Output Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDOx Data Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	_	_	ns	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40		_	ns	(Note 4)

^{2:} Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

^{3:} The minimum clock period for SCKx is 66.7 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

^{4:} Assumes 50 pF load on all SPIx pins.

FIGURE 33-22: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

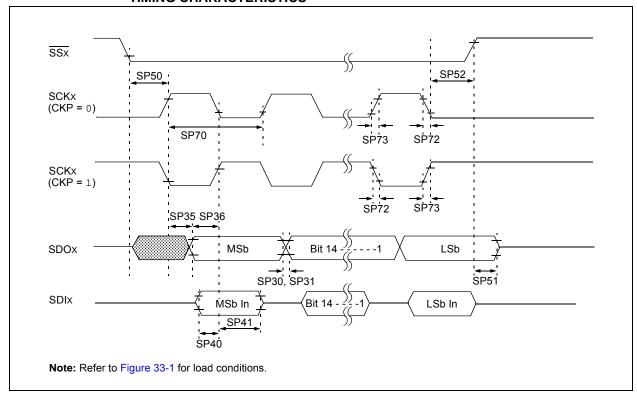


TABLE 33-39: SPI2 AND SPI3 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCKx Input Frequency	_	_	11	MHz	(Note 3)	
SP72	TscF	SCKx Input Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCKx Input Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDOx Data Output Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDOx Data Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns		
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↑ or SCKx ↓ Input	120	_	_	ns		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	10	_	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	_	_	ns	(Note 4)	

^{2:} Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

^{3:} The minimum clock period for SCKx is 91 ns. Therefore, the SCKx clock generated by the master must not violate this specification.

^{4:} Assumes 50 pF load on all SPIx pins.

TABLE 33-40: SPI1 MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARA	CTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
25 MHz	Table 33-41		_	0,1	0,1	0,1		
25 MHz		Table 33-42		1	0,1	1		
25 MHz		Table 33-43		0	0,1	1		
25 MHz			Table 33-44	1	0	0		
25 MHz			Table 33-45	1	1	0		
25 MHz	_	_	Table 33-46	0	1	0		
25 MHz		_	Table 33-47	0	0	0		

FIGURE 33-23: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 0) TIMING CHARACTERISTICS

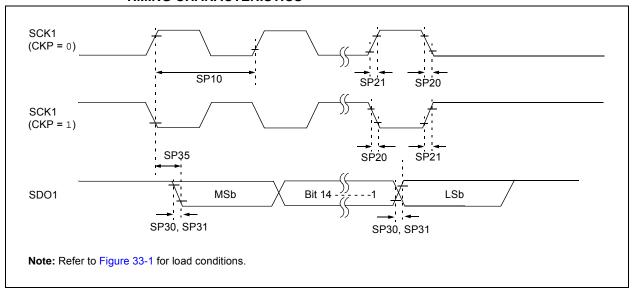


FIGURE 33-24: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY, CKE = 1) TIMING CHARACTERISTICS

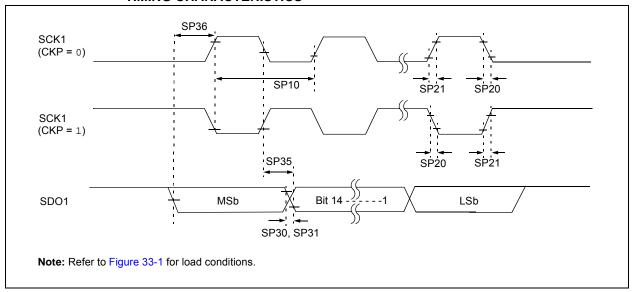


TABLE 33-41: SPI1 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended				
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP10	FscP	Maximum SCK1 Frequency	_	_	25	MHz	(Note 3)
SP20	TscF	SCK1 Output Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)
SP21	TscR	SCK1 Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns	
SP36	TdiV2scH, TdiV2scL	SDO1 Data Output Setup to First SCK1 Edge	20		_	ns	

- 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.
- **3:** The minimum clock period for SCK1 is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPI1 pins.

FIGURE 33-25: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

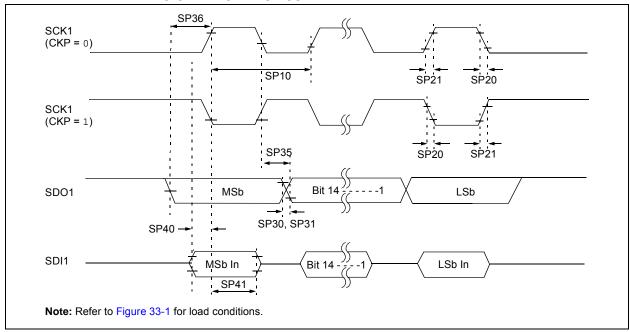


TABLE 33-42: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING REQUIREMENTS

AC CHA	RACTERIST	TICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK1 Frequency	_	_	25	MHz	(Note 3)	
SP20	TscF	SCK1 Output Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK1 Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time			_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns		
SP36	TdoV2sc, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	_		ns		

- Note 1: These parameters are characterized, but are not tested in manufacturing.
 - 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.
 - 3: The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
 - 4: Assumes 50 pF load on all SPI1 pins.

FIGURE 33-26: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

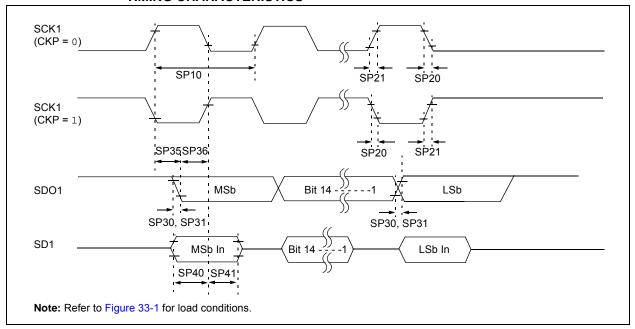


TABLE 33-43: SPI1 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS

AC CHA	RACTERIST	ICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP10	FscP	Maximum SCK1 Frequency	_	_	25	MHz	-40°C to +125°C (Note 3)	
SP20	TscF	SCK1 Output Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)	
SP21	TscR	SCK1 Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	20	_	_	ns		

- Note 1: These parameters are characterized, but are not tested in manufacturing.
 - 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.
 - **3:** The minimum clock period for SCK1 is 100 ns. The clock generated in Master mode must not violate this specification.
 - 4: Assumes 50 pF load on all SPI1 pins.

FIGURE 33-27: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

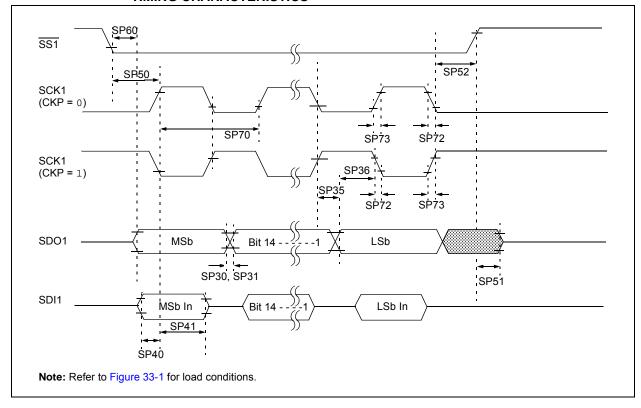


TABLE 33-44: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING REQUIREMENTS

AC CHA	\RACTERIS ⁻	rics	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency	_	_	25	MHz	(Note 3)	
SP72	TscF	SCK1 Input Fall Time	_		_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK1 Input Rise Time	_		_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	_		_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCK1 Edge	20	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	_	_	ns		
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120		_	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)	
SP52	TscH2ssH TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	_	_	ns	(Note 4)	
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	_		50	ns		

- Note 1: These parameters are characterized, but are not tested in manufacturing.
 - 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.
 - **3:** The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.
 - 4: Assumes 50 pF load on all SPI1 pins.

FIGURE 33-28: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

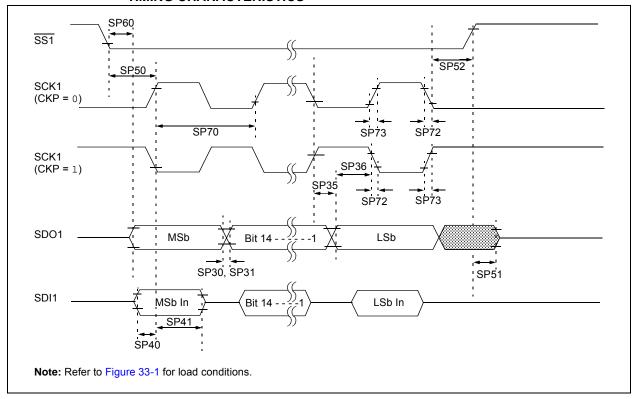


TABLE 33-45: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING REQUIREMENTS

AC CHA	ARACTERIS [*]	rics	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Units	Conditions		
SP70	FscP	Maximum SCK1 Input Frequency	_	_	25	MHz	(Note 3)	
SP72	TscF	SCK1 Input Fall Time	_		l	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK1 Input Rise Time	_		_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	_		_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	_	_	ns		
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120		_	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)	
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	_	_	ns	(Note 4)	
SP60	TssL2doV	SDO1 Data Output Valid after SS1 Edge	_	_	50	ns		

- Note 1: These parameters are characterized, but are not tested in manufacturing.
 - 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.
 - **3:** The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.
 - 4: Assumes 50 pF load on all SPI1 pins.

FIGURE 33-29: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

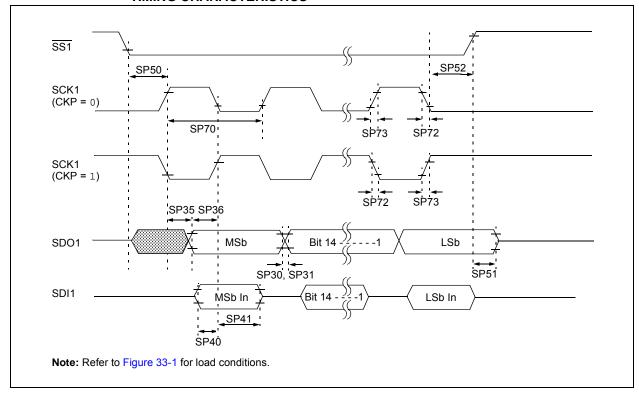


TABLE 33-46: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING REQUIREMENTS

AC CHA	ARACTERIST	rics	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions	
SP70	FscP	Maximum SCK1 Input Frequency	_		25	MHz	(Note 3)	
SP72	TscF	SCK1 Input Fall Time	_	ı	_	ns	See Parameter DO32 (Note 4)	
SP73	TscR	SCK1 Input Rise Time	_	ı	_	ns	See Parameter DO31 (Note 4)	
SP30	TdoF	SDO1 Data Output Fall Time	_	-	_	ns	See Parameter DO32 (Note 4)	
SP31	TdoR	SDO1 Data Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)	
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns		
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	_	_	ns		
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	_	_	ns		
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	_	_	ns		
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)	
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	_	_	ns	(Note 4)	

Note 1: These parameters are characterized, but are not tested in manufacturing.

^{2:} Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

^{3:} The minimum clock period for SCK1 is 66.7 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

^{4:} Assumes 50 pF load on all SPI1 pins.

FIGURE 33-30: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

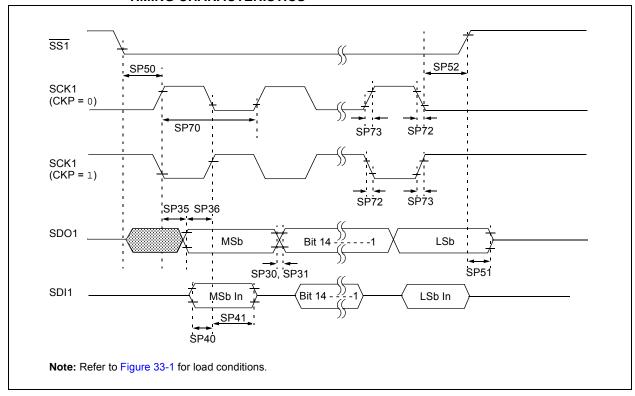
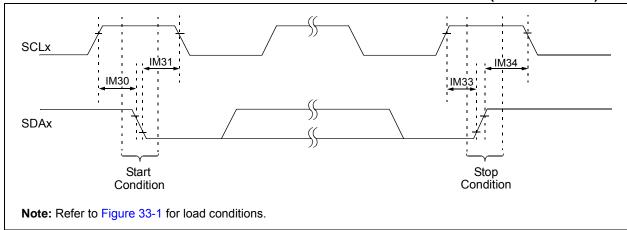


TABLE 33-47: SPI1 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)
TIMING REQUIREMENTS

AC CHA	\RACTERIS [*]	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param.	Symbol	Characteristic ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Units	Conditions
SP70	FscP	Maximum SCK1 Input Frequency	_	_	25	MHz	(Note 3)
SP72	TscF	SCK1 Input Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)
SP73	TscR	SCK1 Input Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)
SP30	TdoF	SDO1 Data Output Fall Time	_	_	_	ns	See Parameter DO32 (Note 4)
SP31	TdoR	SDO1 Data Output Rise Time	_	_	_	ns	See Parameter DO31 (Note 4)
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	_	6	20	ns	
SP36	TdoV2scH, TdoV2scL	SDO1 Data Output Setup to First SCK1 Edge	20	_	_	ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	_	_	ns	
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	15	_	_	ns	
SP50	TssL2scH, TssL2scL	SS1 ↓ to SCK1 ↑ or SCK1 ↓ Input	120	_	_	ns	
SP51	TssH2doZ	SS1 ↑ to SDO1 Output High-Impedance	10	_	50	ns	(Note 4)
SP52	TscH2ssH, TscL2ssH	SS1 ↑ after SCK1 Edge	1.5 Tcy + 40	_	_	ns	(Note 4)


Note 1: These parameters are characterized, but are not tested in manufacturing.

^{2:} Data in "Typical" column is at 3.3V, +25°C unless otherwise stated.

^{3:} The minimum clock period for SCK1 is 91 ns. Therefore, the SCK1 clock generated by the master must not violate this specification.

^{4:} Assumes 50 pF load on all SPI1 pins.

FIGURE 33-31: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (MASTER MODE)

FIGURE 33-32: I2Cx BUS DATA TIMING CHARACTERISTICS (MASTER MODE)

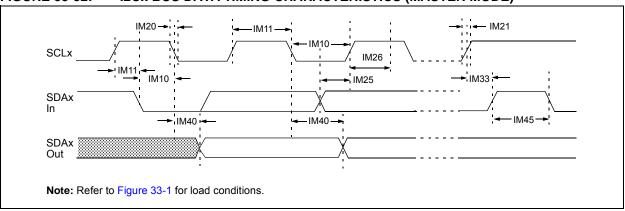
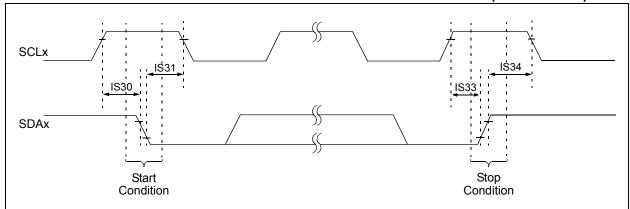


TABLE 33-48: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

AC CHA	RACTER	ISTICS		Standard Operating (unless otherwise Operating temperating tempera	e stated) iture -40)°C ≤ TA ≤	+85°C for Industrial +125°C for Extended
Param No.	Symbol	Characte	eristic ⁽⁴⁾	Min. ⁽¹⁾	Max.	Units	Conditions
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	
			400 kHz mode	Tcy/2 (BRG + 2)	_	μS	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS	
IM11	THI:SCL	Clock High Time	100 kHz mode	Hz mode Tcy/2 (BRG + 2)		μS	
			400 kHz mode	Tcy/2 (BRG + 2)	_	μS	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2) —		μS	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be
		Fall Time	400 kHz mode	20 + 0.1 CB	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	_	100	ns	
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be
		Rise Time	400 kHz mode	20 + 0.1 CB	300	ns	from 10 to 400 pF
			1 MHz mode ⁽²⁾	_	300	ns	
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	
		Setup Time	400 kHz mode	100	_	ns	
			1 MHz mode ⁽²⁾	40	_	ns	
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μS	
		Hold Time	400 kHz mode	0	0.9	μS	
			1 MHz mode ⁽²⁾	0.2	_	μS	
IM30	Tsu:sta	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	Only relevant for
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μS	Repeated Start
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS	condition
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	After this period, the
		Hold Time	400 kHz mode	Tcy/2 (BRG +2)	_	μS	first clock pulse is
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS	generated
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μS	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS	
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μS	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μS	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μS	
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3500	ns	
		From Clock	400 kHz mode	_	1000	ns	
			1 MHz mode ⁽²⁾	_	400	ns	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be
			400 kHz mode	1.3	_	μS	free before a new
			1 MHz mode ⁽²⁾	0.5	_	μS	transmission can start
IM50	Св	Bus Capacitive Lo	oading	_	400	pF	
IM51	TPGD	Pulse Gobbler De		65	390	ns	(Note 3)


Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to the "dsPIC33E/PIC24E Family Reference Manual", "Inter-Integrated Circuit (I²C™)" (DS70330). Please see the Microchip web site for the latest "dsPIC33E/PIC24E Family Reference Manual" sections.

^{2:} Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

^{3:} Typical value for this parameter is 130 ns.

^{4:} These parameters are characterized, but not tested in manufacturing.

FIGURE 33-33: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE)

FIGURE 33-34: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE)

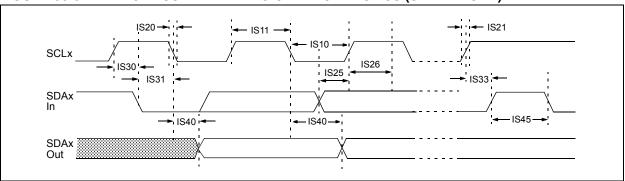


TABLE 33-49: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
AC CHA	RACTERI	STICS		Operating tem		•	C ≤ TA ≤ +85°C for Industrial		
					, p 0 . a.ta. 0		C ≤ TA ≤ +125°C for Extended		
Param. No.	Symbol	Characte	eristic ⁽³⁾	Min.	Max.	Units	Conditions		
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μS			
			400 kHz mode	1.3	_	μS			
			1 MHz mode ⁽¹⁾	0.5	_	μS			
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μS	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6	_	μS	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5	_	μS			
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be from		
		Fall Time	400 kHz mode	20 + 0.1 CB	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	_	100	ns			
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be from		
		Rise Time	400 kHz mode	20 + 0.1 CB	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	_	300	ns			
IS25	TSU:DAT	Data Input	100 kHz mode	250	_	ns			
		Setup Time	400 kHz mode	100	_	ns			
			1 MHz mode ⁽¹⁾	100	_	ns			
IS26	THD:DAT	Data Input	100 kHz mode	0	_	μS			
		Hold Time	400 kHz mode	0	0.9	μS			
			1 MHz mode ⁽¹⁾	0	0.3	μS			
IS30	Tsu:sta	Start Condition	100 kHz mode	4.7	_	μS	Only relevant for Repeated		
		Setup Time	400 kHz mode	0.6	_	μS	Start condition		
			1 MHz mode ⁽¹⁾	0.25	_	μS			
IS31	THD:STA	Start Condition	100 kHz mode	4.0	_	μS	After this period, the first		
		Hold Time	400 kHz mode	0.6	_	μS	clock pulse is generated		
			1 MHz mode ⁽¹⁾	0.25		μS			
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	_	μS			
		Setup Time	400 kHz mode	0.6	—	μS			
			1 MHz mode ⁽¹⁾	0.6	—	μS			
IS34	THD:STO	Stop Condition	100 kHz mode	4	—	μS			
		Hold Time	400 kHz mode	0.6	—	μS			
			1 MHz mode ⁽¹⁾	0.25		μS			
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns			
		From Clock	400 kHz mode	0	1000	ns			
			1 MHz mode ⁽¹⁾	0	350	ns			
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μS	Time the bus must be free		
			400 kHz mode	1.3	_	μS	before a new transmission		
			1 MHz mode ⁽¹⁾	0.5	_	μS	can start		
IS50	Св	Bus Capacitive Lo	ading	_	400	pF			
IS51	TPGD	Pulse Gobbler De	lay	65	390	ns	(Note 2)		

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

^{2:} The Typical value for this parameter is 130 ns.

^{3:} These parameters are characterized, but not tested in manufacturing.

FIGURE 33-35: ECANX MODULE I/O TIMING CHARACTERISTICS

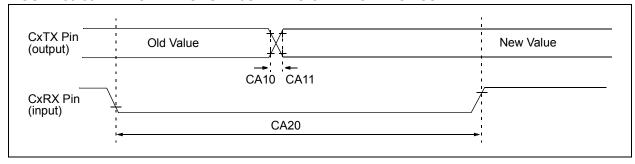


TABLE 33-50: ECANX MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditions						
CA10	TioF	Port Output Fall Time	_	_	_	ns	See Parameter DO32		
CA11	TioR	Port Output Rise Time	— — ns See Parameter DO31						
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120 — ns						

- Note 1: These parameters are characterized but not tested in manufacturing.
 - 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 33-36: UARTX MODULE I/O TIMING CHARACTERISTICS

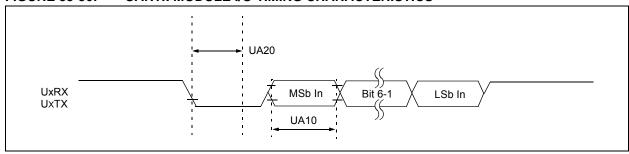


TABLE 33-51: UARTX MODULE I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units				Conditions	
UA10	TUABAUD	UARTx Baud Time	66.67	_		ns		
UA11	FBAUD	UARTx Baud Frequency	_	_	15	Mbps		
UA20	TCWF	Start Bit Pulse Width to Trigger UARTx Wake-up	500	_	_	ns		

- Note 1: These parameters are characterized but not tested in manufacturing.
 - 2: Data in "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 33-52: OP AMP/COMPARATOR SPECIFICATIONS

DC CH	ARACTERIS	STICS	Standard Operating Conditions (see Note 3): 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial							
			Operating ter	nperatur			for Industrial C for Extended			
Param No.	Symbol	Characteristic	Min.	Typ. ⁽¹⁾	Max.	Units	Conditions			
Compa	rator AC Ch	naracteristics								
CM10	TRESP	Response Time		19	_	ns	V+ input step of 100 mV, V- input held at VDD/2			
CM11	TMC2OV	Comparator Mode Change to Output Valid			10	μs				
Compa	rator DC Ch	naracteristics								
CM30	VOFFSET	Comparator Offset Voltage	_	±20	±75	mV				
CM31	VHYST	Input Hysteresis Voltage	_	30	_	mV				
CM32	TRISE/ TFALL	Comparator Output Rise/Fall Time	_	20	_	ns	1 pF load capacitance on input			
CM33	VGAIN	Open-Loop Voltage Gain	_	90	_	db				
CM34	VICM	Input Common-Mode Voltage	AVss	_	AVDD	V				
Op Am	p AC Chara	cteristics			1	•				
CM20	SR	Slew Rate	_	9	_	V/µs	10 pF load			
CM21a	Рм	Phase Margin		68	_	Degree	G = 100V/V; 10 pF load			
CM22	Gм	Gain Margin	_	20	_	db	G = 100V/V; 10 pF load			
CM23a	G _B w	Gain Bandwidth	_	10	_	MHz	10 pF load			
Op Am	p DC Chara	cteristics								
CM40	VCMR	Common-Mode Input Voltage Range	AVss	_	AVDD	V				
CM41	CMRR	Common-Mode Rejection Ratio	_	40	_	db	VCM = AVDD/2			
CM42	Voffset	Op Amp Offset Voltage	_	±20	±70	mV				
CM43	VGAIN	Open-Loop Voltage Gain	_	90	_	db				
CM44	los	Input Offset Current	_	_	_	_	See pad leakage currents in Table 33-10			
CM45	lB	Input Bias Current	_	_	_	_	See pad leakage currents in Table 33-10			
CM46	Іоит	Output Current	_	_	420	μA	With minimum value of RFEEDBACK (CM48)			
CM48	RFEEDBACK	Feedback Resistance Value	8	_	_	kΩ	(Note 2)			
CM49a	Vout	Output Voltage	AVss + 0.075	_	AVDD - 0.075	V	ΙΟυτ = 420 μΑ			

Note 1: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.

^{2:} Resistances can vary by ±10% between op amps.

^{3:} Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

TABLE 33-53: OP AMP/COMPARATOR VOLTAGE REFERENCE SETTLING TIME SPECIFICATIONS

AC CHA	RACTERIS	(unless otherwi			stated) ure -40°C:	≤ Ta ≤ +	Note 2): 3.0V to 3.6V -85°C for Industrial -125°C for Extended		
Param.	Symbol	Characteristic	Min. Typ. Max. Units Conditions						
VR310	TSET	Settling Time	— 1 10 μs (Note 1)						

- Note 1: Settling time measured while CVRR = 1 and CVR<3:0> bits transition from '0000' to '1111'.
 - 2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

TABLE 33-54: OP AMP/COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

DC CHAR	RACTERIS	TICS	Standard Operating Conditions (see Note 1): 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{Ta} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristics	Min. Typ. Max.			Units	Conditions	
VRD310	CVRES	Resolution	CVRSRC/24	_	CVRSRC/32	LSb		
VRD311	CVRAA	Absolute Accuracy of Internal DAC Input to Comparators	_	_	±25	mV	AVDD = CVRSRC = 3.3V	
VRD312	CVRAA1	Absolute Accuracy of CVREFXO pins	_	_	+75/-25	mV	AVDD = CVRSRC = 3.3V	
VRD313	CVRSRC	Input Reference Voltage	0	_	AVDD + 0.3	V		
VRD314	CVRout	Buffer Output Resistance	_	1.5k	_	Ω		
VRD315	CVCL	Permissible Capacitive Load (CVREFXO pins)	_	_	25	pF		
VRD316	IOCVR	Permissible Current Output (CVREFXO pins)	_	_	1	mA		
VRD317	Ion	Current Consumed When Module is Enabled	_	_	500	μA	AVDD = 3.6V	
VRD318	IOFF	Current Consumed When Module is Disabled	_	_	1	nA	AVDD = 3.6V	

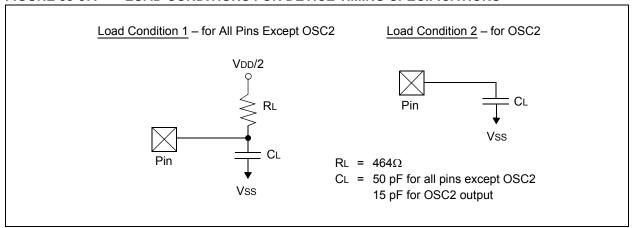

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

TABLE 33-55: CTMU CURRENT SOURCE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \leq \text{TA} \leq +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \leq \text{TA} \leq +125^{\circ}\text{C}$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min. Typ. Max. Units Conditions						
CTMU Curi	CTMU Current Source								
CTMUI1	IouT1	Base Range	280	550	830	nA	CTMUICON<9:8> = 01		
CTMUI2	Іоит2	10x Range	2.8	5.5	8.3	μA	CTMUICON<9:8> = 10		
CTMUI3	Іоит3	100x Range	28	55	83	μA	CTMUICON<9:8> = 11		
CTMUI4	Iout4	1000x Range	280	550	830	μA	CTMUICON<9:8> = 00		
CTMUFV1	VF		_	0.77	_	V			
CTMUFV2	VFVR		_	-1.38	_	mV/°C			

Note 1: Nominal value at center point of current trim range (CTMUICON<15:10> = 000000).

FIGURE 33-37: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 33-56: ADC MODULE SPECIFICATIONS

AC CHA	ARACTER	RISTICS	Standard Operating Conditions (see Note 1): 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended					
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
			Device	Supply	/			
AD01	AVDD	Module VDD Supply	Greater of: VDD – 0.3 or 3.0	_	Lesser of: VDD + 0.3 or 3.6	V		
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V		
			Referen	ce Inpu	ts			
AD05	VREFH	Reference Voltage High	AVss + 2.7	—	AVDD	V	(Note 1) VREFH = VREF+ VREFL = VREF-	
AD05a			3.0	_	3.6	V	VREFH = AVDD VREFL = AVSS = 0	
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD - 2.7	V	(Note 1)	
AD06a			0	_	0	٧	VREFH = AVDD, VREFL = AVSS = 0	
AD07	VREF	Absolute Reference Voltage	2.7	_	3.6	٧	VREF = VREFH - VREFL	
AD08	IREF	Current Drain	_	_	10 600	μ Α μ Α	ADC off ADC on	
AD09	IAD	Operating Current	_	5	_	mA	ADC operating in 10-bit mode (Note 1)	
			_	2	_	mA	ADC operating in 12-bit mode (Note 1)	
			Analo	g Input				
AD12	VINH	Input Voltage Range Vілн	VINL		VREFH	V	This voltage reflects Sample- and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), positive input	
AD13	VINL	Input Voltage Range VINL	VREFL	_	AVss + 1V	V	This voltage reflects Sample- and-Hold Channels 0, 1, 2 and 3 (CH0-CH3), negative input	
AD17	Rin	Recommended Impedance of Analog Voltage Source	_	_	200	Ω	Impedance to achieve maximum performance of ADC	

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

TABLE 33-57: ADC MODULE SPECIFICATIONS (12-BIT MODE)

AC CHA	RACTERIS	STICS	Standard Operating Conditions (see Note 1): 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended						
Param No.	Symbol	Characteristic	Min.	Min. Typ. Max. Units			Conditions		
	ADC Accuracy (12-Bit Mode) – VREF-								
AD20a	Nr	Resolution	1:	2 data bi	ts	bits			
AD21a	INL	Integral Nonlinearity	-3	1	+3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)		
AD22a	DNL	Differential Nonlinearity	≥1	-	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)		
AD23a	GERR	Gain Error	-10	_	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)		
AD24a	EOFF	Offset Error	-5	_	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V (Note 2)		
AD25a	_	Monotonicity	_			_	Guaranteed		
		Dynamic	Perform	nance (1	2-Bit Mo	de)			
AD30a	THD	Total Harmonic Distortion	_		-75	dB			
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	_	dB			
AD32a	SFDR	Spurious Free Dynamic Range	80	_	_	dB			
AD33a	FNYQ	Input Signal Bandwidth	_	_	250	kHz			
AD34a	ENOB	Effective Number of Bits	11.09	11.3		bits			

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

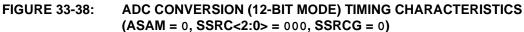

^{2:} For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.

TABLE 33-58: ADC MODULE SPECIFICATIONS (10-BIT MODE)

AC CHARACTERISTICS					se stated rature -	I)⁽¹⁾ 40°C ≤	: 3.0V to 3.6V TA ≤ +85°C for Industrial TA ≤ +125°C for Extended			
Param No.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions			
	ADC Accuracy (10-Bit Mode)									
AD20b	Nr	Resolution	10	Data B	its	bits				
AD21b	INL	Integral Nonlinearity	-0.625	_	0.625	LSb	-40°C ≤ TA ≤ +85°C (Note 2)			
			-1.5	I	1.5	LSb	+85°C < TA ≤ +125°C (Note 2)			
AD22b	DNL	Differential Nonlinearity	-0.25	ı	0.25	LSb	$-40^{\circ}C \le TA \le +85^{\circ}C \text{ (Note 2)}$			
			-0.25	-	0.25	LSb	+85°C < TA ≤ +125°C (Note 2)			
AD23b	GERR	Gain Error	-2.5	_	2.5	LSb	-40°C ≤ TA ≤ +85°C (Note 2)			
			-2.5	_	2.5	LSb	+85°C < TA ≤ +125°C (Note 2)			
AD24b	Eoff	Offset Error	-1.25	_	1.25	LSb	-40°C ≤ TA ≤ +85°C (Note 2)			
			-1.25	_	1.25	LSb	+85°C < TA ≤ +125°C (Note 2)			
AD25b	_	Monotonicity	_	_	_	_	Guaranteed			
		Dynamic P	erforman	ce (10-E	Bit Mode)					
AD30b	THD	Total Harmonic Distortion (3)	_	64	_	dB				
AD31b	SINAD	Signal to Noise and Distortion ⁽³⁾	_	57	_	dB				
AD32b	SFDR	Spurious Free Dynamic Range ⁽³⁾	_	72	_	dB				
AD33b	FNYQ	Input Signal Bandwidth (3)		550		kHz				
AD34b	ENOB	Effective Number of Bits ⁽³⁾	_	9.4	_	bits				

Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules (ADC, op amp/comparator and comparator voltage reference) may have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.

- 2: For all accuracy specifications, VINL = AVSS = VREFL = 0V and AVDD = VREFH = 3.6V.
- 3: Parameters are characterized but not tested in manufacturing.

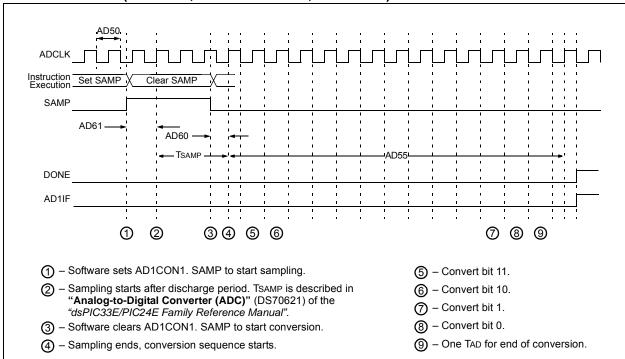


TABLE 33-59: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

AC CHA	ARACTER	Operating temperature -40°C ≤ TA ≤					ee Note 2): 3.0V to 3.6V +85°C for Industrial +125°C for Extended
Param No.	Symbol	Characteristic	Min.	Typ. ⁽⁴⁾	Max.	Units	Conditions
		Cloc	k Paramet	ters			
AD50	TAD	ADC Clock Period	117.6	_	_	ns	
AD51	trc	ADC Internal RC Oscillator Period	_	250	_	ns	
		Con	version R	ate			
AD55	tconv	Conversion Time	_	14 TAD		ns	
AD56	FCNV	Throughput Rate	_	_	500	ksps	
AD57a	TSAMP	Sample Time When Sampling Any ANx Input	3 TAD	_	_	_	
AD57b	TSAMP	Sample Time When Sampling the Op Amp Outputs	3 TAD	_	_	_	
		Timin	g Parame	ters			
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2 TAD	_	3 TAD	_	Auto-convert trigger not selected
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2 TAD	_	3 TAD	_	
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	_	0.5 TAD	_	_	
AD63	tDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾	_	_	20	μS	(Note 3)

- **Note 1:** Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
 - 2: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.
 - 3: The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADON (AD1CON1<15>) = 1). During this time, the ADC result is indeterminate.
 - 4: These parameters are characterized, but not tested in manufacturing.

FIGURE 33-39: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)

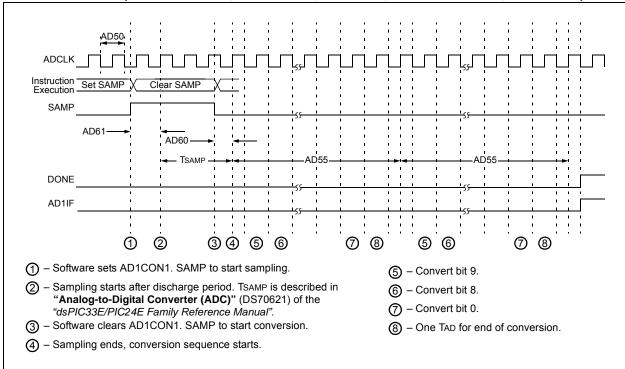


FIGURE 33-40: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

TABLE 33-60: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC CH	ARACTE	RISTICS	Standard Operating Conditions (see Note 1): 3.0V to 3. (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended						
Param No.	Symbol	Characteristic	Min.	Typ. ⁽⁴⁾	Max.	Units	Conditions		
		Cloc	k Parame	eters					
AD50	TAD	ADC Clock Period	75	_	_	ns			
AD51	trc	ADC Internal RC Oscillator Period	_	250	_	ns			
	Conversion Rate								
AD55	tconv	Conversion Time	_	12 TAD		_			
AD56	FCNV	Throughput Rate	_	_	1.1	Msps	Using simultaneous sampling		
AD57a	Тѕамр	Sample Time When Sampling Any ANx Input	2 TAD			_			
AD57b	Тѕамр	Sample Time When Sampling the Op Amp Outputs	4 TAD	_	1	_			
		Timin	g Param	eters					
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 TAD	_	3 TAD	_	Auto-convert trigger not selected		
AD61	tpss	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 TAD		3 TAD	_			
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	_	0.5 TAD	_	_			
AD63	tDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾	_		20	μS	(Note 3)		

- Note 1: Device is functional at VBORMIN < VDD < VDDMIN, but will have degraded performance. Device functionality is tested, but not characterized. Analog modules: ADC, op amp/comparator and comparator voltage reference, will have degraded performance. Refer to Parameter BO10 in Table 33-12 for the minimum and maximum BOR values.
 - 2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.
 - 3: The parameter, tDPU, is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.
 - 4: These parameters are characterized, but not tested in manufacturing.

TABLE 33-61: DMA MODULE TIMING REQUIREMENTS

AC CH	ARACTERISTICS	Standard O (unless oth Operating te	erwise sta	t ed) -40°C ≤ T	A ≤ +85	3.6V °C for Industrial 5°C for Extended
Param No.	Characteristic	Min. Typ. ⁽¹⁾ Max. Units Conditi				Conditions
DM1	DMA Byte/Word Transfer Latency	1 Tcy ⁽²⁾ — ns				

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because DMA transfers use the CPU data bus, this time is dependent on other functions on the bus.

N	0	Т	_ (٠.
IV	u		_3	Э.

34.0 HIGH-TEMPERATURE ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXGM3XX/6XX/7XX electrical characteristics for devices operating in an ambient temperature range of -40°C to +150°C.

The specifications between -40°C to +150°C are identical to those shown in **Section 33.0 "Electrical Characteristics"** for operation between -40°C to +125°C, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter DC10 in **Section 33.0 "Electrical Characteristics"** is the Industrial and Extended temperature equivalent of HDC10.

Absolute maximum ratings for the dsPIC33EPXXXGM3XX/6XX/7XX high-temperature devices are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings(1)

Ambient temperature under bias ⁽²⁾	40°C to +150°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽³⁾	-0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽³⁾	0.3V to 3.6V
Voltage on any 5V tolerant pin with respect to Vss when VDD ≥ 3.0V ⁽³⁾	0.3V to 5.5V
Maximum current out of Vss pin	60 mA
Maximum current into VDD pin ⁽⁴⁾	60 mA
Maximum junction temperature	+155°C
Maximum current sourced/sunk by any 4x I/O pin	10 mA
Maximum current sourced/sunk by any 8x I/O pin	15 mA
Maximum current sunk by all ports combined	70 mA
Maximum current sourced by all ports combined ⁽⁴⁾	70 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: AEC-Q100 reliability testing for devices intended to operate at +150°C is 1,000 hours. Any design in which the total operating time from +125°C to +150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - 3: Refer to the "Pin Diagrams" section for 5V tolerant pins.
 - 4: Maximum allowable current is a function of device maximum power dissipation (see Table 34-2).

34.1 High-Temperature DC Characteristics

TABLE 34-1: OPERATING MIPS VS. VOLTAGE

Characteristic	Characteristic VDD Range Temperature Range		Max MIPS
Characteristic	(in Volts)	(in °C)	dsPIC33EPXXXGM3XX/6XX/7XX
HDC5	3.0 to 3.6V ⁽¹⁾	-40°C to +150°C	40

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules, such as the ADC, may have degraded performance. Device functionality is tested but not characterized.

TABLE 34-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
High-Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+155	°C
Operating Ambient Temperature Range	TA	-40	_	+150	°C
Power Dissipation: Internal Chip Power Dissipation: $PINT = VDD \ x \ (IDD - \Sigma \ IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma \ (\{VDD - VOH\} \ x \ IOH) + \Sigma \ (VOL \ x \ IOL)$	PD	ļ	PINT + PI/O)	W
Maximum Allowed Power Dissipation	PDMAX	(ΓJ — TA)/θJ	Α	W

TABLE 34-3: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARA	CTERISTIC	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +150^{\circ}\text{C}$								
Parameter No.	Symbol	Characteristic	Min Typ Max Units Conditions							
Operating \	/oltage									
HDC10	Supply Vo	Supply Voltage								
	VDD	_	3.0	3.3	3.6	V	-40°C to +150°C			

TABLE 34-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS (unl			(unless oth	Standard Operating Conditions: 3.0V to 3.6V unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +150^{\circ}\text{C}$				
Parameter No.	Typical	Max	Units	Conditions				
Power-Down	Current (IPD)							
HDC60e	4.1	6	mA	+150°C	3.3V	Base Power-Down Current (Notes 1, 3)		
HDC61c	15	30	μА	+150°C	3.3V	Watchdog Timer Current: ΔIWDT (Notes 2, 4)		

- **Note 1:** Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off and VREGS (RCON<8>) = 1.
 - 2: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
 - 3: These currents are measured on the device containing the most memory in this family.
 - 4: These parameters are characterized, but are not tested in manufacturing.

TABLE 34-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

DC CHARA	CTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +150^{\circ}\text{C}$				
Parameter No.	Typical	Max	Units	Conditions			
HDC40e	3.6	8	mA	+150°C	3.3V	10 MIPS	
HDC42e	5	15	mA	+150°C	3.3V	20 MIPS	
HDC44e	10	20	mA	+150°C	3.3V	40 MIPS	

TABLE 34-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARA	CTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +150^{\circ}\text{C}$					
Parameter No.	Typical	Max	Units	Conditions				
HDC20	11	25	mA	+150°C	3.3V	10 MIPS		
HDC22	15	30	mA	+150°C	3.3V	20 MIPS		
HDC23	21	50	mA	+150°C	3.3V	40 MIPS		

TABLE 34-7: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARA	CTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +150^{\circ}\text{C}$						
Parameter No.	Typical	Max	Doze Ratio	Units	Conditions			
HDC72a	25	45	1:2	mA	±150°C	2 21/	40 MIDS	
HDC72g ⁽¹⁾	14	33	1:128	mA	+150°C 3.3V 40 MIPS			

Note 1: Parameters with Doze ratios of 1:64 and 1:128 are characterized, but are not tested in manufacturing.

TABLE 34-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

DC CHAF	DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +150^{\circ}\text{C}$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions		
HDO10	Vol	Output Low Voltage 4x Sink Driver Pins ⁽²⁾	_	_	0.4	V	IOL ≤ 5 mA, VDD = 3.3V (Note 1)		
		Output Low Voltage 8x Sink Driver Pins ⁽³⁾	_	_	0.4	V	IOL ≤ 8 mA, VDD = 3.3V (Note 1)		
HDO20	Vон	Output High Voltage 4x Source Driver Pins ⁽²⁾	2.4	_	_	V	IOH ≥ -10 mA, VDD = 3.3V (Note 1)		
		Output High Voltage 8x Source Driver Pins ⁽³⁾	2.4	_	_	V	IOH ≥ 15 mA, VDD = 3.3V (Note 1)		
HDO20A	Voн1	Output High Voltage 4x Source Driver Pins ⁽²⁾	1.5	_	_	V	IOH ≥ -3.9 mA, VDD = 3.3V (Note 1)		
			2.0	_	_		IOH ≥ -3.7 mA, VDD = 3.3V (Note 1)		
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V (Note 1)		
		Output High Voltage 8x Source Driver Pins ⁽³⁾	1.5	_	_	V	IOH ≥ -7.5 mA, VDD = 3.3V (Note 1)		
			2.0		_		$IOH \ge -6.8 \text{ mA}, VDD = 3.3V$ (Note 1)		
			3.0	_	_		IOH \geq -3 mA, VDD = 3.3V (Note 1)		

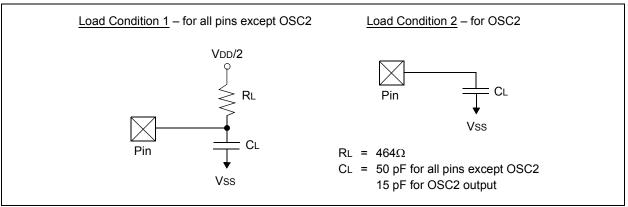
Note 1: Parameters are characterized, but not tested.

For 44-pin devices: RA3, RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1 and RC<9:3> **For 64-pin devices:** RA4, RA7, RA<10:9>, RB7, RB<15:9>, RC1, RC<9:3>, RC15 and RG<8:7> **For 100-pin devices:** RA4, RA7, RA9, RA10, RB7, RB<15:9>, RC1, RC<9:3>, RC15, RD<3:1> and RG<8:6>

^{2:} Includes all I/O pins that are not 8x Sink Driver pins (see below).

^{3:} Includes the following pins:

34.2 AC Characteristics and Timing Parameters


The information contained in this section defines dsPIC33EPXXXGM3XX/6XX/7XX AC characteristics and timing parameters for high-temperature devices. However, all AC timing specifications in this section are the same as those in **Section 33.2 "AC Characteristics and Timing Parameters"**, with the exception of the parameters listed in this section.

Parameters in this section begin with an H, which denotes High temperature. For example, Parameter OS53 in Section 33.2 "AC Characteristics and Timing Parameters" is the Industrial and Extended temperature equivalent of HOS53.

TABLE 34-9: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
AC CHARACTERISTICS	Operating temperature -40°C ≤ TA ≤ +150°C						
	Operating voltage VDD range as described in Table 34-1.						

FIGURE 34-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 34-10: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +150^{\circ}\text{C}$				
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions				
HOS53	DCLK	CLKO Stability (Jitter) ⁽¹⁾	-5	0.5	5	%	Measured over 100 ms period

Note 1: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{Fosc}{Peripheral Bit Rate Clock}}}$$

For example: Fosc = 32 MHz, DCLK = 5%, SPIx bit rate clock (i.e., SCKx) is 2 MHz.

SPI SCK Jitter =
$$\left[\frac{DCLK}{\sqrt{\left(\frac{32 \ MHz}{2 \ MHz}\right)}} \right] = \left[\frac{5\%}{\sqrt{16}} \right] = \left[\frac{5\%}{4} \right] = 1.25\%$$

© 2013 Microchip Technology Inc.

TABLE 34-11: INTERNAL FRC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherw Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +150^{\circ}\text{C}$					herwise stated)				
Param No.	Characteristic	Min	Тур	p Max Units Conditions							
	Internal FRC Accuracy @ FRC Frequency = 7.3728 MHz										
HF20	FRC	-3	_	+3	%	$-40^{\circ}\text{C} \le \text{Ta} \le +150^{\circ}\text{C}$	$V_{DD} = 3.0-3.6V$				

TABLE 34-12: INTERNAL RC ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{Ta} \le +150^{\circ}\text{C}$						
Param No.	Characteristic Min Typ Max Units Conditions							
	LPRC @ 32.768 kHz ^(1,2)							
HF21	LPRC	-30	_	+30	%	-40°C ≤ TA ≤ +150°C VDD = 3.0-3.6V		

Note 1: Change of LPRC frequency as VDD changes.

^{2:} LPRC accuracy impacts the Watchdog Timer Time-out Period (TWDT1). See Section 30.5 "Watchdog Timer (WDT)" for more information.

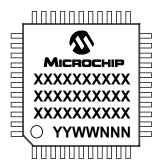
TABLE 34-13: ADC MODULE SPECIFICATIONS (12-BIT MODE)

AC CHAF	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +150^{\circ}\text{C}$						
Param No.	Symbol	Characteristic	Min	Min Typ Max		Units	Conditions			
ADC Accuracy (12-Bit Mode) ⁽¹⁾										
HAD20a	Nr	Resolution ⁽³⁾	1:	2 Data B	its	bits				
HAD21a	INL	Integral Nonlinearity	-6	_	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD22a	DNL	Differential Nonlinearity	-1	_	1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD23a	GERR	Gain Error	-10	_	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
HAD24a	EOFF	Offset Error	-5	_	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
		Dynamic	Performa	nce (12-	Bit Mode	e) ⁽²⁾				
HAD33a	FNYQ	Input Signal Bandwidth	_	_	200	kHz				

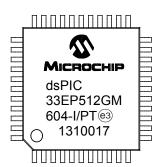
- **Note 1:** These parameters are characterized, but are tested at 20 ksps only.
 - 2: These parameters are characterized by similarity, but are not tested in manufacturing.
 - 3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

TABLE 34-14: ADC MODULE SPECIFICATIONS (10-BIT MODE)

AC CHAF	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +150^{\circ}C$							
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions				
	ADC Accuracy (10-Bit Mode) ⁽¹⁾										
HAD20b	Nr	Resolution ⁽³⁾	10	10 Data Bits							
HAD21b	INL	Integral Nonlinearity	-1.5	_	1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
HAD22b	DNL	Differential Nonlinearity	-0.25	_	0.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
HAD23b	GERR	Gain Error	-2.5	_	2.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
HAD24b	EOFF	Offset Error	-1.25	_	1.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
		Dynamic F	Performa	nce (10-	Bit Mode	e) ⁽²⁾					
HAD33b	FNYQ	Input Signal Bandwidth	_	_	400	kHz					


- **Note 1:** These parameters are characterized, but are tested at 20 ksps only.
 - 2: These parameters are characterized by similarity, but are not tested in manufacturing.
 - 3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

	<u> </u>	USPIC33EPAAAGIWI3AA/0AA//AA		
NOTES:				


35.0 PACKAGING INFORMATION

35.1 Package Marking Information

44-Lead TQFP (10x10x1 mm)

Example

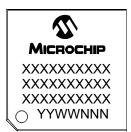
44-Lead QFN (8x8x0.9 mm)

Example

Legend: XX...X Customer-specific information
Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator (e3)
can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.

35.1 Package Marking Information (Continued)


64-Lead QFN (9x9x0.9 mm)

Example

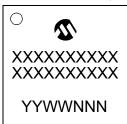
64-Lead TQFP (10x10x1mm)

Example

100-Lead TQFP (14x14x1mm)

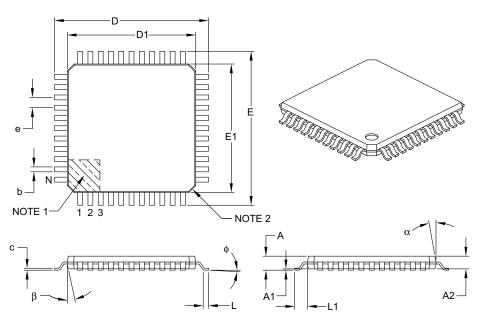
Example

35.1 Package Marking Information (Continued)


100-Lead TQFP (12x12x1mm)

Example

121-Lead TFBGA (10x10x1.1 mm)

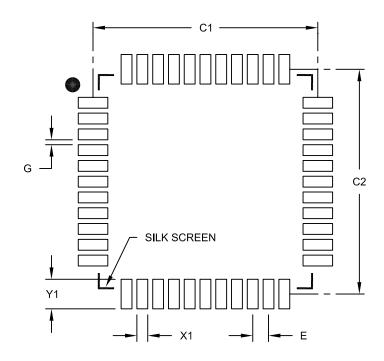

Example

35.2 Package Details

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Di	mension Limits	MIN	NOM	MAX
Number of Leads	N		44	
Lead Pitch	е		0.80 BSC	
Overall Height	Α	-	_	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	_	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	ф	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1		10.00 BSC	
Lead Thickness	С	0.09	_	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

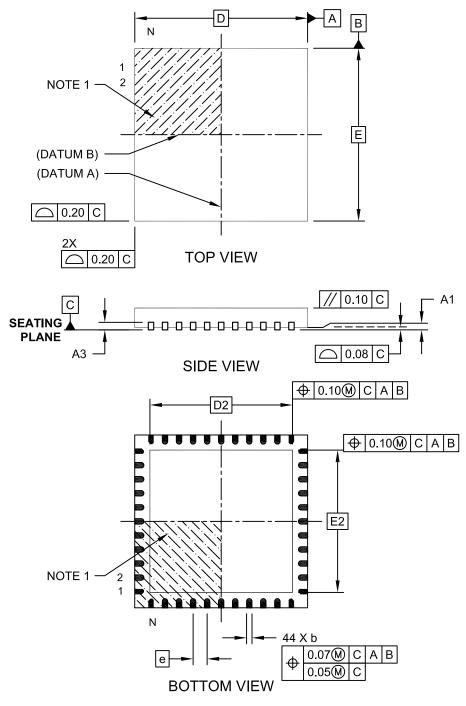
44-Lead Plastic Thin Quad Flatpack (PT) - 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N	MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.80 BSC			
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X44)	X1			0.55	
Contact Pad Length (X44)	Y1			1.50	
Distance Between Pads	G	0.25			

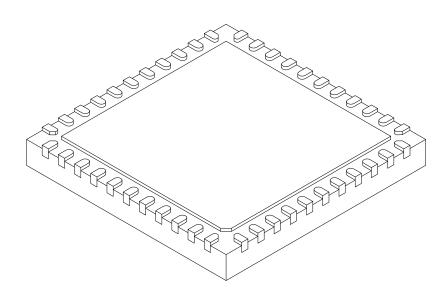
Notes


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-103C Sheet 1 of 2

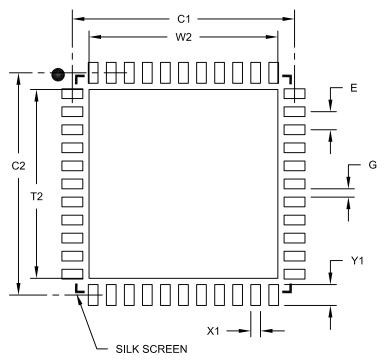
44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Number of Pins	N		44	
Pitch	е		0.65 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Terminal Thickness	A3	0.20 REF		
Overall Width	E		8.00 BSC	
Exposed Pad Width	E2	6.25	6.45	6.60
Overall Length	D		8.00 BSC	
Exposed Pad Length	D2	6.25	6.45	6.60
Terminal Width	b	0.20	0.30	0.35
Terminal Length	L	0.30	0.40	0.50
Terminal-to-Exposed-Pad	K	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2

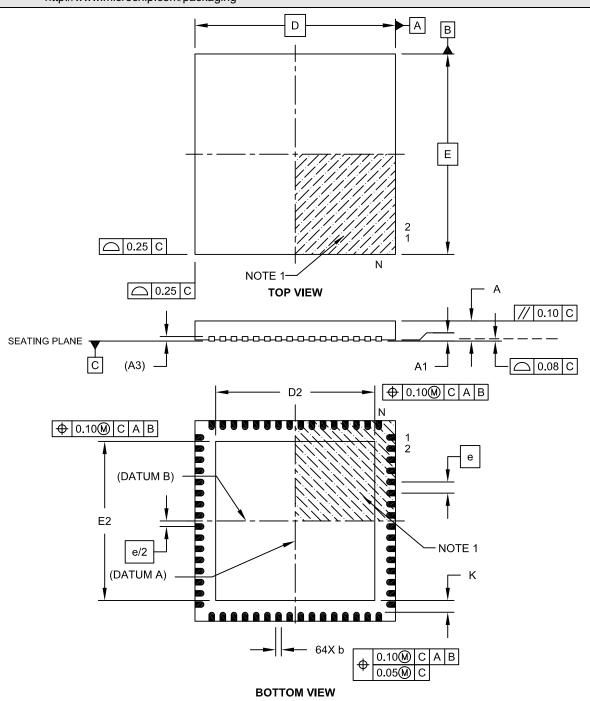
44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.65 BSC		
Optional Center Pad Width	W2			6.60
Optional Center Pad Length	T2			6.60
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-149C Sheet 1 of 2

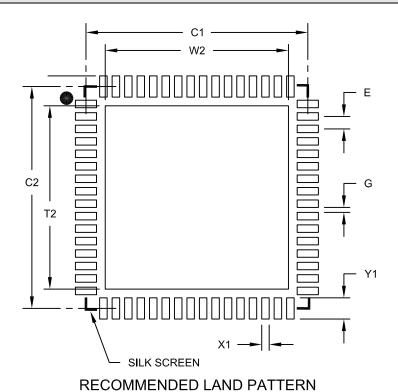
64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX
Number of Pins	N		64	
Pitch	е		0.50 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	Е		9.00 BSC	
Exposed Pad Width	E2	7.05	7.15	7.50
Overall Length	О		9.00 BSC	
Exposed Pad Length	D2	7.05	7.15	7.50
Contact Width	b	0.18	0.25	0.30
Contact Length	L	0.30	0.40	0.50
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

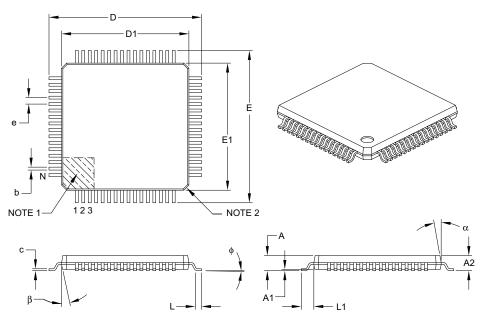
Microchip Technology Drawing C04-149C Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units MILLIMETERS **Dimension Limits** MIN NOM MAX Contact Pitch 0.50 BSC Ε Optional Center Pad Width W2 7.35 Optional Center Pad Length T2 7.35 Contact Pad Spacing C1 8.90 Contact Pad Spacing C2 8.90 Contact Pad Width (X64) X1 0.30 Contact Pad Length (X64) Υ1 0.85 Distance Between Pads G 0.20

Notes


1. Dimensioning and tolerancing per ASME Y14.5M

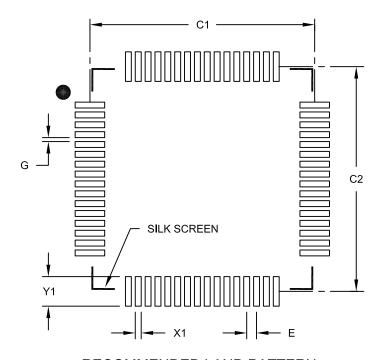
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Din	nension Limits	MIN	NOM	MAX
Number of Leads	N		64	
Lead Pitch	е		0.50 BSC	
Overall Height	А	-	_	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	ф	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1		10.00 BSC	
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

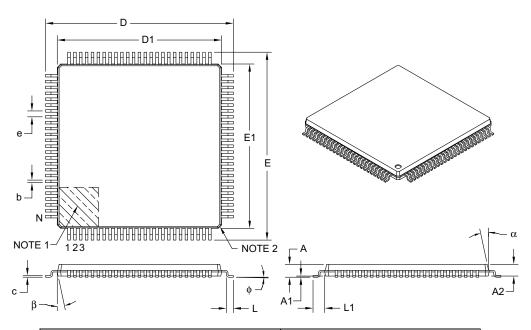
64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N	<i>I</i> ILLIMETER	S
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	0.50 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

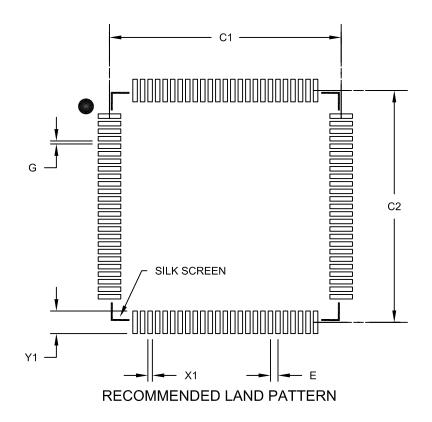
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
	Dimension Limits	MIN	NOM	MAX	
Number of Leads	N		100		
Lead Pitch	е		0.50 BSC		
Overall Height	А	_	_	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	_	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1		1.00 REF		
Foot Angle	ф	0°	3.5°	7°	
Overall Width	E		16.00 BSC		
Overall Length	D		16.00 BSC		
Molded Package Width	E1		14.00 BSC		
Molded Package Length	D1		14.00 BSC		
Lead Thickness	С	0.09	_	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

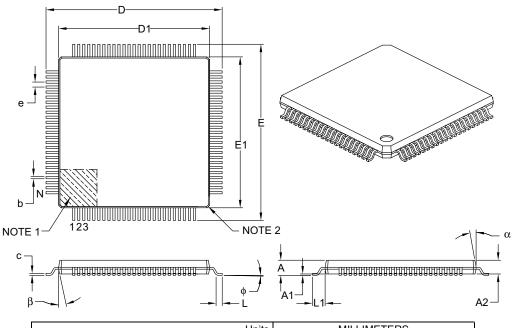
Microchip Technology Drawing C04-110B

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		15.40	
Contact Pad Spacing	C2		15.40	
Contact Pad Width (X100)	X1			0.30
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

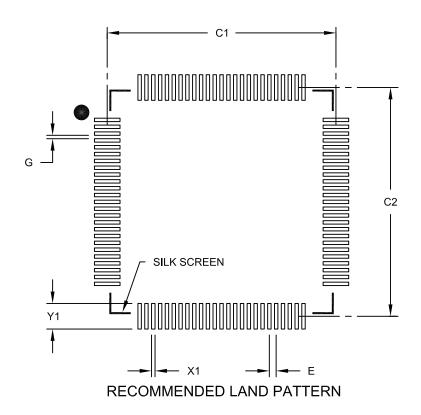
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Leads	N		100		
Lead Pitch	е		0.40 BSC		
Overall Height	A	-	_	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	_	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	ф	0°	3.5°	7°	
Overall Width	E		14.00 BSC		
Overall Length	D		14.00 BSC		
Molded Package Width	E1		12.00 BSC		
Molded Package Length	D1		12.00 BSC		
Lead Thickness	С	0.09	_	0.20	
Lead Width	b	0.13	0.18	0.23	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Chamfers at corners are optional; size may vary.
- 3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

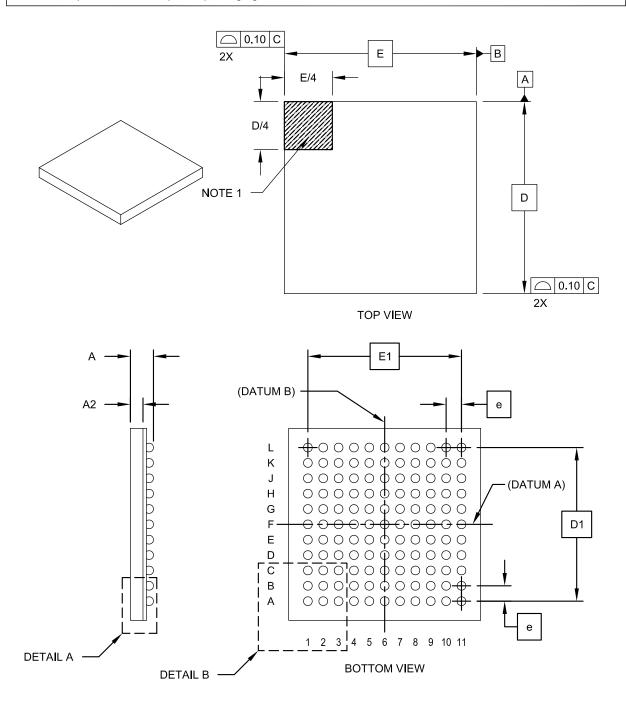
Microchip Technology Drawing C04-100B

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.40 BSC		
Contact Pad Spacing	C1	13.40		
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

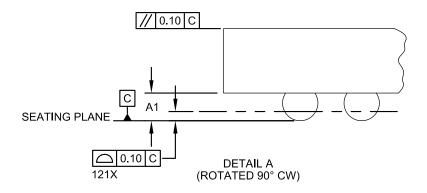
Notes:

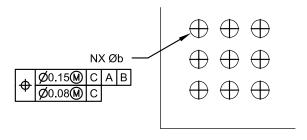

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



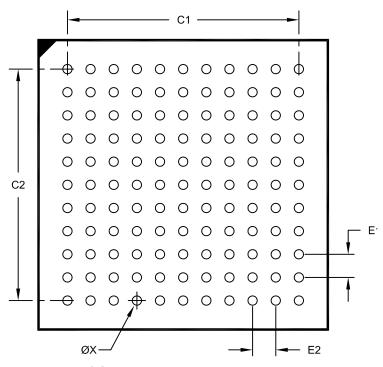
Microchip Technology Drawing C04-148 Rev E Sheet 1 of 2

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL B

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Number of Contacts	Z		121		
Contact Pitch	е		0.80 BSC		
Overall Height	Α	1.00 1.10 1.20			
Standoff	A1	0.25 0.30 0.3			
Molded Package Thickness	A2	0.75 0.80 0.85			
Overall Width	Е	10.00 BSC			
Array Width	E1	8.00 BSC			
Overall Length	D	10.00 BSC			
Array Length	D1	8.00 BSC			
Contact Diameter	b		0.40 TYP		


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- REF: Reference Dimension, usually without tolerance, for information purposes only.
- 3. The outer rows and colums of balls are located with respect to datums A and B.

Microchip Technology Drawing C04-148 Rev E Sheet 2 of 2

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [TFBGA--Formerly XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E1		0.80 BSC	
Contact Pitch	E2		0.80 BSC	
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Diameter (X121)	Х			0.32

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2148 Rev D

APPENDIX A: REVISION HISTORY

Revision A (February 2013)

This is the initial released version of this document.

Revision B (June 2013)

Changes to Section 5.0 "Flash Program Memory", Register 5-1. Changes to Section 6.0 "Resets", Figure 6-1. Changes to Section 26.0 "Op Amp/Comparator Module", Register 26-2. Updates to most of the tables in Section 33.0 "Electrical Characteristics". Minor text edits throughout the document.

Revision C (September 2013)

Changes to Figure 23-1. Changes to Figure 26-2. Changes to Table 30-2. Changes to Section 33.0 "Electrical Characteristics". Added Section 34.0 "High-Temperature Electrical Characteristics" to the data sheet. Minor typographical edits throughout the document.

N	0	Т	_ (٠.
IV	u		_3	Э.

INDEX

A	Timer3 and Timer5 (Type C) External	
Absolute Maximum Ratings429	Clock Requirements	448
AC Characteristics	ADC	
10-Bit ADC Conversion Requirements	10-Bit Configuration	323
12-Bit ADC Conversion Requirements	12-Bit Configuration	323
12Cx Bus Data (Master Mode) Requirements 480	Control Registers	327
ADC Module487	Helpful Tips	326
ADC Module (10-Bit Mode)489, 501	Key Features	323
ADC Module (10-bit Mode)	Assembler	
, ,	MPASM Assembler	426
Capacitive Loading Requirements on Output Pins441	D	
•	В	
DMA Module Requirements	Bit-Reversed Addressing	
·	Example	100
External Clock Requirements	Implementation	99
High-Speed PWMx Requirements	Sequence Table (16-Entry)	100
I/O Requirements	Block Diagrams	
I2Cx Bus Data (Slave Mode) Requirements	16-Bit Timer1 Module	209
Input Capture x (ICx) Requirements	Accessing Program Memory with Table	
Internal FRC Accuracy	Instructions	102
Internal LPRC Accuracy443	ADCx Conversion Clock Period	325
Internal RC Accuracy500	ADCx with Connection Options for ANx Pins	
Load Conditions	and Op Amps	324
OCx/PWMx Mode Requirements450	Arbiter Architecture	
Op Amp/Comparator Voltage Reference	BEMF Voltage Measured Using ADC Module	
Settling Time	Boost Converter Implementation	
Output Compare x (OCx) Requirements450	CALL Stack Frame	
PLL Clock	Connections for On-Chip Voltage Regulator	
QEI External Clock Requirements452	CPU Core	
QEIx Index Pulse Requirements454	CRC Module	
Quadrature Decoder Requirements453	CRC Shift Engine	
Reset, Watchdog Timer, Oscillator Start-up Timer	CTMU Module	
and Power-up Timer Requirements446	Data Access from Program Space Address	
SPI1 Master Mode (Full-Duplex, CKE = 0 , CKP = x ,	Generation	101
SMP = 1) Requirements 470	DCI Module	
SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x ,	Digital Filter Interconnect	
SMP = 1) Requirements469	DMA Controller	
SPI1 Master Mode (Half-Duplex, Transmit Only)	dsPIC33EPXXXGM3XX/6XX/7XX Devices	
Requirements468	ECANx Module	
SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 0,	EDS Read Address Generation	
SMP = 0) Requirements478	EDS Write Address Generation	
SPI1 Slave Mode (Full-Duplex, CKE = 0, CKP = 1,	High-Speed PWMx Architectural Overview	
SMP = 0) Requirements476	High-Speed PWMx Register Interconnection	220
SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 0,	Diagram	230
SMP = 0) Requirements472	I ² C Module	
SPI1 Slave Mode (Full-Duplex, CKE = 1, CKP = 1,		
SMP = 0) Requirements474	Input Capture Module Interleaved PFC	
SPI2, SPI3 Master Mode (Full-Duplex, CKE = 0,		
CKP = x, SMP = 1) Requirements 458	MCLR Pin Connections	
SPI2, SPI3 Master Mode (Full-Duplex, CKE = 1,	Multi-Phase Synchronous Buck Converter	
CKP = x, SMP = 1) Requirements 457	Multiplexing Remappable Output for RPn	
SPI2, SPI3 Master Mode (Half-Duplex,	Op Amp Configuration A	
Transmit Only) Requirements456	Op Amp Configuration B	
SPI2, SPI3 Slave Mode (Full-Duplex, CKE = 0,	Op Amp/Comparator Voltage Reference	
CKP = 0, SMP = 0) Requirements	Op Amp/Comparator x Module	
SPI2, SPI3 Slave Mode (Full-Duplex, CKE = 1,	Oscillator System	
CKP = 0, SMP = 0) Requirements460	Output Compare x Module	
SPI2, SPI3 Slave Mode (Full-Duplex, CKE = 1,	Paged Data Memory Space	
CKP = 1, SMP = 0) Requirements	Peripheral to DMA Controller	
Temperature and Voltage Specifications	PLL	142
Timer1 External Clock Requirements447	PMP Pinout and Connections to	
Timer2 and Timer4 (Type B) External	External Devices	
, , , ,	Programmer's Model	30
Clock Requirements448		

PTG Module	346	Doze Current (IDOZE)	435, 497
Quadrature Encoder Interface	256	Filter Capacitor (CEFC) Specifications	
Recommended Minimum Connection	22	High Temperature	496
Remappable Input for U1RX	164	I/O Pin Input Specifications	
Reset System		I/O Pin Output Specifications	
RTCC Module		Idle Current (IIDLE)	
Shared Port Structure	161	Op Amp/Comparator Specifications	
Single-Phase Synchronous Buck Converter	25	Op Amp/Comparator Voltage Reference	
SPIx Module		Specifications	485
Suggested Oscillator Circuit Placement	23	Operating Current (IDD)	
Type B Timer (Timer2/4)		Operating MIPS vs. Voltage	
Type B/Type C Timer Pair (32-Bit Timer)		Power-Down Current (IPD)	
Type C Timer (Timer3/5)		Program Memory	
UARTx Module		Temperature and Voltage	
User-Programmable Blanking Function	363	Temperature and Voltage Specifications	
Watchdog Timer (WDT)		Thermal Operating Conditions	
Brown-out Reset (BOR)	412	Thermal Packaging Characteristics	430
•		DCI	
C		Control Registers	340
C Compilers		Introduction	339
MPLAB XC Compilers	426	Demo/Development Boards, Evaluation and	
Charge Time Measurement Unit (CTMU)	317	Starter Kits	428
Code Examples		Development Support	425
IC1 Connection to HOME1 QEI1 Digital Filte	er Input	Third-Party Tools	428
on Pin 43	164	DMA Controller	
Port Write/Read	162	Channel to Peripheral Associations	128
PWMx Write-Protected Register		Supported Peripherals	127
Unlock Sequence		DMA Controller Registers	
PWRSAV Instruction Syntax	151	DMAxCNT	130
Code Protection	407, 414	DMAxCON	130
CodeGuard Security	407, 414	DMAxPAD	130
Configuration Bits	407	DMAxREQ	130
Description		DMAxSTA	130
Configuration Byte Register Map	408	DMAxSTB	130
CPU		Doze Mode	153
Addressing Modes		E	
Arithmetic Logic Unit (ALU)		_	
Control Registers		ECAN Module	
Data Space Addressing		Control Registers	
DSP Engine		Message Buffers	
Instruction Set		Word 0	
Programmer's Model		Word 1	
Register Descriptions	29	Word 2	
CTMU	0.40	Word 3	
Control Registers		Word 4	
Customer Change Notification Service		Word 5	
Customer Notification Service		Word 6	
Customer Support	532	Word 7	
D		Modes of Operation	
	44	Overview	
Data Address Space		Electrical Characteristics	
Memory Map for 128-Kbyte Devices		AC	
Memory Map for 256-Kbyte Devices		Enhanced CAN Module (ECAN)	29
Memory Map for 512-Kbyte Devices		Equations	4.44
Near Data Space		Device Operating Frequency	
Organization and Alignment		Errata	12
SFR Space		F	
Width		•	100
Data Memory	ააყ	Flash Program Memory	
Data Memory Arbitration and Rus Master Priority	05	Control Registers	
Arbitration and Bus Master Priority		Operations	
DC Characteristics		RTSP Operation	
Brown-out Reset (BOR)		Table Instructions	
CTMU Current Source	400	Flexible Configuration	40 <i>i</i>

G		J	
Getting Started with 16-Bit DSCs	21	JTAG Boundary Scan Interface	407
Connection Requirements	21	JTAG Interface	
CPU Logic Filter Capacitor Connection (VCAP)	22	.,	
Decoupling Capacitors	21	M	
External Oscillator Pins	23	Memory Maps	
ICSP Pins		EDS	
Master Clear (MCLR) Pin		Memory Organization	
Oscillator Value Conditions on Device Start-up	24	Microchip Internet Web Site	
Unused I/Os	24	Modulo Addressing	
н		Applicability	
		Operation Example	
High-Speed PWM		Start and End Address	
Control Registers	231	W Address Register Selection	
Faults		MPLAB Assembler, Linker, Librarian	
High-Temperature Electrical Characteristics		MPLAB ICD 3 In-Circuit Debugger	
Absolute Maximum Ratings		MPLAB PM3 Device Programmer	
High-Voltage Detect (HVD)	171	MPLAB REAL ICE In-Circuit Emulator System	427
I		MPLAB X Integrated Development	
		Environment Software	
I/O Ports		MPLAB X SIM Software Simulator	
Configuring Analog/Digital Port Pins		MPLIB Object Librarian	426
Helpful Tips		MPLINK Object Linker	426
Open-Drain Configuration		0	
Parallel I/O (PIO)		•	
Write/Read Timing		Op Amp	
In-Circuit Debugger		Application Considerations	
In-Circuit Emulation		Configuration A	
In-Circuit Serial Programming (ICSP)		Configuration B	
Input Capture		Op Amp/Comparator	
Control Registers		Control Registers	
Input Change Notification (ICN)		Resources	
Instruction Addressing Modes		Oscillator Configuration	
File Register Instructions		CPU Clocking System	
Fundamental Modes Supported		Output Compare	
MAC Instructions		Control Registers	222
MCU Instructions		Р	
Move and Accumulator Instructions		•	
Other Instructions	97	Packaging	
Instruction Set		Details	
Overview		Marking5	
Summary		Parallel Master Port (PMP)	
Interfacing Program and Data Memory Spaces		Peripheral Module Disable (PMD)	
Inter-Integrated Circuit (I ² C)		Peripheral Pin Select (PPS)	
Control Registers	279	Input Sources, Maps Input to Function	
Internal LPRC Oscillator		Output Selection for Remappable Pins	
Use with WDT		Peripheral Trigger Generator (PTG) Module	
Internet Address	532	PICkit 3 In-Circuit Debugger/Programmer	
Interrupt Controller		Pinout I/O Descriptions (table)	16
Control and Status Registers		PMP	
IECx	118	Control Registers	
IFSx		Power-Saving Features	
INTCON1		Clock Frequency and Switching	
INTCON2	118	Instruction-Based Modes	
INTCON3	118	Idle	
INTCON4	118	Sleep	152
INTTREG	118	Interrupts Coincident with Power Save	
IPCx		Instructions	
Reset Sequence	113	Program Address Space	
Interrupt Vector		Construction	101
Details (table)		Data Access from Program Memory Using	
Interrupt Vector Table (IVT)		Table Instructions	
Interrupt Vector Table (table)	114	Memory Map for dsPIC33EP128GM3XX/6XX/7X	
		Devices	37

Memory Map for dsPIC33EP256GM3XX/6XX/7XX		Peripheral Pin Select Output	
Devices	38	(dsPIC33EPXXXGM306/706 Devices)	74
Memory Map for dsPIC33EP512GM3XX/6XX/7XX		Peripheral Pin Select Output	
Devices	39	(dsPIC33EPXXXGM310/710 Devices)	75
Table Read Instructions		PMD (dsPIC33EPXXXGM3XX Devices)	80
TBLRDH	102	PMD (dsPIC33EPXXXGM6XX/7XX Devices)	
TBLRDL	102	PORTA (dsPIC33EPXXXGM304/604 Devices)	84
Program Memory		PORTA (dsPIC33EPXXXGM306/706 Devices)	
Organization	40	PORTA (dsPIC33EPXXXGM310/710 Devices)	
Reset Vector		PORTB (dsPIC33EPXXXGM304/604 Devices)	
Programmable CRC		PORTB (dsPIC33EPXXXGM306/706 Devices)	
Control Registers	403	PORTB (dsPIC33EPXXXGM310/710 Devices)	
Overview		PORTC (dsPIC33EPXXXGM304/604 Devices)	
Setup Examples		PORTC (dsPIC33EPXXXGM306/706 Devices)	
Programmable Cyclic Redundancy	402	PORTC (dsPIC33EPXXXGM310/710 Devices)	
Check (CRC) Generator	401	PORTO (dsPIC33EPXXXGM310/710 Devices)	
PTG	401	PORTD (dsPIC33EPXXXGM300/700 Devices)	
	247	,	
Control Registers		PORTE (dsPIC33EPXXXGM306/706 Devices)	
Introduction		PORTE (dsPIC33EPXXXGM310/710 Devices)	
Output Descriptions		PORTF (dsPIC33EPXXXGM306/706 Devices)	
Step Commands and Format	357	PORTF (dsPIC33EPXXXGM310/710 Devices)	
Q		PORTG (dsPIC33EPXXXGM306/706 Devices)	
		PORTG (dsPIC33EPXXXGM310/710 Devices)	
Quadrature Encoder Interface (QEI)		Programmable CRC	
Control Registers	257	PTG	56
R		PWM	57
		PWM Generator 1	57
Real-Time Clock and Calender (RTCC)		PWM Generator 2	58
Referenced Sources	13	PWM Generator 3	58
Register		PWM Generator 4	59
PTGADJ (PTG Adjust)	355	PWM Generator 5	59
PTGL0 (PTG Literal 0)	355	PWM Generator 6	60
PTGQPTR (PTG Step Queue Pointer)	356	QEI1	
PTGQUEx (PTG Step Queue x)	356	QEI2	62
Register Map		Reference Clock	
Real-Time Clock and Calendar	82	SPI1, SPI2 and SPI3	
Register Maps		System Control	
ADC1 and ADC2	66	Timers	
CPU Core	46	UART1 and UART2	
CTMU	82	UART3 and UART4	
DCI		Registers	0-
DMA Controller		ADxCHS0 (ADCx Input Channel 0 Select)	22/
ECAN1 (When WIN (C1CTRL) = 0 or 1)			. 334
ECAN1 (When WIN (C1CTRL) = 0)		ADxCHS123 (ADCx Input Channel 1, 2,	222
ECAN1 (WIN (C1CTRL) = 1)		3 Select)	
ECAN2 (When WIN (C1CTRL) = 0 or 1)		ADxCON1 (ADCx Control 1)	
		ADxCON2 (ADCx Control 2)	
ECAN2 (When WIN (C1CTRL) = 0)		ADxCON3 (ADCx Control 3)	
ECAN2 (WIN (C1CTRL) = 1)		ADxCON4 (ADCx Control 4)	
I2C1 and I2C2		ADxCSSH (ADCx Input Scan Select High)	
Input Capture 1 through Input Capture 8	53	ADxCSSL (ADCx Input Scan Select Low)	
Interrupt Controller		ALCFGRPT (Alarm Configuration)	. 384
(dsPIC33EPXXXGM3XX Devices)	50	ALRMVAL (Alarm Minutes and Seconds,	
Interrupt Controller		ALRMPTR = 00)	. 389
(dsPIC33EPXXXGM6XX/7XX Devices)		ALRMVAL (Alarm Month and Day Value,	
JTAG Interface	82	ALRMPTR = 10)	. 387
NVM	78	ALRMVAL (Alarm Weekday and Hours,	
Op Amp/Comparator	81	ALRMPTR = 01)	388
Output Compare		ALTDTRx (PWMx Alternate Dead-Time)	244
Pad Configuration		AUXCONx (PWMx Auxiliary Control)	
Parallel Master/Slave Port		CHOP (PWMx Chop Clock Generator)	
Peripheral Pin Select Input			
(dsPIC33EPGM60X/7XX Devices)	76	CLKDIV (Clock Divisor)	
Peripheral Pin Select Input	10	CM4CON (Op Amp/Comparator 4 Control)	
(dsPIC33EPXXXGM3XX Devices)	77	CMSTAT (Op Amp/Comparator Status)	. 366
Peripheral Pin Select Output	1 1	CMxCON (Op Amp/Comparator x Control,	0.0-
(dsPIC33EPXXXGM304/604 Devices)	74	x = 1, 2, 3 or 5)	. 367

CMxFLTR (Comparator x Filter Control)	375	DMAPWC (DMA Peripheral Write	
CMxMSKCON (Comparator x Mask		Collision Status)	. 136
Gating Control)	373	DMARQC (DMA Request Collision Status)	. 137
CMxMSKSRC (Comparator x Mask Source		DMAxCNT (DMA Channel x Transfer Count)	
Select Control)	371	DMAxCON (DMA Channel x Control)	
CORCON (Core Control)		DMAxPAD (DMA Channel x Peripheral Address)	
CRCCON1 (CRC Control 1)		DMAxREQ (DMA Channel x IRQ Select)	
CRCCON2 (CRC Control 2)		DMAxSTAH (DMA Channel x Start	. 101
CRCXORH (CRC XOR Polynomial High)		Address A, High)	122
			. 132
CRCXORL (CRC XOR Polynomial Low)		DMAxSTAL (DMA Channel x Start	400
CTMUCON1 (CTMU Control Register 1)		Address A, Low)	. 132
CTMUCON2 (CTMU Control Register 2)		DMAxSTBH (DMA Channel x Start	
CTMUICON (CTMU Current Control)	322	Address B, High)	. 133
CVR1CON (Comparator Voltage		DMAxSTBL (DMA Channel x Start	
Reference Control 1)	376	Address B, Low)	. 133
CVR2CON (Comparator Voltage		DSADRH (DMA Most Recent RAM	
Reference Control 2)	377	High Address)	. 135
CxBUFPNT1 (ECANx Filter 0-3		DSADRL (DMA Most Recent RAM	
Buffer Pointer 1)	303	Low Address)	. 135
CxBUFPNT2 (ECANx Filter 4-7		DTRx (PWMx Dead-Time)	
Buffer Pointer 2)	304	FCLCONx (PWMx Fault Current-Limit Control)	
CxBUFPNT3 (ECANx Filter 8-11	00 1	I2CxCON (I2Cx Control)	
Buffer Pointer 3)	304	I2CxMSK (I2Cx Slave Mode Address Mask)	
CxBUFPNT4 (ECANx Filter 12-15	504	,	
•	205	I2CxSTAT (I2Cx Status) ICxCON1 (Input Capture x Control 1)	
Buffer Pointer 4)		` ' ' '	
CxCFG1 (ECANx Baud Rate Configuration 1)		ICxCON2 (Input Capture x Control 2)	
CxCFG2 (ECANx Baud Rate Configuration 2)		INDXxCNTH (Index Counter x High Word)	
CxCTRL1 (ECANx Control 1)		INDXxCNTL (Index Counter x Low Word)	
CxCTRL2 (ECANx Control 2)	294	INDXxHLD (Index Counter x Hold)	
CxEC (ECANx Transmit/Receive Error Count)	301	INTCON1 (Interrupt Control 1)	. 121
CxFCTRL (ECANx FIFO Control)	296	INTCON2 (Interrupt Control 2)	. 123
CxFEN1 (ECANx Acceptance Filter Enable 1)	303	INTCON3 (Interrupt Control 3)	. 124
CxFIFO (ECANx FIFO Status)	297	INTCON4 (Interrupt Control 4)	. 124
CxFMSKSEL1 (ECANx Filter 7-0 Mask		INTTREG (Interrupt Control and Status)	
Selection 1)	307	INTxHLDH (Interval Timerx Hold High Word)	. 268
CxFMSKSEL2 (ECANx Filter 15-8 Mask		INTxHLDL (Interval Timerx Hold Low Word)	
Selection 2)	308	INTxTMRH (Interval Timerx High Word)	
CxINTE (ECANx Interrupt Enable)		INTxTMRL (Interval Timerx Low Word)	
CXINTF (ECANx Interrupt Flag)		IOCONx (PWMx I/O Control)	
CxRXFnEID (ECANx Acceptance Filter n	200	LEBCONx (Leading-Edge Blanking Control x)	
Extended Identifier)	307	LEBDLYx (Leading-Edge Blanking Delay x)	
	307	, , ,	
CxRXFnSID (ECANx Acceptance Filter n	200	MDC (PWMx Master Duty Cycle)	. 239
Standard Identifier)		NVMADR (Nonvolatile Memory	400
CxRXFUL1 (ECANx Receive Buffer Full 1)		Lower Address)	. 106
CxRXFUL2 (ECANx Receive Buffer Full 2)	310	NVMADRU (Nonvolatile Memory	
CxRXMnEID (ECANx Acceptance Filter Mask n		Upper Address)	
Extended Identifier)	309	NVMCON (Nonvolatile Memory (NVM) Control)	. 105
CxRXMnSID (ECANx Acceptance Filter Mask n		NVMKEY (Nonvolatile Memory Key)	. 107
Standard Identifier)	309	NVMSRCADRH (Nonvolatile Data Memory	
CxRXOVF1 (ECANx Receive Buffer		Upper Address)	. 107
Overflow 1)	311	NVMSRCADRL (Nonvolatile Data Memory	
CxRXOVF2 (ECANx Receive Buffer		Lower Address)	. 107
Overflow 2)	311	OCxCON1 (Output Compare x Control 1)	
CxTRmnCON (ECANx TX/RX Buffer mn		OCxCON2 (Output Compare x Control 2)	
Control)	312	OSCCON (Oscillator Control)	
		,	
CxVEC (ECANx Interrupt Code)		OSCTUN (FRC Oscillator Tuning)	
DCICON1 (DCI Control 1)		PADCFG1 (Pad Configuration Control)	
DCICON2 (DCI Control 2)		PDCx (PWMx Generator Duty Cycle)	
DCICON3 (DCI Control 3)		PHASEx (PWMx Primary Phase-Shift)	
DCISTAT (DCI Status)		PLLFBD (PLL Feedback Divisor)	
DEVID (Device ID)	411	PMADDR (Parallel Master Port Address	
DEVREV (Device Revision)	411	PMAEN (Parallel Master Port Address Enable)	
DMALCA (DMA Last Channel Active Status)		PMCON (Parallel Master Port Control)	
DMAPPS (DMA Ping-Pong Status)		PMD1 (Peripheral Module Disable Control 1)	
,			

PMD2 (Peripheral Module Disable Control 2)	156	RPINR26 (Peripheral Pin Select Input 26)	191
PMD3 (Peripheral Module Disable Control 3)	157	RPINR27 (Peripheral Pin Select Input 27)	192
PMD4 (Peripheral Module Disable Control 4)	159	RPINR28 (Peripheral Pin Select Input 28)	193
PMD6 (Peripheral Module Disable Control 6)	159	RPINR29 (Peripheral Pin Select Input 29)	194
PMD7 (Peripheral Module Disable Control 7)	160	RPINR3 (Peripheral Pin Select Input 3)	175
PMMODE (Parallel Master Port Mode)	394	RPINR30 (Peripheral Pin Select Input 30)	195
PMSTAT (Parallel Master Port Status)		RPINR37 (Peripheral Pin Select Input 37)	
POSxCNTH (Position Counter x High Word)		RPINR38 (Peripheral Pin Select Input 38)	
POSxCNTL (Position Counter x Low Word)		RPINR39 (Peripheral Pin Select Input 39)	
POSxHLD (Position Counter x Hold)		RPINR40 (Peripheral Pin Select Input 40)	
PTCON (PWMx Time Base Control)		RPINR41 (Peripheral Pin Select Input 41)	
PTCON2 (PWMx Primary Master Clock		RPINR7 (Peripheral Pin Select Input 7)	
Divider Select 2)	233	RPINR8 (Peripheral Pin Select Input 8)	
PTGBTE (PTG Broadcast Trigger Enable)		RPINR9 (Peripheral Pin Select Input 9)	178
PTGC0LIM (PTG Counter 0 Limit)		RPOR0 (Peripheral Pin Select Output 0)	
PTGC1LIM (PTG Counter 1 Limit)		RPOR1 (Peripheral Pin Select Output 1)	
PTGCON (PTG Control)		RPOR10 (Peripheral Pin Select Output 10)	
PTGCST (PTG Control/Status)		RPOR11 (Peripheral Pin Select Output 11)	
PTGHOLD (PTG Hold)		RPOR12 (Peripheral Pin Select Output 12)	
PTGSDLIM (PTG Step Delay Limit)		RPOR2 (Peripheral Pin Select Output 2)	
PTGT0LIM (PTG Timer0 Limit)		RPOR3 (Peripheral Pin Select Output 3)	
PTGT1LIM (PTG Timer1 Limit)		RPOR4 (Peripheral Pin Select Output 4)	
PTPER (PWMx Primary Master		RPOR5 (Peripheral Pin Select Output 5)	
Time Base Period)	234	RPOR6 (Peripheral Pin Select Output 6)	
PWMCAPx (PWMx Primary	20	RPOR7 (Peripheral Pin Select Output 7)	
Time Base Capture)	253	RPOR8 (Peripheral Pin Select Output 8)	
PWMCONx (PWMx Control)		RPOR9 (Peripheral Pin Select Output 9)	
QEIXCON (QEIX Control)		RSCON (DCI Receive Slot Control)	
QEIXGECH (QEIX Greater Than or Equal	201	RTCVAL (Minutes and Seconds Value,	•
Compare High Word)	267	RTCPTR = 00)	386
QEIxGECL (QEIx Greater Than or Equal	201	RTCVAL (Month and Day Value,	000
Compare Low Word)	267	RTCPTR = 10)	385
QEIxICH (QEIx Initialization/Capture	201	RTCVAL (Weekday and Hours Value,	000
High Word)	265	RTCPTR = 01)	386
QEIxICL (QEIx Initialization/Capture	200	RTCVAL (Year Value Register, RTCPTR = 11)	
Low Word)	265	SDCx (PWMx Secondary Duty Cycle)	
QEIXIOC (QEIX I/O Control)		SEVTCMP (PWMx Primary Special	272
QEIXLECH (QEIX Less Than or Equal Compare	200	Event Compare)	234
High Word)	266	SPHASEx (PWMx Secondary Phase Shift)	
QEIxLECL (QEIx Less Than or Equal Compare	200	SPIxCON1 (SPIx Control 1)	
Low Word)	266	SPIxCON2 (SPIx Control 2)	
QEIxSTAT (QEIx Status)		SPIxSTAT (SPIx Status and Control)	
RCFGCAL (RTCC Calibration	201	SR (CPU STATUS)	
and Configuration)	382	SSEVTCMP (PWMx Secondary Special	, 110
RCON (Reset Control)		Event Compare)	238
REFOCON (Reference Oscillator Control)		STCON (PWMx Secondary Time Base Control)	
RPINR0 (Peripheral Pin Select Input 0)		STCON2 (PWMx Secondary Primary Master	200
RPINR1 (Peripheral Pin Select Input 1)		Clock Divider Select 2)	237
RPINR10 (Peripheral Pin Select Input 10)		STPER (PWMx Secondary Master	231
RPINR11 (Peripheral Pin Select Input 11)		Time Base Period)	238
RPINR12 (Peripheral Pin Select Input 12)		T1CON (Timer1 Control)	
RPINR12 (Peripheral Pin Select Input 12)		TRGCONx (PWMx Trigger Control)	
` ' '			
RPINR15 (Peripheral Pin Select Input 15)		TRIGx (PWMx Primary Trigger Compare Value) TSCON (DCI Transmit Slot Control)	
` ' '			544
RPINR17 (Peripheral Pin Select Input 17)		TxCON (T2CON, T4CON, T6CON and	24.4
RPINR18 (Peripheral Pin Select Input 18)		T8CON (T3CON, T5CON, T7CON and	∠ 14
RPINR19 (Peripheral Pin Select Input 19)		TyCON (T3CON, T5CON, T7CON and	215
RPINR2 (Peripheral Pin Select Input 2)		T9CON Control)	
RPINR22 (Peripheral Pin Select Input 22)		UxMODE (UARTx Mode) UxSTA (UARTx Status and Control)	
RPINR23 (Peripheral Pin Select Input 23)RPINR24 (Peripheral Pin Select Input 24)		VELxCNT (Velocity Counter x)	264
RPINR24 (Peripheral Pin Select Input 24)		VLLACINI (VEIDOILY COUITIET X)	204
IN ININZO LECIDHEIAI EIU OBIBCI IIIOUI 701	I ฮับ		

Resets	109
Brown-out Reset (BOR)	109
Configuration Mismatch Reset (CM)	109
Illegal Condition Reset (IOPUWR)	109
Illegal Address Mode	
Illegal Opcode	
Security	
Uninitialized W Register	109
Master Clear Pin Reset (MCLR)	
Master Reset Signal (SYSRST)	
Power-on Reset (POR)	109
RESET Instruction (SWR)	
Trap Conflict Reset (TRAPR)	
Watchdog Timer Time-out Reset (WDTO)	
Revision HistoryRTCC	523
Control Registers	382
Resources	
Writing to the Timer	381
S	
Serial Peripheral Interface (SPI)	269
Special Features of the CPUSPI	407
Control Registers	272
Helpful Tips	
Symbols Used in Opcode Descriptions	
т	
Temperature and Voltage Specifications	
AC	499
Timer1	
Timer2/3, Timer4/5, Timer6/7 and Timer8/9	
Timing Diagrams	
10-Bit ADC Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, $ASAM = 0$, $SSRC < 2:0 > = 000$,	
SSRCG = 0)	492
10-Bit ADC Conversion (CHPS<1:0> = 01,	
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111,	
SSRCG = 0, SAMC<4:0> = 00010)	492
12-Bit ADC Conversion (ASAM = 0,	
SSRC<2:0> = 000, SSRCG = 0)	490
BOR and Master Clear Reset	444
ECANx I/O	483
External Clock	
High-Speed PWMx	
High-Speed PWMx Fault	
I/O Characteristics	
I2Cx Bus Data (Master Mode)	
I2Cx Bus Data (Slave Mode)	481
I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	
Input Capture x (ICx)	
Load Conditions	
OCx/PWMx	
Power-on Reset Characteristics	
QEAx/QEBx Input	
QEIx Module Index Pulse	454
SPI1 Master Mode (Full-Duplex, CKE = 0, CKP = x, SMP = 1)	

SPI1 Master Mode (Full-Duplex, CKE = 1, CKP = x, SMP = 1)	469
SPI1 Master Mode (Half-Duplex, Transmit Only,	
CKE = 0) SPI1 Master Mode (Half-Duplex, Transmit Only,	467
CKE = 1)	468
SPI1 Slave Mode (Full-Duplex, CKE = 0,	400
CKP = 0, SMP = 0)	477
SPI1 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	475
SPI1 Slave Mode (Full-Duplex, CKE = 1,	
CKP = 0, SMP = 0)	471
SPI1 Slave Mode (Full-Duplex, CKE = 1,	472
CKP = 1, SMP = 0)SPI2, SPI3 Master Mode (Full-Duplex, CKE = 0,	4/3
CKP = x, SMP = 1)	458
SPI2, SPI3 Master Mode (Full-Duplex, CKE = 1,	430
CKP = x, SMP = 1)	457
SPI2, SPI3 Master Mode (Half-Duplex,	
Transmit Only, CKE = 0)	455
SPI2, SPI3 Master Mode (Half-Duplex,	
Transmit Only, CKE = 1)	456
SPI2, SPI3 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 0, SMP = 0)	465
SPI2, SPI3 Slave Mode (Full-Duplex, CKE = 0,	
CKP = 1, SMP = 0)	463
SPI2, SPI3 Slave Mode (Full-Duplex, CKE = 1,	450
CKP = 0, SMP = 0)SPI2, SPI3 Slave Mode (Full-Duplex, CKE = 1,	459
CKP = 1, SMP = 0)	461
Timer1-Timer5 External Clock	447
TimerQ (QEIx Module) External Clock	
UARTx I/O	
iming Specifications	
I2Cx Bus Data Requirements (Master Mode)	480
I2Cx Bus Data Requirements (Slave Mode)	482
UARTx I/O Requirements	483
J	
JART	
Control Registers	287
Helpful Tips	
Jniversal Asynchronous Receiver	200
Transmitter (UART)	285
Jser ID Words	
<i>l</i>	
/oltage Regulator (On-Chip)	412
N	
Vatchdog Timer (WDT)407,	413
Programming Considerations	
VWW Address	
VWW, On-Line Support	12
••	

	_	_	_	•
N	()		-`	٠.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Core Family — Program Memo Product Group Pin Count — Tape and Reel I Temperature Ra Package —	dsPIC 33 EP 512 GM7 10 I - 1 / PT XXX lemark	Example: dsPIC33EP512GM710-I/PT: dsPIC33, Enhanced Performance, 512-Kbyte program memory, 100-pin, Industrial temperature, TQFP package.
Architecture:	33 = 16-Bit Digital Signal Controller	
Family:	EP = Enhanced Performance	
Product Group:	GM7 = General Purpose plus Motor Control Family	
Pin Count:	04 = 44-pin 06 = 64-pin 10 = 100/124-pin	
Temperature Range:	I = -40°C to +85°C (Industrial) E = -40°C to +125°C (Extended)	
Package:	BG = Plastic Thin Profile Ball Grid Array - (121-pin) 10x10 mm body (TFBGA) ML = Plastic Quad, No Lead Package - (44-pin) 8x8 mm body (QFN) MR = Plastic Quad, No Lead Package - (64-pin) 9x9 mm body (QFN) PF = Thin Quad Flatpack - (100-pin) 14x14x1 mm body (TQFP) PT = Plastic Thin Quad Flatpack - (44-pin) 10x10 mm body (TQFP) PT = Plastic Thin Quad Flatpack - (64-pin) 10x10 mm body (TQFP) PT = Thin Quad Flatpack - (100-pin) 12x12x1 mm body (TQFP)	

N	0	Т	_ (٠.
IV	u		_3	Э.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-62077-504-2

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614

Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087

Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH

Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423

Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250

Fax: 248-538-2260

Indianapolis

Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523

Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444

Fax: 408-961-6445

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6. The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongging

Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187

Fax: 86-571-2819-3189

China - Hong Kong SAR

Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470

China - Qingdao

Tel: 86-532-8502-7355

Fax: 86-532-8502-7205

China - Shanghai

Tel: 86-21-5407-5533

Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829

Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8864-2200

Fax: 86-755-8203-1760

China - Wuhan

Tel: 86-27-5980-5300

Fax: 86-27-5980-5118

China - Xian

Tel: 86-29-8833-7252

Fax: 86-29-8833-7256

China - Xiamen

Tel: 86-592-2388138

Fax: 86-592-2388130

China - Zhuhai

Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi

Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune

Tel: 91-20-3019-1500

Japan - Osaka

Tel: 81-6-6152-7160

Fax: 81-6-6152-9310

Japan - Tokyo

Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu

Tel: 82-53-744-4301

Fax: 82-53-744-4302

Korea - Seoul

Tel: 82-2-554-7200

Fax: 82-2-558-5932 or

82-2-558-5934

Malaysia - Kuala Lumpur

Tel: 60-3-6201-9857

Fax: 60-3-6201-9859

Malaysia - Penang

Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila

Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore

Tel: 65-6334-8870

Fax: 65-6334-8850

Taiwan - Hsin Chu

Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung

Tel: 886-7-213-7828

Fax: 886-7-330-9305

Taiwan - Taipei

Tel: 886-2-2508-8600

Fax: 886-2-2508-0102

Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39

Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris

Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Munich

Tel: 49-89-627-144-0

Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611

Fax: 39-0331-466781

Netherlands - Drunen

Tel: 31-416-690399

Fax: 31-416-690340

Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham

Tel: 44-118-921-5869 Fax: 44-118-921-5820

08/20/13

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

DSPIC33EP512GM604-I/ML DSPIC33EP512GM604-I/PT DSPIC33EP512GM310-I/PF DSPIC33EP512GM310-I/PT DSPIC33EP128GM604-I/PT DSPIC33EP512GM706-I/MR DSPIC33EP512GM304-I/ML DSPIC33EP512GM710-I/BG DSPIC33EP512GM710-I/PF DSPIC33EP512GM306-I/MR DSPIC33EP512GM310-I/BG DSPIC33EP128GM604-H/PT DSPIC33EP512GM706-H/PT DSPIC33EP512GM706-E/MR DSPIC33EP512GM710-H/PT DSPIC33EP256GM710-E/PF DSPIC33EP128GM706-E/PT DSPIC33EP256GM604-E/ML DSPIC33EP128GM310-E/PT DSPIC33EP128GM310-H/PT DSPIC33EP512GM304-H/ML DSPIC33EP256GM306-I/MR DSPIC33EP256GM604-H/PT DSPIC33EP512GM710-E/PF DSPIC33EP128GM710-H/PF DSPIC33EP128GM706-I/MR DSPIC33EP256GM310-E/PT DSPIC33EP256GM304-E/PT DSPIC33EP256GM710-H/PF DSPIC33EP128GM304-I/ML DSPIC33EP512GM304-I/PT DSPIC33EP256GM706-E/PT DSPIC33EP128GM306-H/PT DSPIC33EP128GM710-E/BG DSPIC33EP128GM310-I/PT DSPIC33EP128GM710-H/BG DSPIC33EP512GM710-H/PF DSPIC33EP512GM604-H/PT DSPIC33EP128GM306-H/MR DSPIC33EP512GM304-E/PT DSPIC33EP128GM304-H/PT DSPIC33EP128GM310-H/PF DSPIC33EP256GM604-H/ML DSPIC33EP128GM710-I/BG DSPIC33EP256GM710-H/BG DSPIC33EP256GM306-H/PT DSPIC33EP512GM306-H/PT DSPIC33EP128GM706-I/PT DSPIC33EP256GM710-I/BG DSPIC33EP256GM604-I/PT DSPIC33EP128GM310-I/PF DSPIC33EP256GM310-I/PF DSPIC33EP128GM310-E/BG DSPIC33EP512GM304-E/ML DSPIC33EP512GM310-E/PF DSPIC33EP512GM310-H/PF DSPIC33EP512GM306-H/MR DSPIC33EP256GM306-E/PT DSPIC33EP256GM310-E/BG DSPIC33EP128GM310-I/BG DSPIC33EP256GM310-H/BG DSPIC33EP512GM310-H/PT DSPIC33EP256GM604-I/ML DSPIC33EP256GM304-H/ML DSPIC33EP512GM710-E/PT DSPIC33EP256GM310-I/BG DSPIC33EP512GM310-E/BG DSPIC33EP128GM306-E/MR DSPIC33EP256GM706-H/MR DSPIC33EP512GM710-H/BG DSPIC33EP512GM304-H/PT DSPIC33EP128GM710-H/PT DSPIC33EP256GM706-I/PT DSPIC33EP512GM706-H/MR DSPIC33EP128GM706-H/PT DSPIC33EP128GM304-I/PT DSPIC33EP256GM604-E/PT DSPIC33EP512GM706-I/PT DSPIC33EP128GM710-I/PT DSPIC33EP256GM304-I/PT DSPIC33EP128GM710-I/PF DSPIC33EP128GM306-I/MR DSPIC33EP256GM310-I/PT DSPIC33EP128GM310-E/PF DSPIC33EP512GM310-E/PT DSPIC33EP256GM304-I/ML DSPIC33EP128GM604-H/ML DSPIC33EP128GM304-E/ML DSPIC33EP128GM706-H/MR DSPIC33EP512GM706-E/PT DSPIC33EP256GM304-E/ML DSPIC33EP256GM306-I/PT DSPIC33EP256GM310-E/PF DSPIC33EP512GM604-H/ML DSPIC33EP128GM710-E/PT DSPIC33EP128GM604-E/PT DSPIC33EP512GM310-H/BG DSPIC33EP512GM710-I/PT DSPIC33EP128GM706-E/MR DSPIC33EP128GM310-H/BG