onsemi

3-Level NPC Inverter Module

NXH450N65L4Q2F2

The NXH450N65L4Q2F2 is a power module containing a I- type neutral point clamped three-level inverter. The integrated field stop trench IGBTs and FRDs provide lower conduction losses and switching losses, enabling designers to achieve high efficiency and superior reliability.

Features

- Neutral Point Clamped Three-Level Inverter Module
- 650 V Field Stop 4 IGBTs
- Low Inductive Layout
- Solderable Pins
- Thermistor

Typical Applications

- Solar Inverters
- Uninterruptable Power Supplies Systems

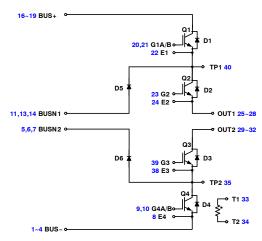
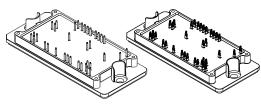
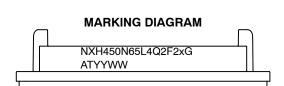
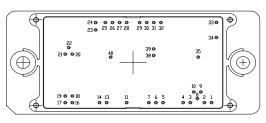




Figure 1. Schematic Diagram



PIM40, Q2PACK CASE 180BE PIM36, Q2PACK CASE 180CD

NXH450N65L4Q2F2x = Specific Device Code G = Pb-Free Package AT = Assembly & Test Site Code YYWW = Year and Work Week Code

PIN ASSIGNMENTS

ORDERING INFORMATION

See detailed ordering and shipping information in the dimensions section on page 5 of this data sheet.

Table 1. MAXIMUM RATINGS (Note 1)

Rating	Symbol	Value	Unit
DUTER IGBT (Q1-1, Q1-2, Q4-1, Q4-2)			
Collector-Emitter Voltage	V _{CES}	650	V
Gate-Emitter Voltage Positive Transient Gate-Emitter Voltage (t_{pulse} = 5 µs, D < 0.10)	V _{GE}	±20 30	V
Continuous Collector Current @ $T_c = 80^{\circ}C (T_J = 175^{\circ}C)$	Ι _C	167	А
Pulsed Collector Current (T _J = 175°C)	I _{Cpulse}	501	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	365	W
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
NNER IGBT (Q2, Q3)	· · ·		
Collector-Emitter Voltage	V _{CES}	650	V
Gate-Emitter Voltage Positive Transient Gate-Emitter Voltage (t_{pulse} = 5 µs, D < 0.10)	V _{GE}	±20 30	V
Continuous Collector Current @ $T_c = 80^{\circ}C (T_J = 175^{\circ}C)$	Ι _C	280	А
Pulsed Collector Current (T _J = 175°C)	I _{Cpulse}	840	А
Maximum Power Dissipation (T _J = 175°C)	P _{tot}	633	W
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
IEUTRAL POINT DIODE (D5, D6)			
Peak Repetitive Reverse Voltage	V _{RRM}	650	V
Continuous Forward Current @ $T_c = 80^{\circ}C (T_J = 175^{\circ}C)$	١ _F	271	A
Repetitive Peak Forward Current ($T_J = 175^{\circ}C$)	I _{FRM}	813	A
Maximum Power Dissipation ($T_J = 175^{\circ}C$)	P _{tot}	559	W
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
NVERSE DIODES (D1, D2, D3, D4)			
Peak Repetitive Reverse Voltage	V _{RRM}	650	V
Continuous Forward Current @ $T_c = 80^{\circ}C (T_J = 175^{\circ}C)$	١ _F	131	А
Repetitive Peak Forward Current (t _p = 1 ms)	I _{FRM}	450	А
Maximum Power Dissipation ($T_J = 175^{\circ}C$)	P _{tot}	288	W
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
HERMAL PROPERTIES			
Storage Temperature Range	T _{stg}	-40 to 150	°C
NSULATION PROPERTIES			
Isolation Test Voltage, t = 1 s, 50 Hz	V _{is}	4000	V _{RMS}
Creepage Distance		12.7	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

Table 2. RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	ТJ	-40	T _{JMAX}	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 3. ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
OUTER IGBT (Q1-1, Q1-2, Q4-1, Q4-2)		-		-		
Collector-Emitter Cutoff Current	$V_{GE} = 0 \text{ V}, \text{ V}_{CE} = 650 \text{ V}$	I _{CES}	_	-	300	μΑ
Collector-Emitter Saturation Voltage	V_{GE} = 15 V, I _C = 225 A, T _J = 25°C	V _{CE(sat)}	_	1.49	2.2	V
	V_{GE} = 15 V, I _C = 225 A, T _J = 150°C		_	1.70	-	1
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}, I_{C} = 2.25 \text{ mA}$	V _{GE(TH)}	3.1	4.0	5.2	V
Gate Leakage Current	V_{GE} = 20 V, V_{CE} = 0 V	I _{GES}	_	-	600	nA
Turn-on Delay Time	$T_J = 25^{\circ}C$	t _{d(on)}	-	163	-	ns
Rise Time	V_{CE} = 400 V, I _C = 100 A V _{GE} = -5 V to +15 V, R _{G(on)} = 15 Ω,	t _r	-	45	-	1
Turn-off Delay Time	$V_{GE} = -5 V_{10} + 15 V, R_{G(on)} = 15 \Omega_2,$ $R_{G(off)} = 15 \Omega$	t _{d(off)}	_	831	-	1
Fall Time	1	t _f	_	61	-	1
Turn-on Switching Loss per Pulse	1	Eon	_	2.344	-	mJ
Turn off Switching Loss per Pulse	1	E _{off}	-	3.125	_	1
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	-	141	_	ns
Rise Time	V_{CE} = 400 V, I _C = 100 A V _{GE} = -5 V to +15 V, R _{G(on)} = 15 Ω,	t _r	-	51	-	1
Turn-off Delay Time	$R_{G(off)} = 15 \Omega$	t _{d(off)}	-	898	-	1
Fall Time	1	t _f	-	80	-	1
Turn-on Switching Loss per Pulse	1	Eon	-	3.75	-	mJ
Turn off Switching Loss per Pulse	1	E _{off}	-	2.97	-	1
Input Capacitance	V_{CE} = 20 V, V_{GE} = 0 V, f = 10 kHz	C _{ies}	_	14630	_	pF
Output Capacitance	1	C _{oes}	_	230	-	1
Reverse Transfer Capacitance	1	C _{res}	_	64	-	1
Total Gate Charge	V_{CE} = 480 V, I _C = 225 A, V _{GE} = 0~+15 V	Qg	-	452	_	nC
Thermal Resistance - Chip-to-Heatsink	Thermal grease,	R _{thJH}	-	0.45	_	°C/W
Thermal Resistance - Chip-to-Case	Thickness = 2 Mil \pm 2%, λ = 2.8 W/mK	R _{thJC}	_	0.26	_	°C/W
NEUTRAL POINT DIODE (D5, D6)		-			-	<u></u>

Diode Forward Voltage	$I_F = 375 \text{ A}, \text{T}_\text{J} = 25^\circ\text{C}$		-	1.80	2.3	V
	I _F = 375 A, T _J = 150°C	1	-	1.77	-	
Reverse Recovery Time	$T_{\rm J} = 25^{\circ}{\rm C}$	t _{rr}	_	46	-	ns
Reverse Recovery Charge	V_{CE} = 400 V, I _C = 100 A V _{GE} = -5 V to +15 V, R _G = 15 Ω	Q _{rr}	_	1.5	-	μC
Peak Reverse Recovery Current		I _{RRM}	_	53	-	Α
Peak Rate of Fall of Recovery Current		di/dt	_	2541	-	A/μs
Reverse Recovery Energy		E _{rr}	_	0.3	-	mJ
Reverse Recovery Time	T _J = 125°C	t _{rr}	-	75	-	ns
Reverse Recovery Charge	V_{CE} = 400 V, I _C = 100 A V _{GE} = -5 V to +15 V, R _G = 15 Ω	Q _{rr}	-	4	-	μC
Peak Reverse Recovery Current	$V_{GE} = -3 V_{10} + 13 V_{10} H_{G} = 13 \Omega_2$	I _{RRM}	_	96	_	А
Peak Rate of Fall of Recovery Current	Thermal grease, Thickness = 2 Mil ±2%, λ = 2.8 W/mK	di/dt	_	2500	_	A/μs
Reverse Recovery Energy		E _{rr}	-	0.83	-	mJ
Thermal Resistance - Chip-to-Heatsink		R _{thJH}	-	0.37	_	°C/W
Thermal Resistance - Chip-to-Case		R _{thJC}	-	0.17	-	°C/W

Table 3. ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted) (continued)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
INNER IGBT (Q2, Q3)	•					
Collector-Emitter Cutoff Current	$V_{GE} = 0 V, V_{CE} = 650 V$	I _{CES}	_	-	300	μA
Collector-Emitter Saturation Voltage	V_{GE} = 15 V, I _C = 375 A, T _J = 25°C	V _{CE(sat)}	-	- 1.49	2.2	V
	V_{GE} = 15 V, I _C = 375 A, T _J = 150°C		_	1.72	_	
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}, I_{C} = 3.75 \text{ mA}$	V _{GE(TH)}	3.1	4.1	5.2	V
Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	_	-	1000	nA
Turn-on Delay Time	$T_J = 25^{\circ}C$	t _{d(on)}	_	134	-	ns
Rise Time	$V_{CE} = 400 \text{ V}, \text{ I}_{C} = 100 \text{ A}$	t _r	-	47	-	
Turn-off Delay Time	$V_{GE} = -5 \text{ V to } +15 \text{ V}, \text{R}_{G(on)} = 15 \Omega,$ $\text{R}_{G(off)} = 15 \Omega$	t _{d(off)}	_	709	-	
Fall Time	7	t _f	_	32	-	
Turn-on Switching Loss per Pulse	7	Eon	_	1.72	-	mJ
Turn off Switching Loss per Pulse	7	E _{off}	-	2.65	-	
Turn-on Delay Time	$V_{CE} = 400 \text{ V}, \text{ I}_{C} = 100 \text{ A}$ $V_{GE} = -5 \text{ V} \text{ to } +15 \text{ V}, \text{ R}_{G(on)} = 15 \Omega,$	t _{d(on)}	-	118	_	ns
Rise Time		t _r	_	52	-	
Turn-off Delay Time		t _{d(off)}	_	765	-	
Fall Time	7	t _f	_	29	-	
Turn-on Switching Loss per Pulse	7	Eon	_	2.34	-	mJ
Turn off Switching Loss per Pulse	7	E _{off}	_	2.89	-	
Input Capacitance	V _{CE} = 20 V, V _{GE} = 0 V, f = 10 kHz	C _{ies}	_	24383	-	pF
Output Capacitance	7	C _{oes}	_	383	-	
Reverse Transfer Capacitance	7	C _{res}	_	105	-	
Total Gate Charge	V_{CE} = 480 V, I _C = 375 A, V _{GE} = 0~+15 V	Qg	_	753	-	nC
Thermal Resistance - Chip-to-Heatsink	Thermal grease,	R _{thJH}	-	0.31	_	°C/W
Thermal Resistance - Chip-to-Case	Thickness = 2 Mil $\pm 2\%$, λ = 2.8 W/mK	R _{thJC}	_	0.15	_	°C/W
INVERSE DIODES (D1, D2, D3, D4)						
Diode Forward Voltage	I _F = 150 A, T _J = 25°C	V _F	_	1.78	2.3	V
	I _F = 150 A, T _J = 150°C	1	_	1.77	_	1
Reverse Recovery Time	$T_J = 25^{\circ}C$	t _{rr}	_	43	_	ns
	$V_{} = 400 V_{} = 100 A_{}$			1		1

	I _F = 150 A, T _J = 150°C		-	1.77	_	
Reverse Recovery Time	$T_J = 25$ °C V _{CE} = 400 V, I _C = 100 A V _{GE} = -5 V to +15 V, R _G = 15 Ω	t _{rr}	-	43	_	ns
Reverse Recovery Charge		Q _{rr}	-	1.14	_	μC
Peak Reverse Recovery Current	$V_{GE} = -5$ V to +13 V, HG = 13 22	I _{RRM}	-	46	_	А
Peak Rate of Fall of Recovery Current		di/dt	_	2473	_	A/μs
Reverse Recovery Energy		E _{rr}	-	0.313	_	mJ
Reverse Recovery Time	$T_J = 125$ °C V _{CE} = 400 V, I _C = 100 A V _{GE} = -5 V to +15 V, R _G = 15 Ω	t _{rr}	-	67	_	ns
Reverse Recovery Charge		Q _{rr}	-	2.5	_	μC
Peak Reverse Recovery Current	$V_{GE} = -5$ V to +13 V, $H_{G} = 10.22$	I _{RRM}	-	66	_	А
Peak Rate of Fall of Recovery Current		di/dt	-	2317	_	A/μs
Reverse Recovery Energy	Ē	E _{rr}	-	0.625	_	mJ
Thermal Resistance - Chip-to-Heatsink	Thermal grease, Thickness = 2 Mil \pm 2%, λ = 2.8 W/mK	R _{thJH}	-	0.58	-	°C/W
Thermal Resistance - Chip-to-Case		R _{thJC}	-	0.33	-	°C/W

Table 3. ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted) (continued)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit		
THERMISTOR CHARACTERISTICS								
Nominal Resistance	T = 25°C	R ₂₅	-	22	-	kΩ		
Nominal Resistance	T = 100°C	R ₁₀₀	_	1486	-	Ω		
Deviation of R25		$\Delta R/R$	-5	-	5	%		
Power Dissipation		PD	_	200	-	mW		
Power Dissipation Constant			_	2	-	mW/K		
B-value	B(25/50), tolerance $\pm 3\%$		-	3950	-	К		
B-value	B(25/100), tolerance $\pm 3\%$		_	3998	-	К		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
NXH450N65L4Q2F2SG	NXH450N65L4Q2F2SG	PIM40, Q2PACK (Pb-Free and Halide-Free)	12 Units / Blister Tray
NXH450N65L4Q2F2PG	NXH450N65L4Q2F2PG	PIM436 Q2PACK (Pb-Free and Halide-Free)	12 Units / Blister Tray

TYPICAL CHARACTERISTICS - IGBT Q1-1, Q1-2, Q4-1, Q4-2 AND DIODE D1, D4

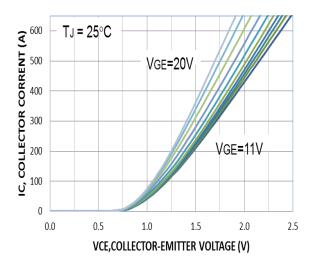


Figure 2. Typical Output Characteristics

Figure 4. Typical Transfer Characteristics

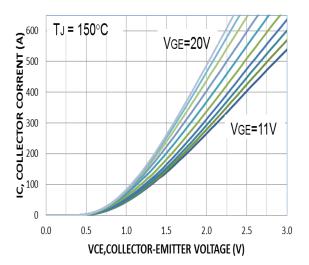


Figure 3. Typical Output Characteristics

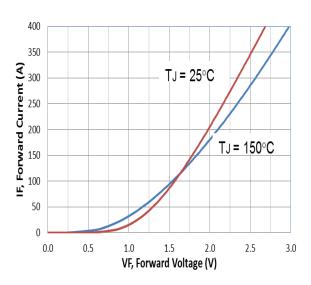


Figure 5. Typical Transfer Characteristics

TYPICAL CHARACTERISTICS - IGBT Q1-1, Q1-2, Q4-1, Q4-2 AND DIODE D1, D4

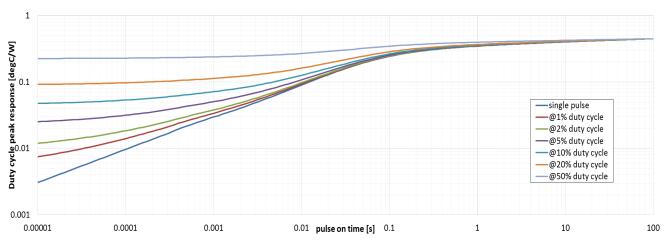


Figure 6. Transient Thermal Impedance (Q1-1, Q1-2, Q4-1, Q4-2)

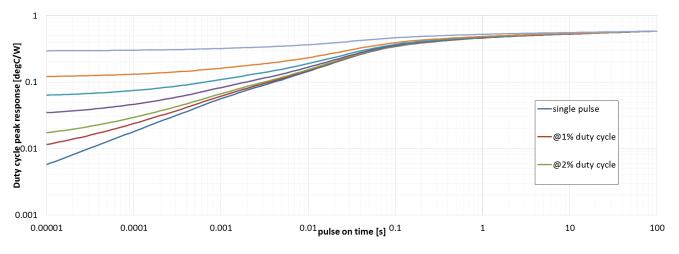


Figure 7. Transient Thermal Impedance (D1, D4)

TYPICAL CHARACTERISTICS - IGBT Q1-1, Q1-2, Q4-1, Q4-2 AND DIODE D1, D4



Figure 8. FBSOA (Q1-1, Q1-2, Q4-1, Q4-2)

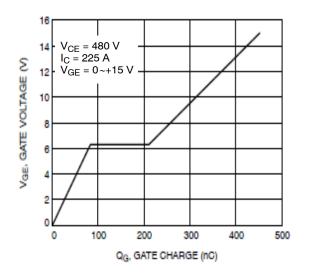


Figure 10. Gate Voltage vs. Gate Charge

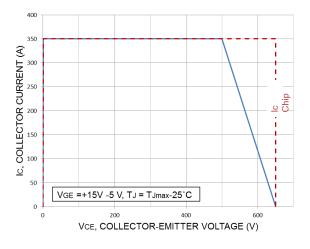


Figure 9. RBSOA (Q1-1, Q1-2, Q4-1, Q4-2)

TYPICAL CHARACTERISTICS - IGBT Q2, Q3 AND DIODE D2, D3

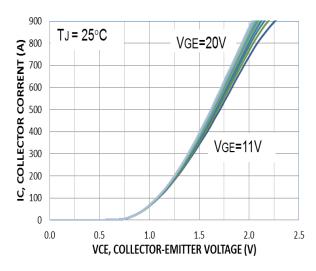


Figure 11. Typical Output Characteristics

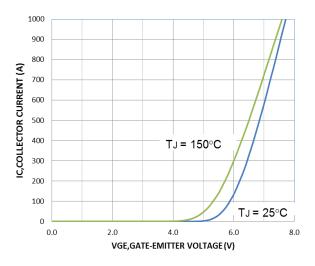


Figure 13. Typical Transfer Characteristics

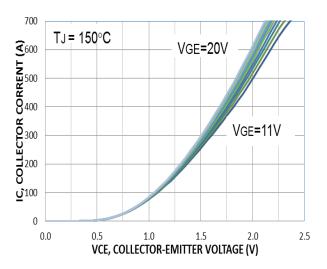


Figure 12. Typical Output Characteristics

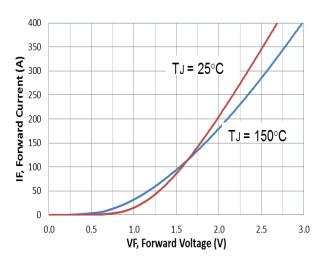


Figure 14. Typical Transfer Characteristics

TYPICAL CHARACTERISTICS - IGBT Q2, Q3 AND DIODE D2, D3

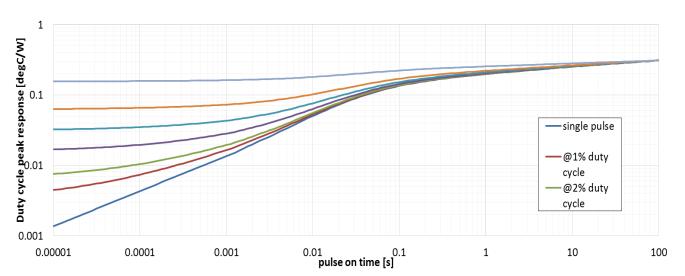


Figure 15. Transient Thermal Impedance (Q2, Q3)

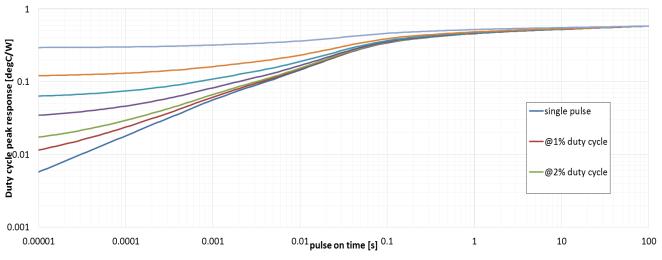


Figure 16. Transient Thermal Impedance (D2, D3)

TYPICAL CHARACTERISTICS - IGBT Q2, Q3 AND DIODE D2, D3

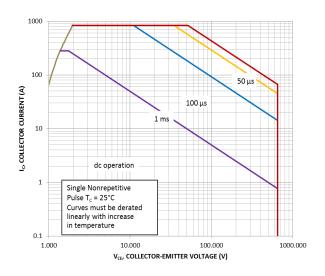


Figure 17. FBSOA (Q2, Q3)

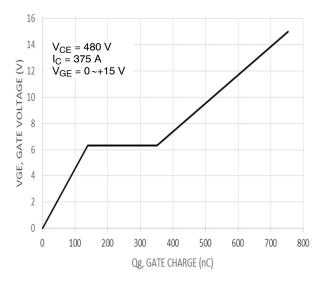


Figure 19. Gate Voltage vs. Gate Charge

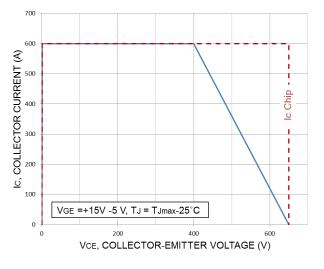
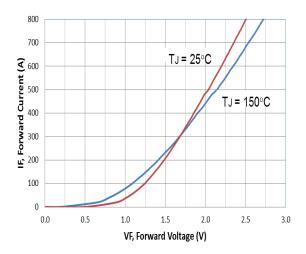



Figure 18. RBSOA (Q2, Q3)

TYPICAL CHARACTERISTICS - DIODE D5, D6

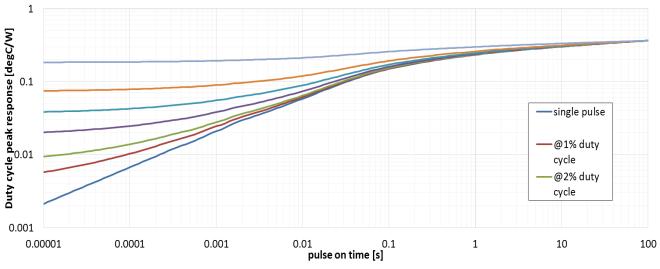


Figure 21. Transient Thermal Impedance (D5, D6)

TYPICAL CHARACTERISTICS - Q1/Q4 IGBT COMUTATES D5/D6 DIODE

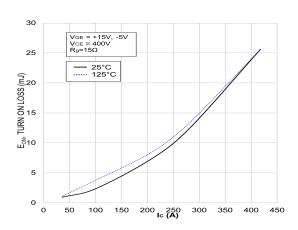


Figure 22. Typical Switching Loss Eon vs. IC

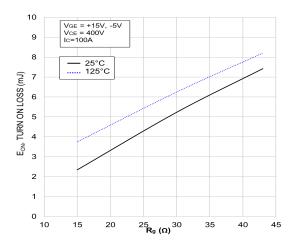


Figure 24. Typical Switching Loss Eon vs. ${\rm R}_{\rm G}$

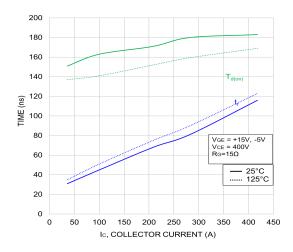


Figure 26. Typical Switching Time Tdon vs. IC

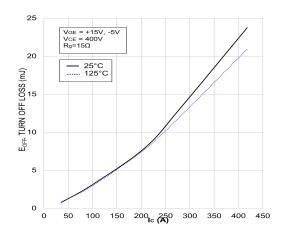


Figure 23. Typical Switching Loss Eoff vs. IC

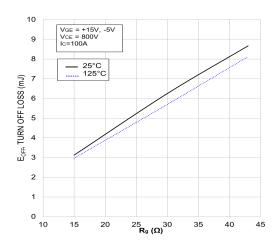


Figure 25. Typical Switching Loss Eoff vs. R_G

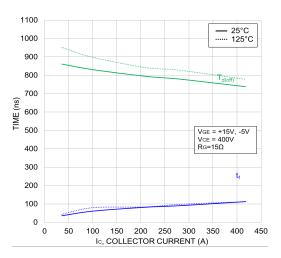


Figure 27. Typical Switching Time Tdoff vs. IC

TYPICAL CHARACTERISTICS - Q1/Q4 IGBT COMUTATES D5/D6 DIODE

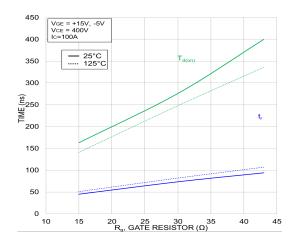


Figure 28. Typical Switching Time Tdon vs. R_G

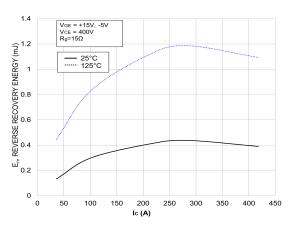


Figure 30. Typical Reverse Recovery Energy vs. IC

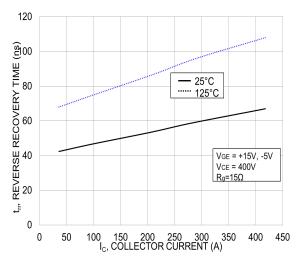


Figure 32. Typical Reverse Recovery Time vs. IC

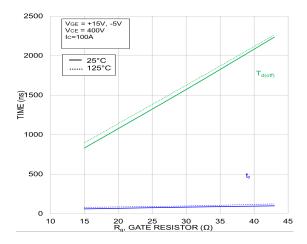


Figure 29. Typical Switching Time Tdoff vs. R_G

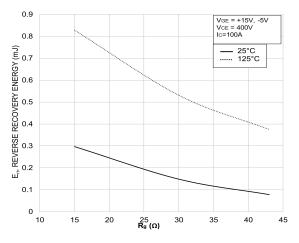


Figure 31. Typical Reverse Recovery Energy vs. R_G

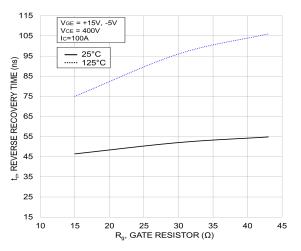
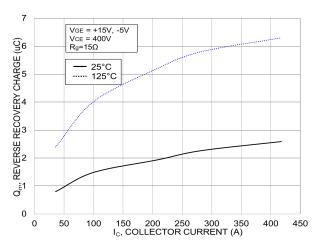
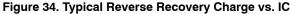




Figure 33. Typical Reverse Recovery Time vs. R_G

TYPICAL CHARACTERISTICS - Q1/Q4 IGBT COMUTATES D5/D6 DIODE

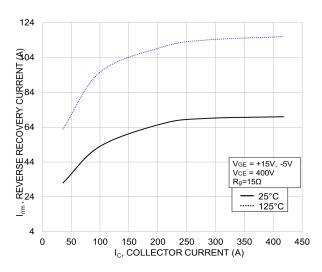
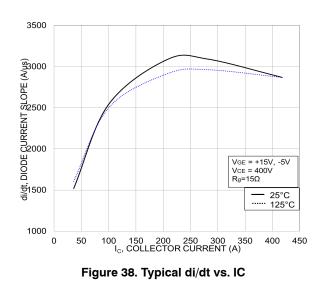



Figure 36. Typical Reverse Recovery Current vs. IC

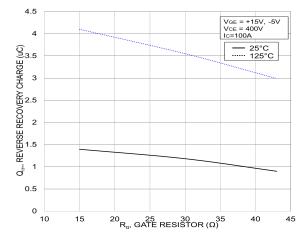


Figure 35. Typical Reverse Recovery Charge vs. R_G

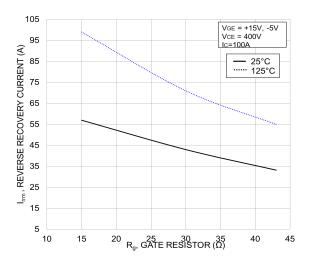


Figure 37. Typical Reverse Recovery Current vs. R_G

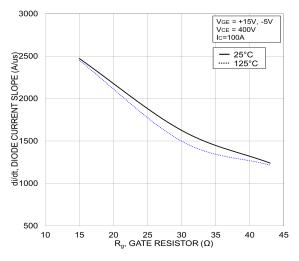
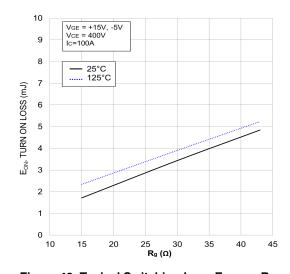



Figure 39. Typical di/dt vs. R_G

TYPICAL CHARACTERISTICS - Q2/Q3 IGBT COMUTATES D1/D4 DIODE

Figure 40. Typical Switching Loss Eon vs. IC

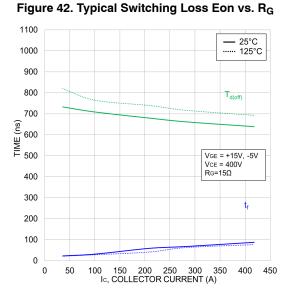


Figure 44. Typical Turn-On Switching Time vs. IC

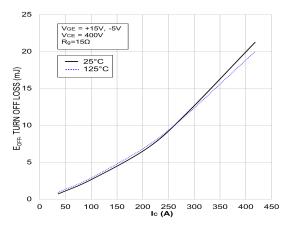


Figure 41. Typical Switching Loss Eoff vs. IC

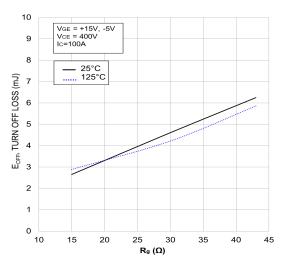


Figure 43. Typical Switching Loss Eoff vs. R_G

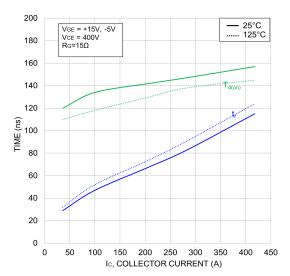
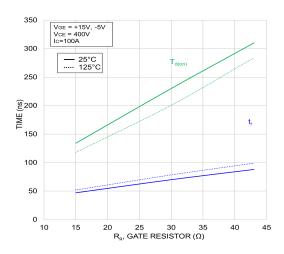



Figure 45. Typical Turn-Off Switching Time vs. IC

TYPICAL CHARACTERISTICS - Q2/Q3 IGBT COMUTATES D1/D4 DIODE

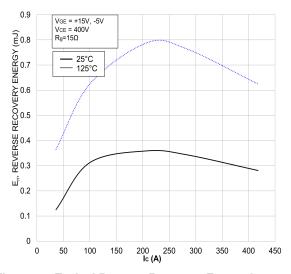
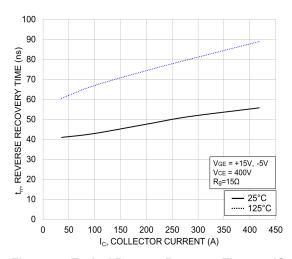



Figure 48. Typical Reverse Recovery Energy Loss vs. IC

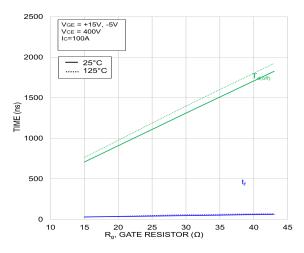


Figure 47. Typical Turn-Off Switching Time vs. R_G

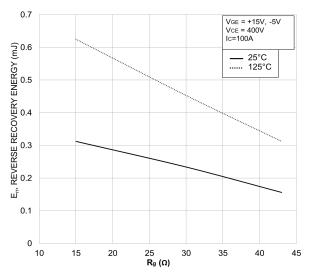
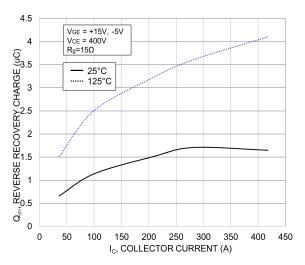
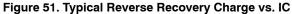
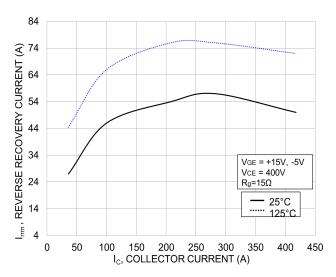
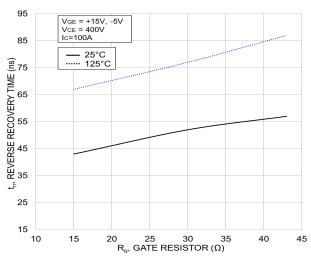
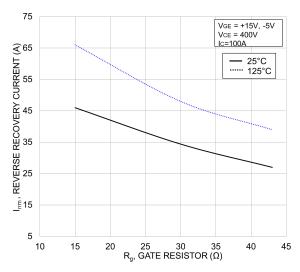






Figure 49. Typical Reverse Recovery Energy Loss vs. R_G




TYPICAL CHARACTERISTICS - Q2/Q3 IGBT COMUTATES D1/D4 DIODE

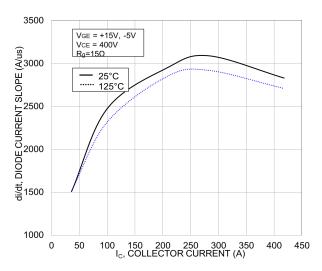


Figure 53. Typical di/dt Current Slope vs. IC

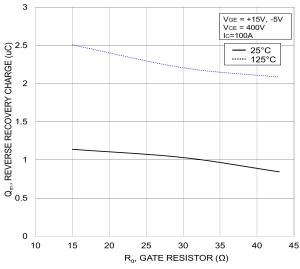


Figure 55. Typical Reverse Recovery Charge vs. R_G

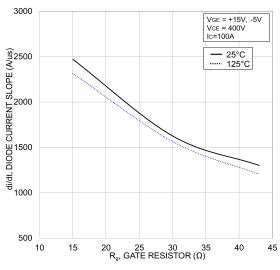
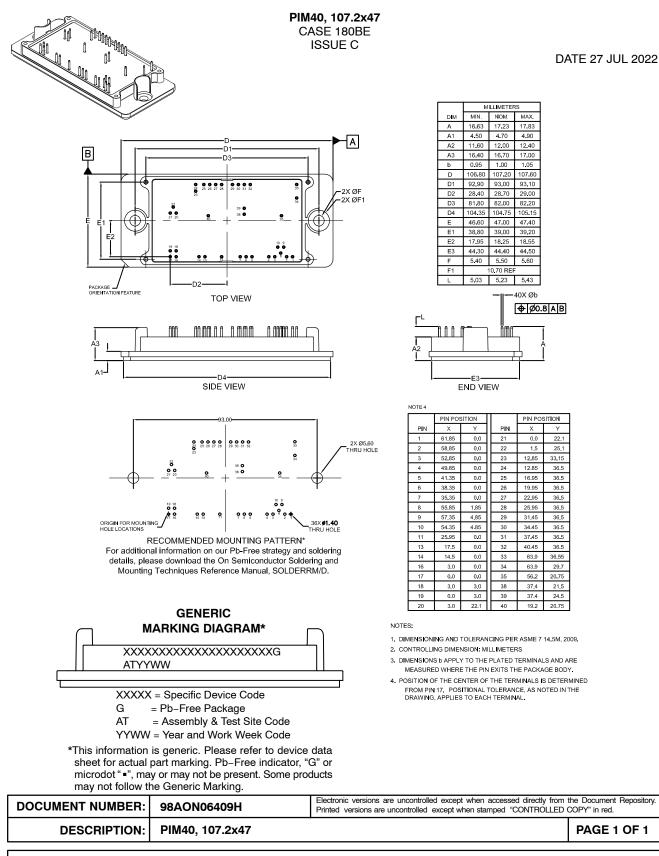



Figure 57. Typical di/dt vs. R_G


MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights or others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative