Revision 4 ## Description The NEC μ PD4164 is a 65,536-word by 1-bit dynamic N-channel MOS Random-access Memory (RAM) designed to operate from a single +5V power supply. The negative-voltage substrate bias is internally generated providing both automatic and transparent operation. The μPD4164 utilizes a three-poly, N-channel, silicon-gate process which provides high storage cell density, high performance, and high reliability. The µPD4164 uses a single transistor dynamic storage cell and advanced dynamic circuitry throughout, including the 512 sense amplifiers, which assure that power dissipation is minimized. Refresh characteristics have been chosen to maximize yield at a low cost to the user while maintaining compatibility between dynamic RAM generations. The μ PD4164 three-state output is controlled by \overline{CAS} , independent of \overline{RAS} . After a valid read or read-modify-write cycle, data is held on the output by holding \overline{CAS} low. The data-out pin is returned to the high impedance state by returning \overline{CAS} to a high state. The μ PD4164 hidden refresh feature allows \overline{CAS} to be held low to maintain output data while \overline{RAS} is used to execute \overline{RAS} -only refresh cycles. Refresh is accomplished by performing \overline{RAS} -only refresh cycles, hidden refresh cycles, or normal read or write cycles on the 128-address combinations of A_0 through A_6 during a 2ms period. Multiplexed address inputs permit the μPD4164 to be packaged in the standard 16-pin dual-in-line package. The 16-pin package provides the highest system bit densities and is compatible with widely available automated handling equipment. ## **Features** ☐ 4 performance ranges: G5,536 x 1-bit organization High memory density Multiplexed address inputs Single + 5V power supply On-chip substrate bias generator Low power dissipation: 27.5mW max (standby) (μPD4164-10); 330mW.(active); 27.5mW (standby) Three-state, TTL-compatible, nonlatched output Read, write, read-write, read-modify-write, RAS-only refresh, and page mode capability All inputs TTL-compatible, and low input capacitance 128 refresh cycles (A₀ - A₀ pins for refresh address) CAS-controlled output allows hidden refresh Available in a plastic 16-pin package | Device | Access Time | R/W Cycle | RMW Cycle | | | |--------------------|--------------------|-----------|-----------|--|--| | μ PD4164-10 | 100ns | 200ns | 230ns | | | | μPD4164-12 | 120ns | 230ns | 245ns | | | | μPD4164-15 | 150ns | 260ns | 280ns | | | | μPD4164-20 | 200ns | 330ns | 345ns | | | ## **Pin Configuration** #### Pin Identification | Pi | n | | | | | |--------------|--------------------------------|-----------------------|--|--|--| | No. | Symbol | Function | | | | | 1 | NC | No connection | | | | | 2 | D _{IN} | Data input | | | | | 3 | WE | Write enable | | | | | 4 | RAS | Row address strobe | | | | | 5-7,
9-13 | A ₀ -A ₇ | Address inputs | | | | | 8 | V _{cc} | +5V power supply | | | | | 14 | D _{OUT} | Data output | | | | | 15 | CAS | Column address strobe | | | | | 16 | GND | Ground | | | | ### **Absolute Maximum Ratings*** | Operating Temperature, Tops | 0°C to +70°C | |--|-------------------| | Storage Temperature, T _{STG} (Plastic Package |) -55°C to +125°C | | Supply Voltages On Any Pin except V _{CC} | -1V to +7V① | | Supply Voltage, V _{CC} | −0.5V to +7V① | | Short-circuit Output Current | 50mA | | Power Dissipation, P _D | 1W | | Note: ① Relative to GND | | *COMMENT: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ## **DC Characteristics** T_A = 0°C to +70°C ①; V_{CC} = +5V ± 10%; GND = 0V | | | | | Limit | • | _ | Test | | |--|-------------------|---------------------|-------|-------|-----------------|------|-----------------------------------|--| | Parameter | Sym | bel | Min | Тур | Mex | Unit | Conditions | | | Francis Voltage | Vcc | | 4.5 | 5.0 | 5.5 | v | | | | Supply Voltage | GND | | 0 | 0 | 0 | ٧ | | | | High-level Input Volt-
age, (RAS, CAS, WE) | VIHC | | 2.4 | | 5.5 | v | All voltages
referenced to GNE | | | High-level input
Voltage, All Inputs
except RAS, CAS, WE | VIH | | 2.4 | | 5.5 | ٧ | | | | Low-level Input
Voltage, All Inputs | VIL | | - 1.0 | | 0.8 | ٧ | | | | Operating Current | | μPD4164-20 | | | 45 | | | | | Average Power
Supply Operating | | μPD4164-15 | | | 50 | - | 2 | | | Current RAS, | CC1 | μPD4164-12 | | | 55 | _ | Ø | | | CAS Cycling; t _{RC} =
t _{RC} (min) | | μPD4164-10 | | | 60 | - | | | | Standby Current Power Suppty Standby Current (RAS = V _{IHC} , D _{OUT} = High-impedance) | lccz | | | | 5.0 | mA | | | | Refresh Current | | μ PD4164-20 | | | 35 | | | | | Average Power
Supply Current, | | μ PD4164-15 | | | 40 | mA | (2) | | | Retresh Mode; | ICCS | μ PD4164-12 | | | 45 | | ©. | | | RAS Cycling, CAS =
V _{IHC} , t _{RC} = t _{RC} (min) | | μ PD4164- 10 | | | 45 | - | | | | Page Mode Current
Average Power | | μ PD4164-2 0 | | | 35 | | | | | Supply Current,
Page Mode | | µPD4164-15 | | | 40 | - | _ | | | Operation | I _{CC4} | µРD4164-12 | | 45 | mA | 2 | | | | RAS = V _{IL} ;
CAS Cycling
t _{PC} = t _{PC} (min) | | μ PD4164-1 0 | | | 45 | - | | | | input Leakage
Current (any input);
V _{IN} = 0V to +5.5V;
All Other Pins Not
Under Test = 0V | I _{I(L)} | | ~ 10 | | 10 | μА | | | | Output Leakage
Current D _{OUT} Is
Disabled, V _{OUT} =
0V to +5.5V | I _{O(L)} | | -10 | | 10 | μΑ | | | | Output Levels High-
level Output Voltage | | | | | | ., | | | | (I _{OUT} = 5mA) | VOH | | 2.4 | | V _{CC} | | | | | Low-level Output
Voltage (fout =
4.2mA) | VOL | | 0 | | 0.4 | ٧ | | | Notes: ① T_A is specified here for operation at frequencies to t_{PC} ≥ t_{PC} (min). Operation at higher cycle rates with reduced ambient temperatures and high power dissipation is permissible, however, provided AC operating parameters are met. ② t_{CC1} tot_{CC2} and t_{CC2} depend on output loading and cycle rates. Specified rates are obtained with the output open. # Capacitance T_A = 0°C to +70°C; V_{CC} = +5V ± 10%; GND = 0V | Parameter | | | Limit | | | Test | |---|------------------|-----|-------|-----|------|------------| | | Symbol | Min | Тур | Max | Unit | Conditions | | Input Capacitance
(A ₀ -A ₇), D _{IN} | C _i , | | | 5 | pF | | | Input Capacitance
RAS, CAS, WE | C ₁₂ | | | 8 | pF | | | Output Capacitance
D _(OUT) | Co | | | 7 | pF | | ## **AC Characteristics** $T_A = 0$ °C to +70°C ①; $V_{CC} = +5V \pm 10$ %; GND = 0V ② ③ ④ | | | Limits
4164-20 4164-15 4164-12 4164-10 | | | | | | | | | | |---|------------------|---|-----|------|-----|---------|-----|---------|-----|------|----------| | | | 4164-20 | | | | 4164-12 | | 4164-10 | | | | | Parameter | Symbol | Min | Max | Min | Max | Min | Max | Min | Max | Unit | Note | | Random
Read
or Write
Cycle Time | t _{RC} | 330 | | 260 | | 230 | | 200 | | ns | 3 | | Read-write
Cycle Time | t _{RWC} | 345 | | 280 | | 245 | | 230 | | ns | • | | Page Mode
Cycle Time | t _{PC} | 190 | | 145 | | 130 | | 110 | | ns | • | | Access Time
from RAS | t _{RAC} | | 200 | | 150 | | 120 | | 100 | ns | 6 | | Access Time
from CAS | tcac | | 100 | | 75 | | 60 | | 50 | กร | 7 | | Output Buffer
Turn-off Delay | t _{OFF} | 0 | 50 | 0 | 40 | 0 | 35 | D | 30 | ns | 9 | | Transition
Times (rise
and fall) | t _T | 3 | 50 | 3 | 50 | 3 | 35 | 3 | 35 | ns | 4 | | RAS Pre-
charge Time | t _{RP} | 120 | | 100 | | 90 | | 90 | | ns | | | RAS Pulse
Width | t _{RAS} | .2 | 10 | .15 | 10 | .12 | 10 | .1 | 10 | μ\$ | | | RAS Hold
Time | t _{RSH} | 100 | | 75 | | 60 | | 50 | | nş | | | CAS Pulse
Width | tcas | .1 | 10 | .075 | 10 | .06 | 10 | .05 | 10 | μ\$ | | | CAS Hold
Time | t _{CSH} | 200 | | 150 | | 120 | | 100 | | ns | | | RAS to CAS
Delay Time | t _{RCD} | 30 | 100 | 25 | 75 | 25 | 60 | 20 | 50 | ns | 100 | | CAS to FIAS
Precharge
Time | t _{CRP} | 0 | | 0 | | 0 | | 0 | | ns | | | CAS Pre-
charge Time | t _{CPN} | 30 | | 25 | | 25 | | 20 | | ns | | | CAS
Precharge
Time (for
page mode
cycle only) | [†] CP | 80 | | 60 | | 60 | | 50 | | ns | | | RAS
Precharge
CAS Hold
Time | t _{APC} | 0 | | 0 | | 0 | | 0 | | ns | | | Row Address
Set-up Time | t _{ASR} | 0 | | 0 | | 0 | | 0 | | ns | | | Row Address
Hold Time | t _{RAH} | 20 | | 15 | | 15 | | 10 | | ns | | | Column
Address
Set-up Time | t _{ASC} | 0 | | 0 | | 0 | | 0 | | ns | | | Column
Address
Hold Time | t _{CAH} | 30 | | 25 | | 20 | | 15 | | ns | | | Column
Address
Hold Time
Referenced
to RAS | t _{AR} | 130 | | 100 | | 80 | | 65 | | ns | | | Read
Command
Set-up Time | t _{RCS} | 0 | | 0 | | 0 | | 0 | | ns | | | Read
Command
Hold Time
Referenced
to RAS | t _{RRH} | 25 | | 20 | | 20 | | 20 | | ns | 11 | # NEC ## AC Characteristics (Cont.) T_A = 0°C to +70°C ①; V_{CC} = +5V ± 10%; GND = 0V ② ③ ④ | | | Limits | | | | | | | | | | |---|------------------|--------|------|------|------|---------|-----|---------|-----|------|-------| | Parameter | | 416 | 4-20 | 416 | 4-15 | 4164-12 | | 4164-10 | | | | | | Symbol | Min | Max | Min | Max | Min | Max | Min | Max | Unit | Notes | | Read
Command
Hold Time | t _{RCH} | 0 | | 0 | | 0 | | 0 | | ns | 10 | | Write
Command
Hold Time | twcH | 55 | | 45 | | 35 | | 30 | | ns | | | Write
Command
Hold Time
Referenced
to RAS | twcR | 155 | | 120 | | 95 | | 80 | | ns | | | Write
Commend
Pulse Width | t _{WP} | 55 | | 45 | | 35 | | 30 | | ne | | | Write
Command
to RAS
Lead Time | t _{RWL} | 55 | | 45 | | 40 | | 35 | | ns | | | Write
Command
to CAS
Lead Time | t _{CWL} | 55 | | 45 | | 40 | | 35 | | ns | | | Data-In
Set-up Time | t _{DS} | 0 | | 0 | | 0 | | 0 | | ns | 12 | | Data-in
Hold Time | t _{DH} | 55 | | 45 | | 35 | | 30 | | ns | 12 | | Data-in Hold
Time Refer-
enced to RAS | t _{OHR} | 155 | | 120 | | 95 | | 80 | | ns | | | Refresh
Period | t _{REF} | | | 2 | : | 2 | 2 | 2 | 2 | me | | | Write
Command
Set-up Time | t _{wcs} | - 10 | | - 10 | | 10 | | 0 | | ns | (3) | | CAS to
WE Delay | t _{cwD} | 55 | | 45 | | 40 | | 40 | | ns | 13 | | RAS to
WE Delay | 1 _{RWD} | 130 | | 120 | | 100 | | 90 | | ns | (3) | - Notes: ① T_A is specified here for operation at frequencies to t_{RC} ≥ t_{RC} (min). Operation at higher cycle rates with reduced embient temperatures and higher power dissipation is permissible, however, provided AC operating parameters are met. ② An initial pause of 100µs is required after power-up followed by any 8 RAS cycles before - proper device operation is achieved. AC measurements assume t_T = 5ns. - proper device operation is achieved. A C measurements assume $t_T = 5n$. $V_{INC}(min)$ or $V_{IH}(min)$ and $V_{IL}(max)$ are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IHC} or V_{IH} and V_{IL} . $V_{IHC}(min)$ and $V_{IHC}(min)$ and $V_{IHC}(min)$ are used only to indicate cycle times at which proper operation over the full temperature range ($T_A = 0^{\circ}C$ to $+ 70^{\circ}C$) is assured. Assumes that $t_{CC} \leq V_{IHC}(max)$, $V_{IHC}(max)$ is greater than the maximum recommended value shown in this table, $V_{IHC}(max)$ is greater than the maximum recommended $V_{IHC}(max)$. $V_{IHC}(max)$ is a consistent of $V_{IHC}(max)$ in $V_{IHC}(max)$. $V_{IHC}(max)$ defines the time at which the output achieves the open-circuit condition and is not referenced to output outgale levels. - $t_{\rm OF}$ (max) certines for time at which is obspired to the control of co - These parameters are referenced to CAS leading edge in early write cycles and to WHI Leading edge in delayed write or read-modify-write cycles. $l_{\rm NCS}$ (cwp) and $l_{\rm RND}$ are restrictive operating parameters in read-write, and read-modify-write cycles only. If $l_{\rm NCS}$ $\geq l_{\rm NCS}$ (cmp), the cycle is an early write cycles and the data output will remain open circuit throughout the entire cycle. If $l_{\rm CND} \geq l_{\rm CND}$ (min) and $l_{\rm RND} \geq l_{\rm RND}$ (min), the cycle is a read-write and the data output will contain data read from the selected cell. If neither of the above contitions is met the contition of the data-out (at access time and until CAS goes back to $V_{\rm Hr}$) is indeterminate. (13) ## **Timing Waveforms** ## **Timing Waveforms (Cont.)**