

MOS INTEGRATED CIRCUIT μ PD75P308

4-BIT SINGLE-CHIP MICROCOMPUTER

DESCRIPTION

The μ PD75P308 is a model of the μ PD75308 equipped with a one-time PROM or EPROM instead of an internal mask ROM.

Two types are available as the μ PD75P308. The one-time PROM type is ideal for production of a small quantity of many different types of application systems as data can only be written once to the one-time PROM of this type. Programs can be written and rewritten to the built-in EPROM type making it ideal for system evaluation.

Detailed functions are described in the followin user's manual. Be sure to read it for designing. μ PD75308 User's Manual: IEM-5016

FEATURES

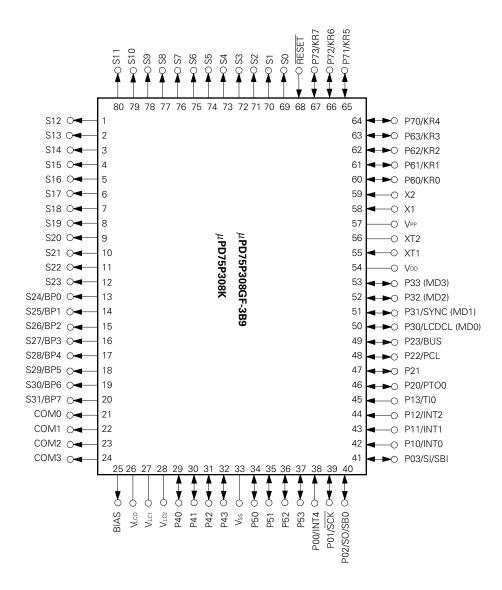
- μPD75308 compatible
- Memory capacity
 - Program memory (PROM): 8064 x 8 bits
 - Data memory (RAM): 512 x 4 bits
- Can be connected to a pull-up resistor through software: Ports 0-3, 6, 7
- Open-drain input/output: Ports 4 and 5
- Single power source: 5V ± 5%

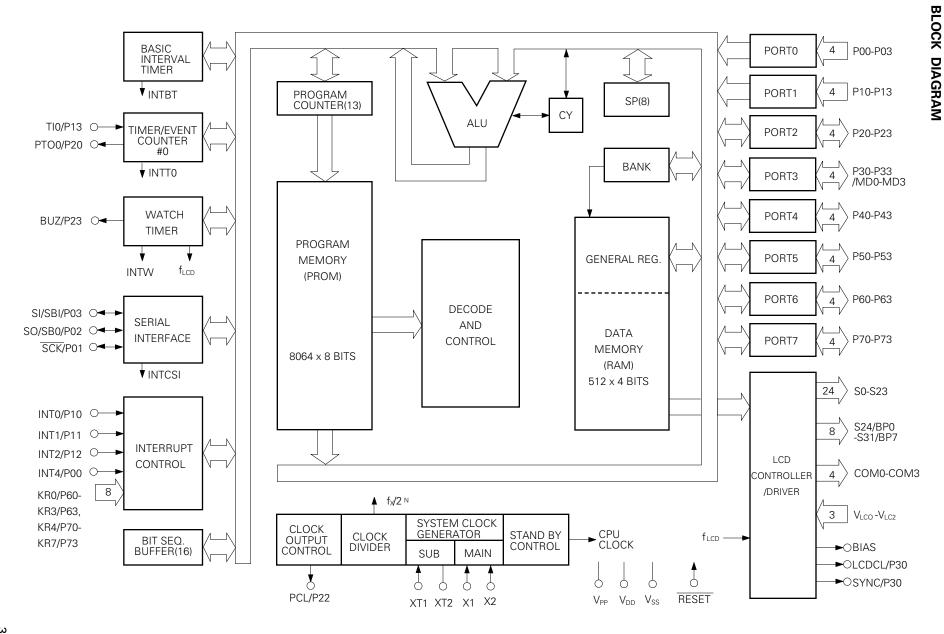
ORDERING INFORMATION

Part Number	Package Internal	
μPD75P308GF-3B9	80-pin plastic QFP (14 x 20 mm)	One-time PROM
μ PD75P308K	80-pin ceramic WQFN (LCC w/window)	EPROM

QUALITY GRADE

Part Number	Package	Quality Grade	
μPD75P308GF-001-3B9	80-pin plastic QFP (14 x 20 mm)	Standard	-
μPD75P308K	80-pin Ceramic WQFN (LCC w/window)	Standard	


Please refer to "Quality Grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.


The function common to the one-time PROM and EPROM types of product is referred to as PROM throughout this document.

The information in this document is subject to change without notice.

PIN CONFIGURATION

CONTENTS

	1.	PIN	FUNCTIONS	5
		1.1	PORT PINS	5
		1.2	NON PORT PINS	6
		1.3	PIN INPUT/OUTPUT CIRCUITS	7
K		1.4	NOTES ON USING P00/INT4 AND RESET PINS	9
	2.	DIFF	ERENCES BETWEEN μ PD75P308 AND μ PD75308	10
	3.	WRI	TING AND VERIFYING PROM (PROGRAM MEMORY)	. 11
		3.1	OPERATION MODES FOR WRITING/VERIFYING PROGRAM MEMORY	. 11
		3.2	PROGRAM MEMORY WRITE PROCEDURE	
		3.3	PROGRAM MEMORY READ PROCEDURE	
		3.4	ERASURE (μPD75P308K ONLY)	. 14
	4.	ELEC	CTRICAL SPECIFICATIONS	15
	5.	PACI	KAGE DRAWINGS	. 28
	6.	REC	OMMENDED SOLDERING CONDITIONS	30
	API	PEND	IX A. DEVELOPMENT TOOLS	31
*	API	PEND	IX B. RELATED DOCUMENTS	32

1. PIN FUNCTIONS

1.1 PORT PINS

Pin Name	Input/Output	Also Served As	Function	8-Bit I/O	When Reset	Input/ Output Circuit TYPE*1
P00	Input	INT4				B
P01	Input/Output	SCK	4-bit input port (PORT0) Pull-up resistors can be specified in 3-bit units for the P01 to P03 pins by software.		lan.ut	F-A
P02	Input/Output	SO/SB0		X	Input	F-B
P03	Input/Output	SI/SBI				M-C
P10		INT0	With noise elimination function			
P11	lmmus	INT1	pit input port (PORT1)		lanut	B-C
P12	Input	INT2	Internal pull-up resistors can be specified in 4-bit units by software.	^	iliput	В-С
P13		TI0	specified in 4-bit diffits by software.			
P20		PTO0				
P21	Input/Output	_	4-bit input/output port (PORT2)	\ \ \		- D
P22	input/Output	PCL	Internal pull-up resistors can be specified in 4-bit units by software.	X	Input	E-B
P23		BUZ	·			
P30*2		LCDCL MD0	Programmable 4-bit input/output port			
P31*2	Innut/Outrout	SYNC MD1	(PORT3) This port can be specified for input/output		laa t	ED
P32*2	Input/Output	MD2	in bit units. Internal pull-up resistors can be	X	Input	E-B
P33*2		MD3	specified in 4-bit units by software.			
P40-43*²	Input/Output	_	N-ch open-drain 4-bit input/output port (PORT4) Data input/output pin for writing and verifying of program memory (PROM) (lower 4 bits)	(High impedance	M-A
P50-P53*²	Input/Output	_	N-ch open-drain 4-bit input/output port (PORT5) Data input/output pin for writing and verifying of program memory (PROM) (upper 4 bits)		High impedance	M-A
P60		KR0	Programmable 4-bit input/output port			
P61	Innut/Outnut	KR1	(PORT6) This port can be specified for input/output			(F) A
P62	Input/Output	KR2	in bit units. Internal pull-up resistors can be specified		Input	(F)-A
P63		KR3	in 4-bit units by software.			
P70		KR4				
P71	Immust/Ocation	KR5	4-bit input/output port (PORT7)			<u> </u>
P72	Input/Output	KR6	Internal pull-up resistors can be specified in 4-bit units by software.		Input	(F)-A
P73		KR7	, , , , , , , , , , , , , , , , , , , ,			
BP0		S24				
BP1	•	S25				
BP2	Output	S26				
BP3		S27	 1-bit output port (BIT PORT)			
BP4		S28	Shared with a segment output pin.	X	*3	G-C
BP5		S29				
BP6	Output	S30				
BP7		S31				

^{*1:} Circles indicate schmitt trigger inputs.

^{2:} Can directly drive LED.

^{3:} For BP0-7, VLc1 indicated below are selected as the input source.

However, the output level is changed depending on BP0-7 and the VLc1 external circuits.

1.2 NON PORT PINS

Pin Name	Input/Output	Also Served As	Function	When Reset	Input/ Output Circuit TYPE*1
TI0	Input	P13	Timer/event counter external event pulse input	_	(B)-C
PTO0	Output	P20	Timer/event counter output	Input	E-B
PCL	Input/Output	P22	Clock output	Input	E-B
BUZ	Input/Output	P23	Fixed frequency output (for buzzer or for trimming the system clock)	Input	E-B
SCK	Input/Output	P01	Serial clock input/output	Input	(F)-A
SO/SB0	Input/Output	P02	Serial data output Serial bus input/output	Input	(F)-B
SI/SB1	Input/Output	P03	Serial data input Serial bus input/output	Input	M-C
INT4	Input	P00	Edge detection vector interrupt input (either rising or falling edge detection is effective)	_	B
INT0 INT1	Input	P10 P11	Edge detection vector interrupt input (detection edge can be selected)	_	B -C
INT2	Input	P12	Edge detection testable input (rising edge detection)	_	B-C
KR0-KR3	Input/Output	P60-P63	Testable input/output(parallel falling edge detection)	Input	F-A
KR4-KR7	Input/Output	P70-P73	Testable input/output(parallel falling edge detection)	Input	F-A
S0-S23	Output	_	Segment signal output	*3	G-A
S24-S31	Output	BP0-7	Segment signal output	*3	G-C
COM0- COM3	Output	_	Common signal output	*3	G-B
VLC0-VLC2	_	_	LCD drive power	_	_
BIAS	_	_	External dividing resistor disconnect output	High-impedance	_
LCDCL*2	Input/Output	P30	Externally expanded driver clock output	Input	E-B
SYNC*2	Input/Output	P31	Externally expanded driver sync clock output	Input	E-B
X1, X2	Input	_	To connect the crystal/ceramic oscillator to the main system clock generator. When inputting the external clock, input the external clock to pin X1, and the reverse phase of the external clock to pin X2.		_
XT1	Input	_	To connect the crystal oscillator to the subsystem clock generator. When the external clock is used, in XT1 inputs the external clock. In this case, pin XT2 must be left	_	_
XT2	_	_	open. Pin XT1 can be used as a 1-bit input (test) pin.		
RESET	Input	_	System reset input (low level active)	_	B
MD0-MD3	Input/Output	P30-P33	To select mode when writing/verifying of program memory (PROM)	Input	E-B
V _{PP}	_	_	Program voltage application when writing and verifying of program memory (PROM) Connect to VDD during the normal operation Apply +12.5V when writing/verifying EPROM	_	_
V _{DD}	_	_	Positive power supply	_	
Vss			GND	_	

^{*1:} Circles indicate schmitt trigger inputs.

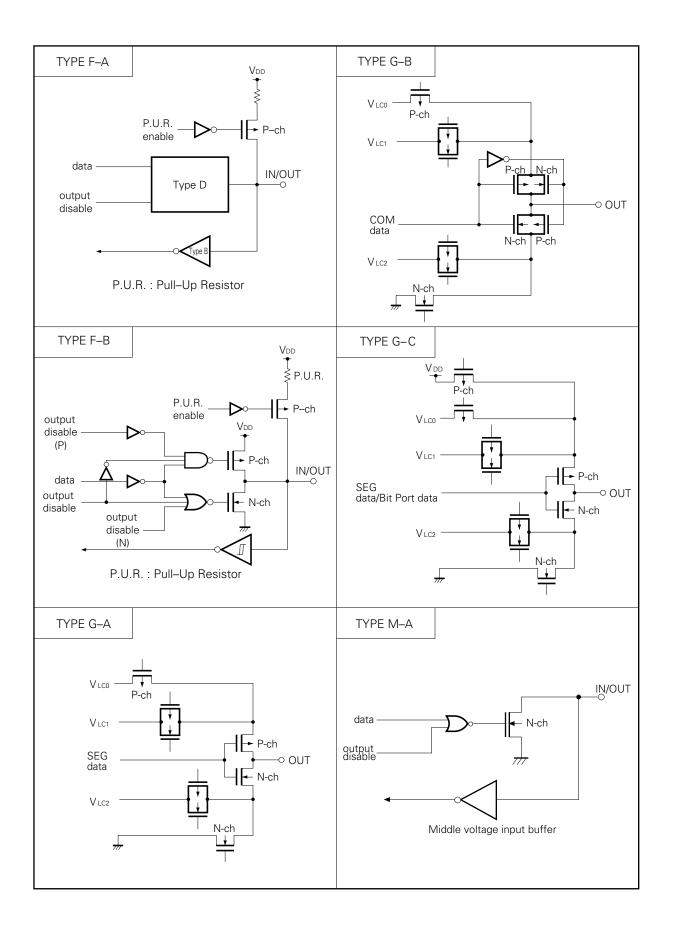
S0 to S31: VLC1, COM0 to COM2: VLC2, COM3: VLC0

However, display output level varies depending on the particular display output and VLCX external circuit.

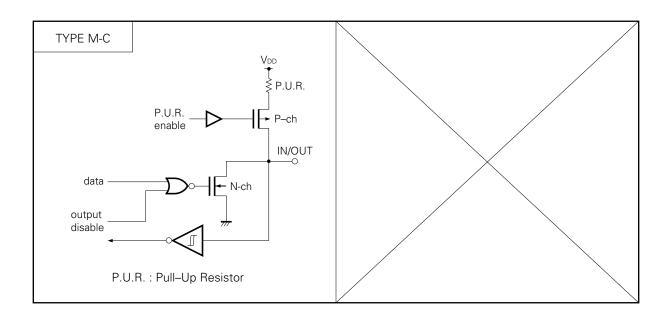
*

^{2:} These pins are provided for future system expansion. At present, these pins are used only as pins P30 and P31.

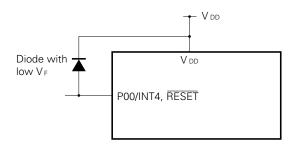
^{3:} For these display output, VLCX indicated below are selected as the input source.



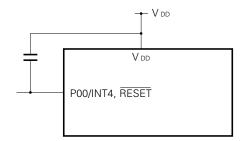
1.3 PIN INPUT/OUTPUT CIRCUITS


The following shows a simplified input/output circuit diagram for each pin of the μ PD75P308.

1.4 NOTES ON USING P00/INT4 AND RESET PINS


In addition to the functions shown in sections 1.1 and 1.2, the P00/INT4 and $\overline{\text{RESET}}$ pins also have a function to set a test mode (for IC testing) in which the internal operations of the μ PD75P308 are tested.

When a voltage higher than V_{DD} is applied to either of these pins, the test mode is set. This means that, even during ordinary operation, the μ PD75P308 may be set in the test mode if a noise exceeding V_{DD} is applied.


For example, if the wiring length of the P00/INT4 or RESET pin is too long, noise superimposed on the wiring line of the pin may cause the above problem.

Therefore, keep the wiring length of these pins as short as possible to suppress the noise; otherwise, take noise preventive measures as shown below by using external components.

 Connect diode with low VF between VDD and P00/INT4, RESET pin

 Connect capacitor between VDD and P00/INT4, RESET pin

2. DIFFERENCES BETWEEN μ PD75P308 AND μ PD75308

The μ PD75P308 is a model of the μ PD75308 and is equipped with a PROM instead of a mask ROM. Programs can be rewritten to the PROM of the μ PD75P308. Table 2-1 shows the differences between the μ PD75P308 and μ PD75308. You should fully consider these differences when you debug or produce your application system on an experimental basis by using the PROM model, and then proceed to mass-produce the system by using the mask ROM model.

For the details of the CPU and the internal hardware, refer to μ PD75308 User's Manual (IEM-5016).

Table 2-1 Differences between μ PD75P308 and μ PD75308

Item		μPD75P308K	μPD75P308GF	μPD75308GF		
Program Memory		• EPROM • PROM (one-time model) • 0000H-1F7FH • 0000H-1F7FH • 8064 x 8 bits • 8064 x 8 bits		• Mask ROM • 0000H-1F7FH • 8064 x 8 bits		
Pull-up Resistor	Ports 4, 5	Not pro	vided	Mask option		
Dividing Resist		Not provided		Mask option		
Pin Connection	Pins 50-53	P30/MD0-P33/MD3		P30-P33		
1 III Connection	Pin 57	Vpp		Vpp		NC
Electrical Spec	ifications	Current dissipations and operating temperature ranges differ between μ PD75P308 and μ PD75308. For detail, refer to the specification documents of each mode.				
Operating Volta	age Range	5V±5%		2.7-6.0V		
Packag	ie	80-pin ceramic WQFN 80-pin plastic QFP (14 x 20 mm) (LCC w/window)				
Others	3	Noise immunity and noise radiation differ because circuit scale and mask layout are different.				

★ Note: The noise immunity and noise radiation differ between the PROM and mask ROM models. To replace the PROM model with the mask ROM model in the course of experimental production to mass production, evaluate your system by using the CS mode (not ES model) of the mask ROM model.

*

_

3. WRITING AND VERIFYING PROM (PROGRAM MEMORY)

The program memory of the μ PD75P308 is a PROM of 8064 x 8 bits. To write data to or verify the contents of this PROM, the pins listed in the table below are used. Note that no address input pins are provided because the address is updated by the clock input through the X1 pin.

Pin Name	Function
Vpp	Applies voltage when program memory is written/verified (normally, at VDD potential)
X1, X2	These pins input clock that updates address when program memory is written/verified. To X2 pin, input signal 180° out of phase in respect to signal to X1 pin.
MD0-MD3	These pins select operation mode when program memory is written/verified.
P40-P43 (Lower 4) P50-P53 (Upper 4)	These pins input/output 8-bit data when program memory is written/verified.
V _{DD}	Power supply voltage application pin. Apply 5V \pm 5% to this pin during normal operation and 6V when program memory is written/verified.

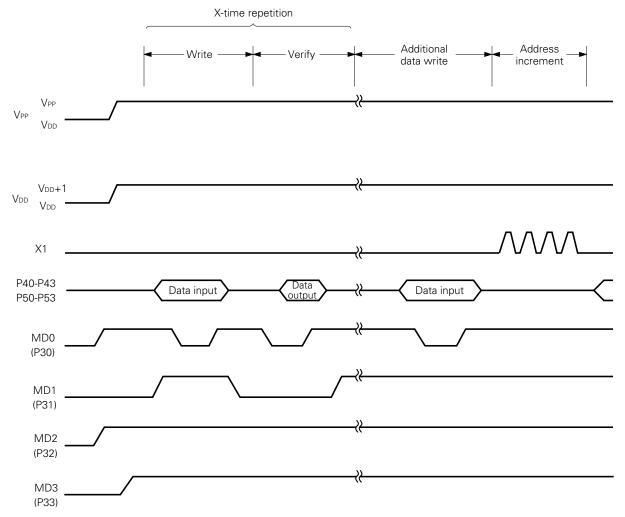
- Note 1: Always cover the erasure window of the μ PD75P308K with a light-opaque film except when the contents of the program memory are erased.
 - 2: The one-time PROM model μ PD75P308GF is not equipped with a window and therefore, the contents of the program memory of this model cannot be erased by exposing it to ultraviolet rays.

3.1 OPERATION MODES FOR WRITING/VERIFYING PROGRAM MEMORY

When +6V is applied to the V_{DD} pin of the μ PD75P308 with +12.5V applied to the V_{PP} pin, the μ PD75P308 is set in the program memory write/verify mode. In this mode, the following operation modes can be set by using the MD0-MD3 pins. At this time, pull down the levels of all the other pins to Vss.

	Oper	ating Mod	Operating Mode			
VPP	V _{DD}	MD0	MD1	MD2	MD3	Operating Mode
		Н	L	Н	L	Program memory address 0 clear mode
+12.5 V	+6 V	L	Н	Н	Н	Write mode
+12.5 V	+0 V	L	L	Н	Н	Verify mode
	Н	х	Н	Н	Program inhibit mode	

x: L or H

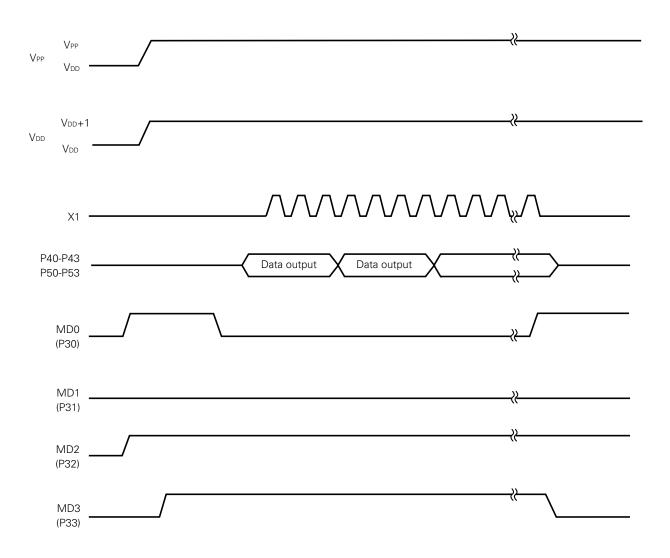


3.2 PROGRAM MEMORY WRITE PROCEDURE

The program memory write procedure is as follows. High-speed program memory write is possible.

- (1) Ground the unused pins through pull-down resistors. The X1 pin must be low.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait for 10 microseconds.
- (4) Set program memory address 0 clear mode.
- (5) Supply 6 V to the VDD pin and 12.5 V to the VPP pin.
- (6) Set program inhibit mode.
- (7) Write data in 1-millisecond write mode.
- (8) Set program inhibit mode.
- (9) Set verify mode. If data has been written connectly, proceed to step (10). If data has not yet been written, repeat steps (7) to (9).
- (10) Write additional data for (the number of times data was written (X) in steps (7) to (9)) times 1 milliseconds.
- (11) Set program inhibit mode.
- (12) Supply a pulse to the X1 pin four times to update the program memory address by 1.
- (13) Repeat steps (7) to (12) to the last address.
- (14) Set program memory address 0 clear mode.
- (15) Change the voltages of VDD and VPP pins to 5 V.
- (16) Turn off the power supply.

Steps (2) to (12) are illustrated below.



3.3 PROGRAM MEMORY READ PROCEDURE

The contents of the program memory can be read in the following procedure.

- (1) Ground the unused pins through pull-down resistors. The X1 pin must be low.
- (2) Supply 5 V to the VDD and VPP pins.
- (3) Wait for 10 microseconds.
- (4) Set program memory address 0 clear mode.
- (5) Supply 6 V to the VDD pin and 12.5 V to the VPP pin.
- (6) Set program inhibit mode.
- (7) Set verify mode. Data of each address is sequentially output each time a clock pulse is input to the X1 pin four times.
- (8) Set program inhibit mode.
- (9) Set program memory address 0 clear mode.
- (10) Change the voltages of VDD and VPP pins to 5 V.
- (11) Turn off the power supply.

Steps (2) to (9) are illustrated below.

3.4 ERASURE (μPD75P308K ONLY)

The contents of the data programmed to the μ PD75P308 can be erased by exposing the window of the program memory to ultraviolet rays.

The wavelength of the ultraviolet rays used to erase the contents is about 250 nm, and the quantity of the ultraviolet rays necessary for complete erasure is 15 W.s/cm² (= ultraviolet ray intensity x erasure time).

When a commercially available ultraviolet ray lamp (wavelength: 254 nm, intensity: 12 mW/cm²) is used, about 15 to 20 minutes is required.

- Note 1: The contents of the program memory may be erased when the μ PD75P308 is exposed for a long time to direct sunlight or the light of fluorescent lamps. To protect the contents from being erased, mask the window of the program memory with the light-opaque film supplied as an accessory with the UV EPROM products.
 - 2: To erase the memory contents, the distance between the ultraviolet ray lamp and the μ PD75P308 should be 2.5 cm or less.

Remarks: The time required for erasure changes depending on the degradation of the ultraviolet ray lamp and the surface condition (dirt) of the window of the program memory.

4. ELECTRICAL SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS $(T_a = 25^{\circ}C)$

Parameter	Symbol	Conditions		Rating	Unit		
Supply Voltage	V _{DD}			-0.3 to +7.0	V		
Supply Voltage	V _{PP}			-0.3 to +13.5	V		
Inmut Valtage	Vıı	Other than ports 4	or 5	-0.3 to V _{DD} +0.3	V		
Input Voltage	V ₁₂ *1	Ports 4 and 5	Open-drain	-0.3 to +11	V		
Output Voltage	Vo			-0.3 to V _{DD} +0.3	V		
		1 Pin		-15	mA		
High-Level Output Current	Іон	Iон All pins		All pins		-30	mA
			Peak value	30	mA		
		One pin	Effective value	15	mA		
Loughous Outmut Comment	. *2	T	Peak value	100	mA		
Low-Level Output Current	lон ^{*2}	Total of ports 0, 2, 3	Effective value	60	mA		
			Peak value	100	mA		
		Total of ports 4, 6, 7	Effective value	60	mA		
Operating Temperature	Topt		1	-10 to +70	°C		
Storage Temperature	T _{stg}			-65 to +150	°C		

^{*1:} The impedance of the power source (pull-up resistor) must be 50 K Ω minimum when a voltage higher than 10V is applied to ports 4 and 5.

^{2:} Effective value = Peak value x $\sqrt{\text{Duty}}$

MAIN SYSTEM CLOCK OSCILLATOR CIRCUIT CHARACTERISTICS

 $(T_a = -10 \text{ to } +70^{\circ}\text{C}, V_{DD} = 5 \text{ to } \pm 5 \text{ V})$

Oscillator	Recommended Constants	ltem	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic*3	X1 X2	Oscillation frequency (fxx)*1		1.0		5.0*4	MHz
	C1 C2	Oscillation stabilization time*2	After V _{DD} came to MIN. of oscillation voltage range			4	ms
Crystal	X1 X2	Oscilaltion frequency (fxx)*1		1.0	4.19	5.0*4	MHz
	C1 C2	Oscillation stabilization time*2				10	ms
External Clock	X1 X2	X1 input frequency (fx)*1		1.0		5.0*4	MHz
	ΔμPD74HCU04	X1 input high-, low-level widths (txH, txL)		100		500	ns

- * 1: The oscillation frequency and X1 input frequency are indicated only to express the characteristics of the oscillator circuit.
 - For instruction execution time, refer to AC Characteristics.
- 2: Time required for oscillation to stabilize after V_{DD} reaches the minimum value of the oscillation voltage range or the STOP mode has been released.
- 3: The oscillators below are recommended.
- * 4: When the oscillation frequency is 4.19 MHz < fx \leq 5.0 MHz, do not select PCC = 0011 as the instruction execution time: otherwise, one machine cycle is set to less than 0.95 μ s, falling short of the rated minimum value of 0.95 μ s.
- ★ Caution: When using the oscillation circuit of the main system clock, wire the portion enclosed in dotted line in the figures as follows to avoid adverse influences on the wiring capacity:
 - · Keep the wiring length as short as possible.
 - Do not cross the wiring over the other signal lines. Do not route the wiring in the vicinity of lines through which a high alternating current flows.
 - Always keep the ground point of the capacitor of the oscillator circuit at the same potential as VDD. Do not connect the power source pattern through which a high current flows.
 - · Do not extract signals from the oscillation circuit.

RECOMMENDED OSCILLATION CIRCUIT CONSTANTS

MAIN SYSTEM CLOCK: CERAMIC OSCILLATOR ($T_a = -10 \text{ to } +70^{\circ}\text{C}$)

Manufac-	Product Name	External Cap	Oscillation Voltage Range [V]		
turer		C1	C2	MIN.	MAX.
Murata	CSA 2.00MG	30	30	4.75	5.25
Mfg. Co., Ltd.	CSA 4.19MG	30	30	4.75	5.25
	CSA 4.19MGU	30	30	4.75	5.25
	CST 4.19MG	30 pF (internal)	30 pF (internal)	4.75	5.25

SUBSYSTEM CLOCK OSCILLATOR CIRCUIT CHARACTERISTICS

 $(T_a = -10 \text{ to } +70^{\circ}\text{C}, V_{DD} = 5 \text{ V } \pm 5\%)$

Oscillator	Recommended Constants	ltem	Conditions	MIN.	TYP.	MAX.	Unit
Crystal	XT1 XT2 R	Oscillation frequency (fxt)		32	32.768	35	kHz
		Oscillation stabilization time*			1.0	2	S
External Clock	XT1 XT2	XT1 input frequency (fxr)		32		100	kHz
	Open	XT1 input high-, low-level widths (txth, txtl)		5		15	μs

^{*:} Time required for oscillation to stabilize after VDD reaches the minimum value of the oscillation voltage range.

Caution: When using the oscillation circuit of the subsystem clock, wire the portion enclosed in dotted line ★ in the figures as follows to avoid adverse influences on the wiring capacity:

- · Keep the wiring length as short as possible.
- Do not cross the wiring over the other signal lines. Do not route the wiring in the vicinity of lines through which a high alternating current flows.
- Always keep the ground point of the capacitor of the oscillator circuit at the same potential as VDD. Do not connect the power source pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

The amplification factor of the subsystem clock oscillation circuit is designed to be low to reduce the current dissipation and therefore, the subsystem clock oscillation circuit is influenced by noise more easily than the main system clock oscillation circuit. When using the subsystem clock, therefore, exercise utmost care in wiring the circuit.

CAPACITANCE ($T_a = 25^{\circ}C$, $V_{DD} = 0 V$)

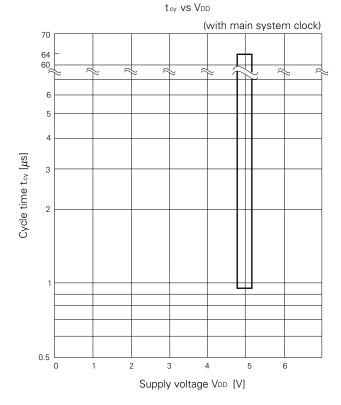
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input Capacitance	Cin	f = 1 MHz			15	рF
Output Capacitance	Соит	Pins other than thosemeasured are at 0 V			15	рF
Input/Output Capacitance	Сю				15	pF

DC CHARACTERISTICS (T_a = -10 to +70°C, V_{DD} = 5V ±5%)

Parameter	Symbol	Co	onditions	MIN.	TYP.	MAX.	Unit
High-Level Input Voltage	V _{IH1}	Ports 2, 3		0.7 VDD		V _{DD}	V
	V _{IH2}	Ports 0, 1, 6, 7	, RESET	0.8 V _{DD}		V _{DD}	V
	VIH3	Ports 4, 5	Open-drain	0.7 VDD		10	V
	V _{IH4}	X1, X2, XT1		V _{DD-} 0.5		V _{DD}	V
Low-Level Input Voltage	V _{IL1}	Ports 2, 3, 4, 5	5	0		0.3 VDD	V
	V _{IL2}	Ports 0, 1, 6, 7	, RESET	0		0.2 VDD	V
	V _{IL3}	X1, X2, XT1		0		0.4	V
High-Level Output Voltage	Vон1	Ports 0, 2, 3, 6, 7 BIAS	Іон = −1mA	V _{DD-} 1.0			V
	V _{OH2}	BP0-7	Іон = -100µА*1	V _{DD} -2.0			V
Low-Level Output Voltage		Ports 0, 2, 3,	Ports 3, 4, 5		0.4	2.0	V
	V _{OL1}	6, 7	IoL = 15mA		0.4	2.0	
			IoL = 1.6mA			0.4	V
	V _{OL2}	SB0, 1 Open-drain	Pull-up R≥ 1kΩ			0.2V _{DD}	V
	Vогз	BP0-7	$IoL = 100 \mu A^{*1}$			1.0	V
High-Level Input Leakage Current	ILIH1	$V_{IN} = V_{DD}$	Other than below			3	μΑ
	I _{LIH2}	VIIV — V DD	X1, X2, XT1			20	μΑ
	Ілнз	$V_{IN} = 10V$	Ports 4, 5			20	μΑ
Low-Level Input Leakage Current	ILIL1	VIN = 0V	Other than below			-3	μΑ
	ILIL2	VIN = UV	X1, X2, XT1			-20	μΑ
High-Level Output Leakage Current	Ісон1	Vout = Vdd	Other than below			3	μΑ
	ILOH2	Vout = 10V	Ports 4.5			20	μΑ
Low-Level Output Leakage Current	ILOL	Vout = 0V				-3	μΑ
Internal Pull-Up Resistor	Ru	Ports 0, 1, 2, 3 (except P00) V		15	40	80	ΚΩ
LCD Drive Voltage	VLCD			2.5		V _{DD}	V
LCD Output Voltage Deviation *2 (Common)	Vodc	$I_0 = \pm 5 \mu A$	$V_{LCD0} = V_{LCD}$ $V_{LCD1} = V_{LCD} \times \frac{2}{3}$	0		±0.2V	V
LCD Output Voltage Deviation *2 (Segment)	Vods	I ₀ = ±1 μA	$V_{LCD2} = V_{LCD} \times \frac{3}{1}$ $2.7 \text{ V} \leq V_{LCD} \leq V_{DD}$	0		±0.2V	V
Supply Current *3	I _{DD1}	4.19MHz crystal *4	*6		5	15	mA
	I _{DD2}	oscillator C1 = C2 = 22pF	HALT mode		500	1500	μΑ
		32 kHz *5			350	1000	
	Іррз	crystal oscillator	HALT mode		35	100	μΑ
	I _{DD4}	XT1 = 0V STOP mode			0.5	20	μΑ

- * 1: When using two of BP0-BP3 and two of BP4-BP7 for output at the same time.
 - 2: "Voltage deviation" means the difference between the ideal segment or common output value (VLCDn: = 0, 1, 2) and output voltage.
 - 3: Currents for the built-in pull-up resistor are not included.
 - 4: Including when the subsystem clock is operated.
 - 5: When operated with the subsystem clock by setting the system clock control register (SCC) to 1001 to stop the main system clock operation.
 - 6: When operand in the high-speed mode with the processor clock control register (PCC) set to 0011.

AC CHARACTERISTICS ($T_a = -10 \text{ to } + 70^{\circ}\text{C}$, $V_{DD} = 5V \pm 5\%$)


Operation Other Than Serial Transfer

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
CPU Clock Cycle Time*1		/	0.05		64	
(Minimum Instruction		w/main system clock	0.95		64	μs
Execution Time	tcy	w/oubougtons alogk	114	100	125	μs
= 1 Machine Cycle)		w/subsystem clock	114	122		
TI0 Input Frequency	f⊤ı		0		1	MHz
TIO Input High-, Low-Level	t тін, t ті∟		0.48			116
Widths	CIIH, CIIL		0.40			μs
Interrupt Input High-, Low-Level	tinth,	INT0	*2			μs
Widths	tintl	KR0-7, INT1, 2, 4	10			μs
RESET Low-Level Width	trsl		10			μs

* 1: The CPU clock (Φ) cycle time is determined by the oscillation frequency of the connected oscillator, system clock control register (SCC), and processor clock control register (PCC).

The figure on the right is cycle time toy vs. supply voltage VDD characteristics at the main system clock.

2: 2tcy or 128/fxx depending on the setting of the interrupt mode register (IM0).

SERIAL TRANSFER OPERATION

TWO-LINE AND THREE-LINE SERIAL I/O MODES (SCK: internal clock output)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCK Cycle Time	tkcy1		Output	1600			ns
SCK High-, Low-Level Widths	t KH1, t KL1		Output	tkcy1/2-50			ns
SI Set-Up Time (vs. SCK)	tsik1			150			ns
SI Hold Time (vs. SCK↑)	tksi1			400			ns
SCK ↓ → SO Output Delay Time	tkso1	$R_L = 1k\Omega$, $C_L = 100pF*$				250	ns

★ *: RL and CL are load resistance and load capacitance of the SO output line.

TWO-LINE AND THREE-LINE SERIAL I/O MODES (SCK: external clock input)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
SCK Cycle Time	tkcy2		Input	800			ns
SCK High-, Low-Level Widths	t KH2, t KL2		Input	400			ns
SI Set-Up Time (vs. SCK↑)	tsik2			100			ns
SI Hold Time (vs. SCK↑)	tksi2			400			ns
SCK ↓ → SO Output Delay Time	tĸso2	$R_L = 1k\Omega$, $C_L = 100pF*$				300	ns

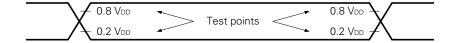
* *: RL and CL are load resistance and load capacitance of the SO output line.

SBI MODE (SCK: internal clock output (master))

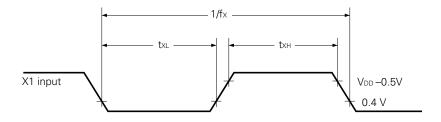
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK Cycle Time	tксүз		1600			ns
SCK High-, Low-Level Widths	tкьз tкнз		tксу/2 -50			ns
SB0, 1 Set-Up Time (vs. SCK↑)	t sık3		150			ns
SB0, 1 Hold Time (vs. SCK)	t ksı3		tkcy/2			ns
SCK ↓ → SB0, 1 Output Delay Time	tкsоз	$R_L = 1k\Omega$, $C_L = 100pF*$	0		250	ns
$\overline{SCK}\!\uparrow\toSB0,1\!\!\downarrow$	t кsв		tĸcy			ns
SB0, $1 \downarrow \rightarrow \overline{SCK} \downarrow$	t sbk		tĸcy			ns
SB0, 1 Low-Level Width	tsbl		t kcy			ns
SB0, 1 High-Level Width	tsвн		t KCY			ns

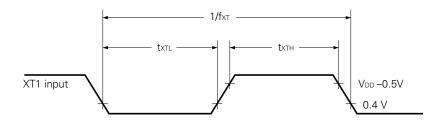
^{*:} R_L and C_L are load resistance and load capacitance of the SO output line.

SBI MODE (SCK: external clock output (master))

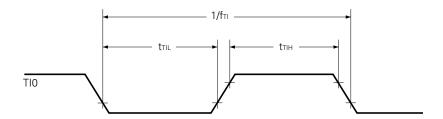

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK Cycle Time	tkcy4		1600			ns
SCK High-, Low-Level Widths	tkl4 tkh4		400			ns
SB0, 1 Set-Up Time (vs. SCK↑)	tsik4		100			ns
SB0, 1 Hold Time (vs. SCK)	tksi4		tkcy/2			ns
SCK ↓ → SB0, 1 Output Delay Time	tkso4	$R_L = 1k\Omega$, $C_L = 100pF*$	0		300	ns
$\overline{SCK}^{\uparrow} o SB0, 1\!\!\downarrow$	tкsв		tĸcy			ns
SB0, $1 \downarrow \rightarrow \overline{SCK} \downarrow$	t sbk		tkcy			ns
SB0, 1 Low-Level Width	t sbl		tkcy			ns
SB0, 1 High-Level Width	tsвн		tkcy			ns

^{*:} R_L and C_L are load resistance and load capacitance of the SO output line.

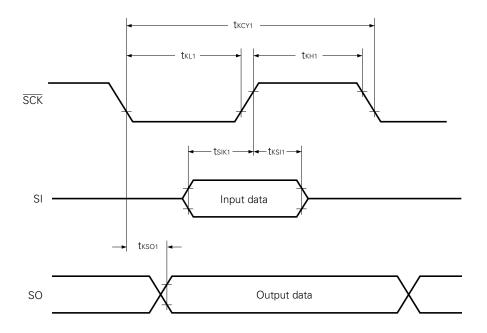

^

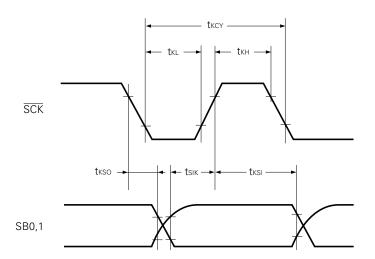


AC TIMING TEST POINT (excluding X1 and XT1 inputs)



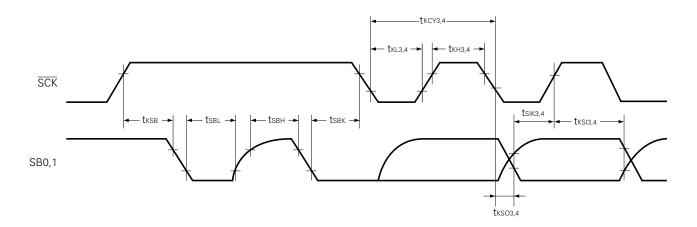
CLOCK TIMING

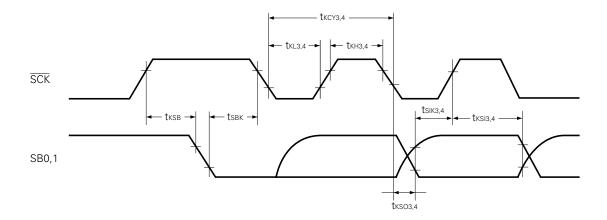

TIO TIMING



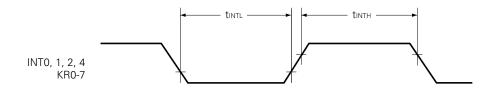
SERIAL TRANSFER TIMING

THREE-LINE SERIAL I/O MODE:


TWO-LINE SERIAL I/O MODE:



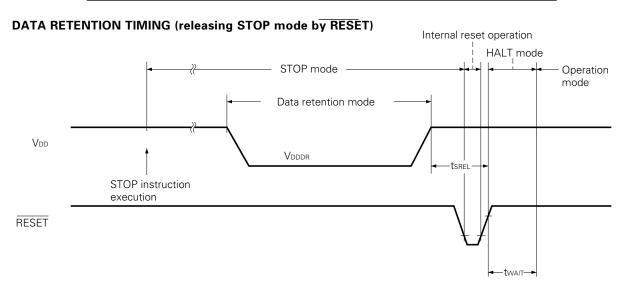
SERIAL TRANSFER TIMING


BUS RELEASE SIGNAL TRANSFER

COMMAND SIGNAL TRANSFER

INTERRUPT INPUT TIMING

RESET INPUT TIMING


LOW-VOLTAGE DATA RETENTION CHARACTERISTICS OF DATA MEMORY IN STOP MODE

 $(T_a = -10 \text{ to } +70^{\circ}\text{C})$


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data Retention Supply Voltage	V _{DDDR}		2.0		6.0	V
Data Retention Supply Current*1	IDDDR	VDDDR = 2.0V		0.1	10	μΑ
Release Signal Set Time	t srel		0			μs
Oscillation Stabilization	twait	Released by RESET		2 17/fx		ms
Wait Time*2	LVVAII	Released by interrupt		*3		ms

- *1: Does not include current following through internal pull-up resistor
- 2: The oscillation stabilization wait time is the time during which the CPU is stopped to prevent unstable operation when oscillation is started.
- 3: Depends on the setting of the basic interval timer mode register (BTM) as follows:

втмз	BTM2	BTM1	втмо	WAIT time (): fx = 4.19 MHz
_	0	0	_	2 ²⁰ /fx (approx. 250 ms)
_	0	1	_	2 ¹⁷ /fx (approx. 31.3 ms)
_	1	0	_	2 ¹⁵ /fx (approx. 7.82 ms)
_	1	1	_	2 ¹³ /fx (approx. 1.95 ms)

DATA RETENTION TIMING (standby release signal: releasing STOP mode by interrupt)

DC PROGRAMMING CHARACTERISTICS ($T_a = 25 \pm 5^{\circ}C$, $VDD = 6.0 \pm 0.25V$, $VPP = 12.5 \pm 0.3V$, VSS = 0V)

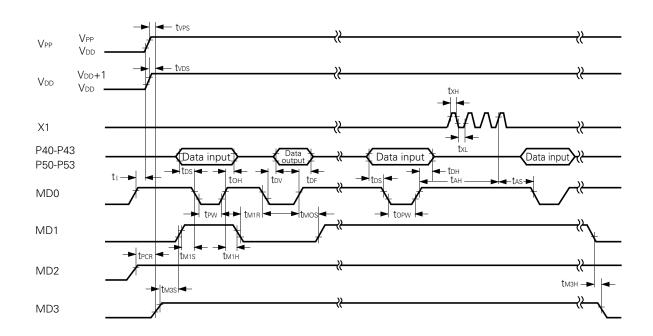
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-Level Input Voltage	V _{IH1}	Other than X1 or X2	0.7 V _{DD}		V _{DD}	V
High-Level input voltage	V _{IH2}	X1 and X2	V _{DD} -0.5		V _{DD}	V
Low Lovel Input Voltage	VIL1	Other than X1 or X2	0		0.3 V _{DD}	V
Low-Level Input Voltage	V _{IL2}	X1 and X2	0		0.4	V
Input Leakage Current	lu	VIN = VIL OR VIH			10	μΑ
High-Level Output Voltage	Vон	Iон = −1 mA	V _{DD} -1.0			V
Low-Level Output Voltage	Vol	loL = 1.6 mA			0.4	V
VDD Supply Current	IDD				30	mA
V _{PP} Supply Current	IPP	MD0 = VIL, MD1 = VIH			30	mA

Notes 1: VPP must not exceed +13.5 V, including the overshoot.

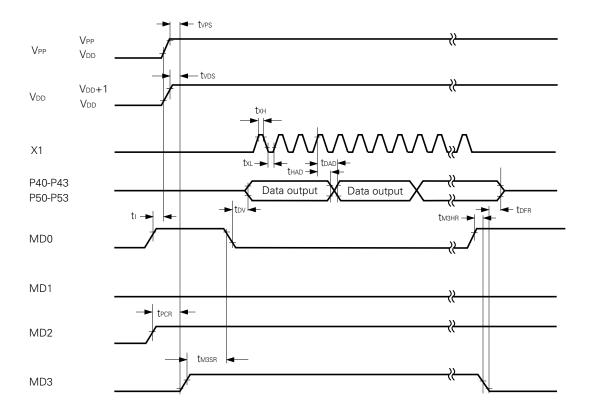
2: Apply VDD before VPP and disconnect it after VPP.

AC PROGRAMMING CHARACTERISTICS ($T_a = 25\pm5^{\circ}C$, $V_{DD} = 6.0\pm0.25V$, $V_{PP} = 12.5\pm0.3V$, $V_{SS} = 0V$)

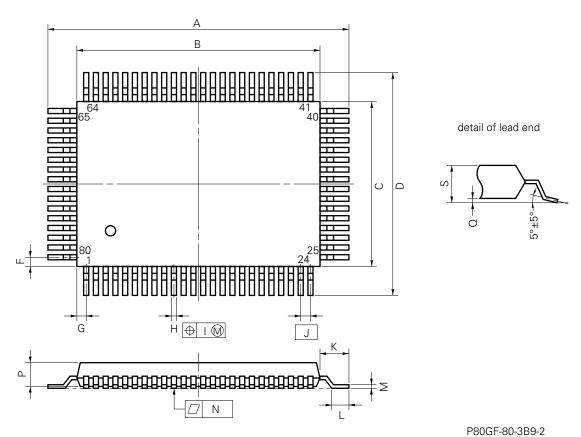
Parameter	Symbol	* 1	Conditions	MIN.	TYP.	MAX.	Unit
Address Set-Up Time*² (vs.MD0↓)	tas	tas		2			μs
MD1 Set-Up Time (vs. MD0↓)	tм1s	toes		2			μs
Data Set-Up Time (vs. MD0↓)	tos	tos		2			μs
Address Hold Time*2 (vs.MD0↑)	tан	tан		2			μs
Data Hold Time (vs. MD0↑)	tон	tон		2			μs
MD0 ↑→ Data Output Float Delay Time	tor	t DF		0		130	ns
V _{PP} Set-Up Time (vs. MD3↑)	tvps	tvps		2			μs
V _{DD} Set-Up Time (vs. MD3↑)	tvds	tvcs		2			μs
Initial Program Pulse Width	tpw	tpw		0.95	1.0	1.05	ms
Additional Program Pulse Width	topw	topw		0.95		21.0	ms
MD0 Set-Up Time (vs. MD1↑)	tмоs	tces		2			μs
MD0 $\downarrow \rightarrow$ Data Output Delay Time	tov	tov	MD0 = MD1 = VIL			1	μs
MD1 Hold Time (vs. MD0↑)	tм1н	t oeh		2			μs
MD1 Recovery Time (vs. MD0↓)	t _{M1R}	tor	tm1H + tm1R≥ 50 μs	2			μs
Program Counter Reset Time	t PCR	_		10			μs
X1 Input High-/Low- Level Width	txH,txL	-		0.125			μs
X1 Input Frequency	fx	_				4.19	MHz
Initial Mode Set Time	tı	_		2			μs
MD3 Set-Up Time (vs. MD1↑)	tмзs	_		2			μs
MD3 Hold Time (vs. MD1↓)	tмзн	-		2			μs
MD3 Set-Up Time (vs. MD0↓)	t m3SR	-	When data is read from program memory	2			μs
Address*2 → Data Output Delay Time	tdad	tacc	When data is read from program memory			2	μs
Address*2 → Data Output Hold Time	thad	tон	When data is read from program memory	0		130	ns
MD3 Hold Time (vs. MD0 [↑])	tмзнк	-	When data is read from program memory	2			μs
MD3 ↓→ Data Output Float Delay Time	t DFR	-	When data is read from program memory			2	μs


*1: These symbols are the corresponding μ PD27C256 symbols.

2: The internal address signal is incremented by 1 at the fourth rising edge of X1 input. The internal address is not connected to any pin.

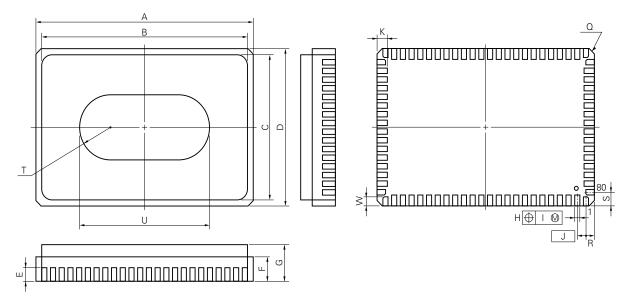

*

PROGRAM MEMORY WRITE TIMING


PROGRAM MEMORY READ TIMING

5. PACKAGE DRAWINGS

80 PIN PLASTIC QFP (14×20)


NOTE

Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition.

		F00GF-00-3D9-2
ITEM	MILLIMETERS	INCHES
А	23.6±0.4	0.929±0.016
В	20.0±0.2	0.795 +0.009 -0.008
С	14.0±0.2	0.551+0.009
D	17.6±0.4	0.693±0.016
F	1.0	0.039
G	0.8	0.031
Н	0.35±0.10	0.014+0.004
I	0.15	0.006
J	0.8 (T.P.)	0.031 (T.P.)
K	1.8±0.2	0.071+0.008
L	0.8±0.2	0.031+0.009
М	0.15 ^{+0.10} _{-0.05}	$0.006^{+0.004}_{-0.003}$
N	0.15	0.006
Р	2.7	0.106
Q	0.1±0.1	0.004±0.004
S	3.0 MAX.	0.119 MAX.

80 PIN CERAMIC WQFN

NOTE

Each lead centerline is located within 0.08 mm (0.003 inch) of its true position (T.P.) at maximum material condition.

X80KW-80A-1

ITEM	MILLIMETERS	INCHES
А	20.0±0.4	0.787 ^{+0.017} _{-0.016}
В	19.0	0.748
С	13.2	0.520
D	14.2±0.4	0.559±0.016
Е	1.64	0.065
F	2.14	0.084
G	4.064 MAX.	0.160 MAX.
Н	0.51±0.10	0.020±0.004
I	0.08	0.003
J	0.8 (T.P.)	0.031 (T.P.)
K	1.0±0.2	$0.039^{+0.009}_{-0.008}$
Q	C 0.5	C 0.020
R	0.8	0.031
S	1.1	0.043
Т	R 3.0	R 0.118
U	12.0	0.472
W	0.75±0.2	0.030+0.008

★ 6. RECOMMENDED SOLDERING CONDITIONS

It is recommended that μ PD75P308 be soldered under the following conditions.

For details on the recommended soldering conditions, refer to Information Document "Semiconductor Devices Mounting Manual" (IEI-616).

The soldering methods and conditions are not listed here, consult NEC.

Table 6-1 Soldering Conditions

 μ PD75P308GF-3B9: 80-pin plastic QFP (14 x 20 mm)

Soldering Method	Soldering Conditions	Symbol for Recommended Condition
Wave Soldering	Soldering bath temperature: 260°C max., time: 10 seconds max., number of times: 1, pre-heating temperature: 120°C max. (package surface temperature), maximum number of days: 2 days*, (beyond this period, 16 hours of pre-baking is required at 125°C).	WS60-162-1
Infrared Reflow	Package peak temperature: 230°C, time: 30 seconds max. (210°C min.), number of times: 1, maximum number of days: 2 days* (beyond this period, 16 hours of pre-baking is required at 125°C)	IR30-162-1
VPS	Package peak temperature: 215°C, time: 40 seconds max. (200°C min.), number of times: 1, maximum number of days: 2 days* (beyond this period, 16 hours of pre-baking is required at 125°C)	VP15-162-1
Pin Partial Heating	Pin temperature: 300°C max., time: 3 seconds max. (per side)	_

^{*:} Number of days after unpacking the dry pack. Storage conditions are 25°C and 65%RH max.

Caution: Do not use two or more soldering methods in combination (except the pin partial heating method).

Notice -

A model that can be soldered under the more stringent conditions (infrared reflow peak temperature: 235°C, number of times: 2, and an extended number of days) is also available. For details, consult NEC.

APPENDIX A. DEVELOPMENT TOOLS

The following development support tools are readily available to support development of systems using μ PD75P308:

PROM writing tools

Hardare	IE-75000-R*1 IE-75001-R	In-circuit emulator for 75K series
	IE-75000-R-EM*2	Emulation board for IE-75000-R and IE-75001-R
	EP-75308GF-R	Emulation prove for μ PD75P308GF, provided with 80-pin conversion socket,
	EV-9200G-80	EV-9200G-80.
	PG-1500	PROM programmer
	PA-75P308GF	PROM programmer adapter solely used for μ PD75P308GF. It is connected to
		PG-1500.
	PA-75P308K	PROM programmer adapter solely used for μ PD75P308K. It is connected to
		PG-1500.
Software	IE Control Program	Host machine
	PG-1500 Controller	 PC-9800 series (MS-DOS[™] Ver.3.30 to Ver.5.00A*3)
	RA75X Relocatable	IBM PC/AT™ (PC DOS™ Ver.3.1)
	Assembler	

- *1: Maintenance product
- 2: Not provided with IE-75001-R
- 3: Ver.5.00/5.00A has a task swap function, but this function cannot be used with this software.

Remarks: For development tools from other companies, refer to 75X Series Selection Guide (IF-151).

* APPENDIX B. RELATED DOCUMENTS

GENERAL NOTES ON CMOS DEVICES

(1) STATIC ELECTRICITY (ALL MOS DEVICES)

Exercise care so that MOS devices are not adversely influenced by static electricity while being handled.

The insulation of the gates of the MOS device may be destroyed by a strong static charge. Therefore, when transporting or storing the MOS device, use a conductive tray, magazine case, or conductive buffer materials, or the metal case NEC uses for packaging and shipment, and use grounding when assembling the MOS device system. Do not leave the MOS device on a plastic plate and do not touch the pins of the device.

Handle boards on which MOS devices are mounted similarly .

(2) PROCESSING OF UNUSED PINS (CMOS DEVICES ONLY)

Fix the input level of CMOS devices.

Unlike bipolar or NMOS devices, if a CMOS device is operated with nothing connected to its input pin, intermediate level input may be generated due to noise, and an inrush current may flow through the device, causing the device to malfunction. Therefore, fix the input level of the device by using a pull-down or pull-up resistor. If there is a possibility that an unused pin serves as an output pin (whose timing is not specified), each pin should be connected to VDD or GND through a resistor.

Refer to "Processing of Unused Pins" in the documents of each devices.

(3) STATUS BEFORE INITIALIZATION (ALL MOS DEVICES)

The initial status of MOS devices is undefined upon power application.

Since the characteristics of an MOS device are determined by the quantity of injection at the molecular level, the initial status of the device is not controlled during the production process. The output status of pins, I/O setting, and register contents upon power application are not guaranteed. However, the items defined for reset operation and mode setting are subject to guarantee after the respective operations have been executed.

When using a device with a reset function, be sure to reset the device after power application.

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for uses in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for the applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment,

Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems,

Anticrime system, etc.

M4 92.6

 $\ensuremath{\mathsf{MS-DOS}}$ is a trademark of Microsoft Corporation.

PC DOS and PC/AT are trademarks of IBM Corporation.

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.