
Forest Electronic Developments
WIZ-C MX

PIC Microcontroller
Compiler

Manual for version MX 1 onwards

info@fored.co.uk
Or see the Forest Electronic Developments home page on
the world wide web at the following URL:
http://www.fored.co.uk

Forest Electronic Developments
12 Buldowne Walk
Sway
LYMINGTON
Hampshire
SO41 6DU
Sales : +44 - (0)1590 - 681511

THE FED C Compiler (WIZ-C) is intended for all serious programmers of the PIC who would like the convenience of
a high level language together with the speed of assembler. With our C Compiler you no longer have to worry
about ROM and RAM paging, you can call to a depth limited only by RAM not by the 8 level call stack, use 16 and
32 bit arithmetic types for full precision, and use any of our standard library routines for general purpose data
handling and interfacing.

The professional version adds multiple project management and simulation and includes many additions to
general simulation capabilities

The program, and its support files and example programs are Copyright Forest Electronic Developments,
1998/2013

With thanks to Marcel Van Lieshout for good work on the pre-processor (2004)

The program may be installed onto the hard disk of one Personal Computer, and must removed by deleting the
executable file, and all the support files before installing onto a different computer. The sole exception to this is
where a single user installs on two machines (e.g. Work and Laptop) on which the program will never be used
simultaneously.

orest

lectronic
Developments

2

 Forest Electronic Developments June 1999

Contents
1) Compiler Introduction
2) Tutorial
3) Special support for the PIC
4) Support for 3rd party compilers
5) Development Environment Reference Manual
6) Example Projects
7) Optimising Your Output
8) Using Assembler
9) Interrupts & Memory
10) Creating Libraries
11) Library Reference
12) C Reference
13) Pre Processor
14) Use with MPLAB
15) The Professional Version
16) Command line Interface
17) List of library functions
18) List of Keywords

 3

Manuals provided with WIZ-C MX
The following manuals are provided with WIZ-C MX in PDF format :

Manual C Compiler manual and introduction to WIZ-C,
includes WIZ-C professional reference ←

WIZ-C Introductory Tutorials and reference for WIZ-C and the
simulation system

Simulation Simulation and debugger reference manual

Main Assembler
Help & Manual
Source

Reference for the Assembler and Linker used
within WIZ-C MX

Element Reference Reference manual for the basic element set –
certain elements such as the touch library have
their own reference

ICD Introductory Reference manual for the PIC Key MX in circuit
debugger system which operates with WIZ-C to
program and debug applications on the real
hardware.

4

 Forest Electronic Developments June 1999

1 WIZ-C and FED PIC C Compiler
Introduction

1.1. Information

THE FED C Compiler is intended for all serious programmers of the PIC who would like the
convenience of a high level language together with the speed of assembler. With our C
Compiler you no longer have to worry about ROM and RAM paging, you can call to a depth
limited only by RAM not by the 8 level call stack, use 16 and 32 bit arithmetic types for full
precision, and use any of our standard library routines for general purpose data handling and
interfacing.

WIZ-C adds a drag and drop interface, WIZ-C includes all the functionality of the FED PIC C
Compiler and any reference to the FED PIC C Compiler refers to WIZ-C equally.

The FED PIC C compiler will handle any of the current 14 bit PIC's and future devices may be
added by changes to initialisation files which will be provided free of charge on our web site.
All devices are handled by standard C header files.

Features :

• Designed to ANSI C Standards
• Integrated Compiler Environment
• Integrated Debugging Support
• Supports full range of 14 bit PIC Processors
• Efficient code production
• Wide range of library functions
• Includes floating point numeric support
• Includes fully integrated assembly level debugger
• Supports MPLAB

The compiler also includes full inline and infunction assembler support and is supplied with
full manuals and examples on CD-ROM.

The enhancements which are available in The Professional Version allow the user to:

• Manage and simulate multiple projects together
• Connect PIC pins across projects to allow simulated devices to communicate
• Handle assembler and C projects
• View variables in native C format
• View a list of all local variables and their values
• Maintain a history within simulation to back track and determine the past leading up

to an event

Please note enhancements available in The Professional Version are shown in
the section at the end of this manual.

 5

1.2. Contacting Forest Electronic Developments

FED may be contacted at:

12 Buldowne Walk
Sway
LYMINGTON
Hampshire
SO41 6DU

Phone/Fax : 01590 - 681511
International : +44 - 1590 - 681511
Email : info@fored.co.uk
Web Site : http://www.fored.co.uk

1.3. Bug Reports

Please reduce the program to the minimum possible size which still exhibits the error and
submit the program with any other information you think may help to FED by post or email
as shown above.

mailto:info@fored.co.uk
http://www.fored.co.uk/

6

 Forest Electronic Developments June 1999

2 WIZ-C MX Tutorial
Tutorial Introduction
Start the Program and open a new project
Compile and complete the project
Assembling the code into a hex file
Initial Simulation
Check Serial receive routine
Examining local variables
Using the trace window
Checking a write operation
Checking a read operation on real hardware

2.1. Tutorial Introduction

In the example project we will look at the development and simulation of 2 complete
programs using WIZ-C MX.

2.2. Example Project #1 - Switches, LED's and a
serial interface.

In the example project we will look at the development and simulation of a complete
program using WIZ-C.

The program we will look at is designed for a 16F88 processor. The application will
undertake the following simple functionality:

1) It will have a serial interface which may be connected to a standard PC using a 9 pin
socket (PL101), this will use the 16F88 serial port.

2) It will have a push button switch
3) It will have an LED

When a byte is received on the serial interface the LED will illuminate. Now when the push
button is pressed the received byte will be sent back on the serial interface and the LED will
be extinguished.

We will simulate this device using the real device simulation capability of WIZ-C.

The circuit diagram is shown below:

 7

Note that by default WIZ-C will set Port B pull ups to enabled so there is no need to use a
pull up on the switch input.

2.3. Opening a new project

To open the new project then use the Project | New Project or Project Group... menu item.
This brings up the new project wizard :

The default device is a 16F877, but we want to change that so click the Change Device
button, a new dialog will be brought up – this is the Processor wizard, with this you can
select the features you want – number of pins, ROM and RAM size and processor features.
You can experiment with this – change the number of pins to 18, click the USART button and
then you will have the following options :

8

 Forest Electronic Developments June 1999

Type “F88” into the box headed “Show Only Devices Containing”, this will reduce the
number of processors displayed. You can experiment with with the other options – for
example clicking USB will only display devices which have USB hardware on board, and
selecting a pin count will show only processors with the defined pin out.

Now select the 16F88 device. Click the OK and then the next button. This will bring up a
number of standard oscillator frequencies – select 4MHz. Click Next, this brings up a button
allowing the configuration fuses to be set, click the button to see the options. This is how we
set it – note the watchdog is disabled, an XT oscialliator selected and the power up timer
selected.

 9
Click OK and then Next to display the final options. By default we would like to use the
Application Designer so leave this option checked :

Finally press Next for the last time (or Finish).

A File dialog box will be brought up. Select a directory in which to save it for XP we used :
“C:\Program Files\FED\PIXIE\Projects\Tutor”. For Vista you should use a directory in your
documents structure – again within “My Documents” you should find a WIZ-C Projects
folders within which is a Tutor folder. If the directory does not exist create it using the New
Folder button on the Open Dialog. Enter the file name "Tutor", click Open. As this is a new
project it may appear in minimal form, maximise the window by using the button in the top
right of the window bar and then use the Window | Arrange for Edit option to position the
new project on screen (you could also press ALT+E).

The top window will be the application designer. Check that the PIC type is 16F88 and
ensure that the oscillator frequency shows 4000000 which is 4MHz. Alternate PIC types can
be selected by clicking the button labelled "Change Device" (under the element groups), the
oscillator frequency may be selected from a list, or the exact value may be typed into the
box. The oscillator frequency is entered in Hertz.

Look at the application designer window. The application designer holds software elements
in groups at the top of the window :

A software Element is a library subroutine, or software component, which may be used
within an application. The application designer allows software elements to be selected for
use within the current application. The software elements are grouped by type. The element
is the small square icon.

The application designer can be shown or hidden using the Show button on the tool bar :

2.4. Using elements within the application

The first element that we will select is the serial interface. There are 3 asynchronous serial
interface elements all under the Data tab. Select the Data tab and hover over an element
with the mouse - a small help box will appear with the element name. Select the element

10

 Forest Electronic Developments June 1999

called "Software serial interface - Interrupt driven" by clicking it. The element icon looks like
this:

Now right click the element and a pop up menu will appear. Select the menu option "Help on
selected element" and read through the help file entry for this element. It probably won't all
make sense at the moment.

Now you can add this element to the project by double clicking it, or by dragging it on to the
picture of the PIC. Do this and the element will appear in the element store at the bottom of
the application designer. A picture of the element in a box will appear on the drawing of the
PIC. When you select some elements another element will also be included this other
element been hooked into the project by the serial interface. In this case no element is
hooked by the serial interface.

Note that the element will have connected its pins to the PIC – Rx and Tx. This is because this
element uses the USART hardware which is on fixed pins of the 16F88.

Now we must set the parameters of the serial interface. Click the parameters tab and the
parameters for this element will be displayed. Set the serial bit rate to 9600, Clear the box
labelled “Use XON/XOFF protocol” – we don’t need this, finally leave the Receive and
Transmit buffer rates at 32 and 8 respectively. It will now look like this :

Some software elements including the Interrupt Driven Serial Interface element allow the
user to define software functions to be called automatically when events occur. An event is
described in the Applications designer as an Occurrence. In this case the Occurrence is that a
byte has been received on the serial interface. When a byte has been received we would like
to illuminate the LED. Click the Occurrences tab and a list of occurrences will be displayed, in
this case there are two occurrences, one for when the transmit buffer is free, and one for
when a byte is received. When a byte is received we would like to call a C function called
"LEDOn".

Click the second occurrence “RxByte” to select it. In the "Calls for Occurrence" box type
LEDOn and then click Add. The routine LEDOn will now be shown in the list of calls for this
occurrence. Further functions could be added here if wished and they would be called in
turn if a byte is received. The application designer should not look like this :

 11

This completes the initialisation for the interrupt driven serial element.

Now we can add the switch which will be connected to pin B4. Select the Keys tab and
double click the "Simple Switch" icon:

You will notice this time that two elements have been added, the first being the switch, the
second being timer 0. The reason for this is that the simple switch includes debouncing and
auto-repeat functions which need timer functions. The simple switch has automatically
hooked in timer 0 as it uses it for the timer functions. Timer 0 can still be used by the
application. You will notice that this element has the title "Simple Switch 0" in the blue title
bar, this is because we can have multiple copies of the Simple Switch, the next would be
called "Simple Switch 1".

Now connect the only pin on the element to pin RB4. The name of the pin will be SBIn0, this
is not very meaningful so select the pin by clicking it, click pin RB4 to connect it. Now in the
Pin Name box at the top of the application designer type the name "TxSwitch". Now when
the application is generated there will be three symbols defined – a bit variable called
TxSwitch and also two constants - TxSwitchPort and TxSwitchBit which represent the port
and bit to which the switch is connected - we can test the switch directly by using a line such
as:

if (TxSwitchPort&(1<<TxSwitchBit))

alternatively we can test it using the bit variable which is created with the same name :

if (TxSwitch)

Examine the parameters of the switch - we don't need to change any of the default values,
so now click the Occurrences tab. When the switch is pressed we would like to transmit the
last received value. So enter a function name "TxLastRx" and add it to the list of calls for the
occurrence SBPress0.

12

 Forest Electronic Developments June 1999

Now we can add the LED output which is on pin B6. Click the Ports Tab at the top and add
the "Port Driver" element:

Connect the port output to pin RB6 and name it "LED". Initially the LED will be off so under
the parameters tab select the initial value 0.

Finally we need to make all of the pins of 16F88 digital I/O pins instead of some being
Analogue input pins. Add the first element from the Ports tab which is the All Digital
element :

This has no parameters or pins or occurrences, it simply makes all analogue input pins set to
digital I/O pins.

We have now completed the work with the application designer - our application will include
initialisation, code and data for all the main functions of the application. Examine the PIC - it
should look like the picture below, don't worry about the order of names on the pins of the
PIC as it is dependent on the order of element selection.

You can print the PIC by right clicking the PIC graphic and using the Print PIC option of the
pop menu. You can copy a picture of the PIC to the clipboard and paste into other
applications by using the Copy Device Picture to Clipboard option of the same menu.

Check the bottom of the application designer as well to make sure you have included all the
elements :

2.5. Generating the application for the first time

We have now selected the initial set of elements for the application, and the parameters,
inputs, outputs, and occurrence calls have been defined, the application may be generated.

 13
To do this right click the PIC graphic and use the menu option Generate Application or press
Control and the F9 key, or use the small button at the top left of the application designer:

 The project window on the top right will show three files and a box titled "Compiler
Options" will be shown, this allows the C Compiler options to be set. This box will appear the
first time that a project is compiled, but will not appear again. To set the options after the
first time then use the Project | Set options for this project menu option.

As we don’t need to alter the default options then this can be ignored so click OK and the
project will compile and assemble. At present we still have some code to define.

Now we would like to add some application specific code to the project. We would like an
application specific header for the project. Click File | New and a new file will appear. Use
the menu option File | Save As and select the file type Header Files, enter the filename
"Tutor" and the file will be saved as "Tutor.h".

This file will include the memory variables used by our application. In this case it will simply
be a flag which is set to 1 when a byte is received. Enter the following into Tutor.h:

bit RxFlag; // Flag when byte is received

Double click the file in the project window called Tutor_User.C to open it. This file is
produced automatically the first time that an application is generated (and is not generated
again after that). We need to add the header to the file and also need to write the sub-
routines which we defined for the occurrences. Move to the top of the file, you will notice
that the first line of the file includes a header file called Tutor_Auto.h, this is the header
which includes all the application designer information as well as the processor header. It
should be included at the top of any additional files you include in the project. Include our
new header by entering the following on the second line of the file:

#include "Tutor.h"

Look down the file to the UserInitialise function which will be empty, add the following code
to the function between the curly brackets:

RxFlag=0;

This clears the receive flag while the program initialises. This isn’t strictly necessary as the
compiler clears memory when it runs, but is good programming practice and makes it clears
what we are doing.

Examine the file. There is a function called UserLoop. This label will be jumped to by WIZ-C
as it runs round its own main loop checking for occurrences and calling associated sub-
routines. In this case we do not need to do any processing in the main loop - it is all
undertaken by WIZ-C, so leave this section as it is.

Now look at the bottom of this file, the two functions that should be called when an
occurrence happens should have been entered as templates, if they don’t exist then enter
manually as follows :

void LEDOn()
{
}

14

 Forest Electronic Developments June 1999

void TxLastRx()
{
}

The LEDOn function will turn the LED on when a byte is received and will set the RxFlag
when a byte is received, edit the function to read:

void LEDOn()
{
 RxFlag=1; // Show a byte has been received
 LED=1; // Turn on the LED
}

Note that when we named the output connected to our LED (recall that we called it "LED"),
then the application generator automatically created the bit variable LED for us.

For the second routine which transmits the byte received we need to know what are the
calls and variables used by the serial interface element. Position the cursor on the blank line
in the middle of the TxLastRx function and press ALT and Enter together. A sub menu will
appear, select the element Calls/Vars option, now a list of available functions for the
elements used will appear. Select the AddTx line and double click it (or press Enter). A blank
call will appear - we could have typed this in by hand, but this feature shows the parameters
and some information on the call.

Bring up the Application Designer by pressing the extreme right hand button on the tool bar:

or by using the Window | Application Designer menu option. Click the serial interface
element in the element store at the bottom of the Application Designer and click the
Interface tab to see a list of interfaces for this element. Note the WaitRx() function – this
picks up the next byte from the receive buffer – we need this to detect the received byte.
This information is used to help finish the second routine which will transmit the last
received value when the button is pressed. Now go back to the edit window and change the
function as follows:

void TxLastRx()
{
 if (!RxFlag) return; // Return if no byte received
 RxFlag=0;

 // void pSerialOut(unsigned char Tx);
 // - Transmit value to port
 AddTx(WaitRx());

 LED=0; // Turn off LED
}

The complete Tutor_User.ASM file should now look like the listing below (the include file
may vary according to where you saved the file). Use the File | Print menu option to print
the file if you wish. Check the file and edit any changes.

 15

#include "D:\\Data\\CDev\\Projects\\CCompiler\\PIXIE\\Bugs\\Tutor_Auto.h"
#include "Tutor.h"

//
// This file includes all user definable routines. It may be changed at
will as
// it will not be regenerated once the application has been generated for
the
// first time.
//

//**

//
// Insert your interrupt handling code if required here.
// Note quick interrupts are used so code must be simple
// See the manual for details of quick interrupts.
//

void UserInterrupt()
{
 // Insert your code here

 #asmline SETPCLATH UserIntReturn,-1 ; SETPCLATH for interrupt routine
 #asmline goto UserIntReturn ; Assembler - go back to interrupt
routine
}

//**

//
// Insert your initialisation code if required here.
// Note that when this routine is called Interrupts will not be enabled -
the
// Application Designer will enable them before the main loop
//

void UserInitialise()
{
 RxFlag=0;
}

//**

//
// Insert your main loop code if required here. This routine will be
called
// as part of the main loop code
//

void UserLoop()
{
}

//
// User occurrence code
//

//
// Occurrence - Switch Pressed
//

void TxLastRx()
{
 if (!RxFlag) return; // Return if no byte received
 RxFlag=0;

 // void pSerialOut(unsigned char Tx);
 // - Transmit value to port
 AddTx(WaitRx());

 LED=0; // Turn off LED
}

//

16

 Forest Electronic Developments June 1999

// Occurrence - Byte received on serial interface
//

void LEDOn()
{
 RxFlag=1; // Show a byte has been received
 LED=1; // Turn on the LED
}

Now generate the application again by using the Ctrl and F9 keys or the button as described
above. If you get errors then double click them in the Information window and correct the
line with the error - use the listing above to see how they should read.

This is now the completed application which can be programmed into a PIC16F88 and run
directly – the configuration fuses have been set automatically. However we can also
simulate it and look at the results on simulated devices and the waveform analyser.

2.6. Simulation

It is not the intention of the introductory manual for WIZ-C to cover all the simulation
capabilities of the environment which is covered in the later section. However we can check
the operation of the program. It is possible to simulate with a stimulus file or with direct
simulation of the external devices. We'll start with simulation of the external devices.

2.7. Switching screen layouts

There is a large amount of information provided on the screen and to aid users there are 3
main views :

Compact Press ALT+C keys
Debugging Press ALT+D keys
Editing Press ALT+C keys

In compact mode all windows (Debug, Project, Editing and Information) are shown on
screen. In Editing mode the debug window is hidden and most screen space is given to the
edit window. In Debugging mode most space is given to the debug window.

FED recommend that users get used to using the ALT and C, D or E keys to rapidly switch
views. Normally only the ALT+D and ALT+E modes will be use, the compact mode is provided
for existing users and is similar to previous versions of our environments.

2.8. Simulating with external devices

Press ALT+D to switch to the debugging layout. You will already see a “device picture”. This is
a picture of the PIC with its pins shown. The pin colours show the state of ports. Red shows
high and green low whilst the dark colours show the PIC is driving and light colours show the
pins are operating as inputs, note the white pins which are not on I/O ports and the blue
pins which on reset are Analogue inputs.

 17
WIZ-C has the capability to simulate LED's, switches, LCD displays and a number of other
devices which might be connected to the PIC.

We'll start with the LED. Use the Simulate | Add External Device menu option. A dialog box
will come up. In the External Device type box select LED. There are a number of parameters
and values which may be selected for each device. For the LED most of these can be ignored
apart from the connections. Under the Connections box there is a list box called Pins with
two entries "Anode" and "Cathode". Select Anode and then use the Port box to select Port B,
use the Bit box to select bit 6. Select Cathode and click the Connect Low option. This will
connect the LED between Bit B6 and ground. Press the OK button. Note how the LED
appears on the debugging window, you can move it around to a convenient location.

Next the push button. This time we’ll use a short cut.

Click the Show Application Designer button at the top of the screen (). The Application
designer has a button on it which will automatically generate an external device to match
the element. Click the Push Button element in the Element Store and then click the Create
Device button which looks like this:

A push button will be created. Do the same for the serial element – click the element and
then click the Create Device button.

Hide the Application Designer by pressing the button again. The new devices will be
shown overlapped on the debugging window. It is possible to move them around by clicking
on the title bar where the device name is shown and dragging the windows around. We
adjusted them like this:

Now run the simulation by using the Simulate | Run menu option (you could also press F9, or
use the button of the running man on the toolbar).

The LED will go out. Click the terminal box (the cursor will appear) and type the letter A.
Watch the LED go on, press the Push Button and it will go out transmitting the character
back to the terminal. Experiment with other characters. Note that you may have to hold the
push button down for a few (simulation) milli-seconds before it registers. Note how the RB4
input changes to pale green as the push button is pressed and how the RB6 output changes

18

 Forest Electronic Developments June 1999

from dark red to light red as the LED goes on and off. Stop the program by pressing the stop
bottom on the Simulation Running box :

Change the TxLastRx() function as follows :

void TxLastRx()
{
 if (!RxFlag) return; // Return if no byte received
 RxFlag=0;

 // void pSerialOut(unsigned char Tx);
 // - Transmit value to port
 while(GetRxSize())
 {
 AddTx(WaitRx());
 }

 LED=0; // Turn off LED
}

Compile and run the program again, this time type several characters into the terminal
window, press the button, note how they all the characters are output correctly in order,
this shows the correct operation of the serial buffer.

Stop the program. Now look at the information bar – the yellow bar to the left of the edit
window.

If the bar is not showing click the button to the top left of the edit window to turn it on
(similarly click again to turn it off). Now the information bar can be set to show the address
of each program line in the source, the time at which the line was last executed, or the
number of times that it has been executed – click the buttons along the top of the edit
window to select each option :

You can also determine how long a function or block of code takes to execute. Select a block
of code – say the following block :

void LEDOn()
{
 RxFlag=1; // Show a byte has been received
 LED=1; // Turn on the LED
}

 19
Now select the block of code with the mouse by clicking down before the void and dragging
to the end of the function – you will see a box at the bottom of the edit window which will
show the total time between the selected lines – in this case 2uS - the picture below shows
the relevant part of the window:

You can drag over any area of code and the edit window will show the total time taken to
execute that code provided that it has been simulated.

2.9. Simulating with a simulation file - using the
waveform analyser

Next we will look at using a simulation file which will run alongside our external devices.
Reset the processor by using the Simulate | Reset Processor menu option or press the reset
button on the toolbar :

You may wish to switch back to the edit view using ALT+E. The first item is the simulation file
- this will define the inputs to the program. Create a new blank file and save as type
"Stimulus" with the file name "TutorInput.sti".

Select the project window and press Insert, you can now select the file which has just been
created (you may need to select “Files of Type” *.sti. A dialog box will open. Select Stimulus
under the "Files of Type" box. Press OK. Check that the file type is "Stimulus" in the Project
File dialog box and press OK. Double click the file "TutorInput.STI" in the project window. We
will generate a stimulus file which enters the character 41Hex at time 5mS, and then the key
is pressed at time 10mS. To do this enter the following information (again the Simulator
introductory manual covers this in more detail).

5m
serial9600-PORTB:2='A' ; Send character A at 5mS
+5m
PORTB:4=0 ; At 10mS press the button
+100m
PORTB:4=1 ; And leave it pressed for 100mS

Save the file by using the File | Save All menu option. Now we want to run the program until
time 30mS and then stop to check the inputs and outputs. Press ALT+D to switch to
debugging view. Bring up the breakpoint window by clicking the arrow on the minimised
window:

Right click the window and use the “Add Breakpoint” option. The Breakpoint Definition
dialog box will be shown. Select "Break at Time", and then in the At Time box enter 200mS,
click the OK button to define the breakpoint:

20

 Forest Electronic Developments June 1999

Now run the program by using the Simulate | Run menu option (you could also press F9, or
use the button of the running man on the toolbar). Wait until the breakpoint is hit at 200mS.
Use the Tools | Examine Wave Window menu option. The Wave Window "Define Trace
Format" dialog box will be shown. In the Trace Name box select "Port B Pins", and then click
the "Add as 8 line traces button". Resize the window to a comfortable size.

Finally press the F8 repeatedly button to zoom out and watch the received byte on Port B,
bit 2, followed by Bit 6 going high (the LED turning on). Then at about 21mS the key press is
detected (remember it is being debounced and takes a few milliseconds to detect it) – the
LED goes out and the byte is transmitted back on the interface. You can see the received
byte being transmitted on Port B, bit 5 and then the LED is turned off. The window can be
copied to the clipboard or printed by using the options in the File menu for the Wave
Window.

Here it is :

Run the simulation again - see how the use of the STI file operates with the external devices
- the STI file has set the push button input low so until the button is pressed again the push
button will automatically repeat every 250mS. Enter a character into the terminal and watch

 21
how it is repeated back automatically. Press the push button once to return to normal
behaviour.

You are recommended to run through the simulator manual which follows this introductory
manual.

2.10. Example 2

Digital clock operating to an LCD Display (in
10 lines of code)

In this example we shall show how to create a digital clock operating on an LCD display with
less than 10 lines of code. Although in itself this project may not be that useful, it can
operate in any project to provide subsidary timing functions.

2.11. Digital Clock Element

The digital clock element operates a full digital clock based on timer 0 which holds counters
for seconds, minutes, hours and day of the week from 0 to 6. Either a 12 or 24 hour clock
may be maintained.

It maintains five variables - Secs, Mins, Hours, pm and Day. Each of these is updated at the
correct time and an occurrence happens when each item changes enabling a 7 segment or
LCD display to be updated.

There are 3 functions for setting the time. IncMin(); IncHour(); and IncDay(); IncMin
increments the minute by one, triggers the Minute passing occurrence and resets the
seconds counters and internal counter chain to 0. It does not affect hours or days. IncHour()
simply changes the hour without affecting seconds, minutes or days, but triggers the hour
passing occurrence and IncDay() updates the day.

The accuracy of the clock is related to the overflow time of Timer 0. The faster that Timer 0
overflows the more accurate the clock. The internal counters are trimmed every minute and
hour, and with a Timer 0 overflow of 1mS the accuracy is 1 part in 3.6x106 which is an order
of magnitude more accurate than most crystals.

For this example we shall operate a 24 hour clock showing hours, minutes and seconds, days
will not be displayed. There will be two push buttons to set the time - set minutes and set
hours.

2.12. LCD Displays

Introduction

The LCD element provides functions are to drive an LCD module based on the Hitachi chip
set. The functions handle the 4 bit interface, and the device timing to the module. They also
read the module busy flag and hold future transfers whilst the module is still performing the
last operation. Functions are provided to initialise the module, to transfer single characters
to the module, to transfer LCD module commands, and to write strings to the module.

22

 Forest Electronic Developments June 1999

Such modules are the LM020, LM016, LM018 and LM032, however there are a number of
other modules based on this chip which is numbered HD44780. The module is driven from
any port, however the data bits (D4 to D7) must be connected to bits 4 to 7 of the same PIC
port. We'll connect the display to ports D and E as follows:

LCD Module LCD Port number Pin Number

(2 line display
LM016L)

RS D2 4
R/W D3 5

E E1 6
D4 D4 11
D5 D5 12
D6 D6 13
D7 D7 14
Vss - 1
Vdd - 2

Vo (LCD Supply) - 3

Functions

The LCDSTRING function sends the supplied string to the display. Thus to write “HELLO” to
the display then the following can be used:

LCDSTRING("HELLO")

A number of macros and functions are provided to drive the LCD Display. These are as
follows:

void LCD(unsigned int Data);

 Write Data to LCD as a character for display.

void LCDPrintAt(unsigned char x,unsigned char y);

 Macro to print at line y, column x

e.g. LCDPrintAt(5,0); // Print at line 0, column 5

void LCDOnOff(unsigned char DisplayOn, unsigned char CursorOn, unsigned char
Blink);

 Macro to set up display. DisplayOn is 1 to enable the display, or 0 to turn it off,
CursorOn is 1 to enable the display, or 0 to turn it off, Blink is 1 if the Cursor is
to blink

e.g. LCDOnOff(1,1,1); // Cursor on blinking

void LCDShift(unsigned char Cursor, unsigned char Right);
Macro to shift display Left or Right, Cursor is 1 or 0 to control shift with the
cursor. Right is 1 for a right shift or 0 for a left shift.

 23

e.g. LCDShift(1,0); // Shift display left 1 character

void LCDClear();
Clear the display, return print position to 0,0.

Digital Clock Application

The application requires the digital clock element, the LCD element, and two push button
elements. It will operate on the 16F877 - but in fact will run on most PIC's. Use the File |
Open/New Project menu option to create a new project - or open this example which is
included in the standard WIZ-C installation in the projects directory. Call the project
DigClock.

Connect the elements as follows:

LCD

The LCD element is on the displays tab. It looks like this :

Once the LCD element is selected by double clicking it, it can be set up by connecting the
pins to the pins of the F877. The only parameter for the LCD is the number of lines which
needs setting to match the display. It does not need initialising.

Digital Clock

The digital clock element is on the Timers tab. It looks like this:

The only parameter is 12 or 24 hour selection. For this clock we'll use 24Hour. Now click on
the Occurrences tab. Every time that the time changes (seconds, hours or minutes) then
we'll update the display. So add a function call for SecPass, MinPass and HourPass. We'll use
the same function for each - called UpDate. Ignore the Days for the moment.

Switches

Add two pushbutton elements for setting the hours and minutes. Connect one to RB0 and
one to RB1. Now when a push is detected the minute (or hour) will be incremented. Right
click on the digital clock element on the Timers tab. Select the "Help on Selected Element".
This will bring up the help file. Look at the Public Calls and Variables section. Note that there
is a function to increment minutes (which also clears the seconds counter) called IncMin,
and one to increment the Hour. Return to the Application Designer. Add IncMin to the list of
occurrences for RB0, and add IncHour to the list of occurrences for RB1. Now we need to
write no code directly for the switch presses - the switch presses will translate directly to
increment the minute and hour counters. On incrementing them the Digital Clock element
will generate occurrences to update the display.

24

 Forest Electronic Developments June 1999

User Code

Generate the application (use Ctrl+F9).

Open the DigClock_User.C file. For the clock we can set up a welcome message on power up
by including code in the UserInitialise() function as follows:

void UserInitialise()
{
 OPTION_REG&=0x7f; // Port B pull ups
 // void LCDString(char *str);
 // - Write a string to the LCD
 LCDString("Digital Clock"); // Welcome message
 Wait(2000); // Wait for 2 seconds
 LCDClear(); // Clear the display
}

Now to print the time to the display we need a function to convert an 8 bit number to a
string. Use the Help | Compiler Contents menu option to open the C Compiler help file. Click
Library Reference and then String Print Functions to bring up help on the functions which
print numbers to strings. CPrintString is the function that we can use, however it does not
print a leading zero if the number is less than 10. Add the following function to the bottom
of the DigClock_User.c file which will print a number with a leading zero if necessary:

//
// Print a 2 digit number with a leading 0
//
void RJPrint(unsigned char v,char *s)
{
 if (v<10) { *s='0'; s++; }
 cPrtString(s,v);
}

Finally we need to write the UpDate() function which will print the time to the display. Add
this function to the bottom of the file:

//
// Print the time on the display
//
void UpDate()
{
 char Ds[12]; // String to display

 RJPrint(Hours,Ds); Ds[2]=':'; // Hours
 RJPrint(Mins,Ds+3); Ds[5]=':'; // Minutes
 RJPrint(Secs,Ds+6); // Seconds
 LCDPrintAt(0,0);
 LCDString(Ds); // Print time to LCD
}

This is quite straightforward, when the display is to be updated it prints the time to the first
row, first column.

Final application

Generate the application (use Ctrl+F9). The project may be simulated using the external
devices. Select the LCD on the application designer and press the light bulb to generate the
LCD device. Set the display to 2 lines by 16 rows (this is owing to an anomaly with the
method of operation of LCD displays with one row). Add push buttons for hours and minutes
connected to RB1 and RB0 respectively. Run the program with update rate set to 20000.

 25
Watch the display and press the hours and minutes buttons. Note that the simulation is far
behind real time owing to the use of a 20MHz clock. You can simulate faster than real time
by using the application designer and setting the oscillator rate to 1MHz (actual simulation
speed will depend on the speed of the PC - this manual was written around a simulation
running on a 266MHz Pentium).

If the application is to be simulated without external devices then the input D7 for the
display should be set to 0 which will make the LCD library routines believe that a display is
acknowledging. For our example this could be achieved with the following line in a STI file:

PORTD:7=0 ; Set port D bit 7 to zero

The final application file DigClock_User.c looks like this:

#include "C:\\Program Files\\FED\\WIZ-
C\\Projects\\DigClock\\DigClock_Auto.h"
#include <Delays.h>
#include <Strings.h>

//
// This file includes all user definable routines. It may be
changed at will as
// it will not be regenerated once the application has been
generated for the
// first time.
//

//
**

//
// Insert your interrupt handling code if required here.
// Note quick interrupts are used so code must be simple
// See the manual for details of quick interrupts.
//

void UserInterrupt()
{
 // Insert your code here

 #asmline goto UserIntReturn ; PIC Assembler - go back to
interrupt routine
}

//
**

//
// Insert your initialisation code if required here.
// Note that when this routine is called Interrupts will not be
enabled - the
// Application Designer will enable them before the main loop
//

void UserInitialise()
{
 OPTION_REG&=0x7f; // Port B pull ups
 // void LCDString(char *str);
 // - Write a string to the LCD
 LCDString("Digital Clock");
 Wait(2000);
 LCDClear();
}

26

 Forest Electronic Developments June 1999

//
**

//
// Insert your main loop code if required here. This routine will
be called
// as part of the main loop code
//

void UserLoop()
{
}

//
// User occurrence code
//

//
// Print a 2 digit number with a leading 0
//
void RJPrint(unsigned char v,char *s)
{
 if (v<10) { *s='0'; s++;}
 cPrtString(s,v);
}

//
// Print the time on the display
//
void UpDate()
{
 char Ds[12]; // String to display

 RJPrint(Hours,Ds); Ds[2]=':'; // Hours
 RJPrint(Mins,Ds+3); Ds[5]=':'; // Minutes
 RJPrint(Secs,Ds+6); // Seconds
 LCDPrintAt(0,0);
 LCDString(Ds); // Print time to LCD
}

Including the day

Adding the day is very straightforward. A new push button element is required - connect to
RB2 and couple the occurrence to IncDay to set the day. Add UpDate to the occurrence for
DayPass for the Digital Clock element. Change the UpDate function as follows:

//
// Print the time on the display
//
const char *DayStr[]=
{
 "Sun ",
 "Mon ",
 "Tue ",
 "Wed ",
 "Thu ",
 "Fri ",
 "Sat "
};

void UpDate()
{
 char Ds[12]; // String to display

 27
 RJPrint(Hours,Ds); Ds[2]=':'; // Hours
 RJPrint(Mins,Ds+3); Ds[5]=':'; // Minutes
 RJPrint(Secs,Ds+6); // Seconds
 LCDPrintAt(0,0);
 LCDString(DayStr[Day]); // Print day to LCD
 LCDString(Ds); // Print time to LCD
}

The DayStr array is set up in ROM to minimise RAM usage, the correct item from the array is
printed before the rest of the time string.

Taking it further

Try changing the clock to operate on a 12 hour clock with a pm indicator.
Make it into an alarm clock.
Extend into a multi-function timer.

28

 Forest Electronic Developments June 1999

3 Special support for the PIC
Header files
Port Bits
Register Bits
Port Structure
Macros
Memory Allocation
EEPROM Support
Large Programs
Configuration Fuses
Extended Instruction Set

3.1. Header files

The simple method of including header files for the PIC is to use pic.h. This will automatically
include the correct header file for the PIC selected in the project options. For example:

#include <pic.h>

This include file also includes PortBits.h and the relevant register bits file for the processor
(see below).

If it is desired to fix the PIC type then there is a header file for every type of PIC supported by
the FED PIC C Compiler. The header files are called "P1nnnnn.h" where nnnn is the processor
type, e.g. P16F84.h or P18F452.h. The advantage of including the header file like this is that
an error will be generated if the wrong PIC is selected in the project options for the header
file defined.

They may be included using #include, eg.

#include <P16F84.h>

The standard PIC file registers are all included in the header files under the same names as
those shown in the PIC data books. The bits within the file registers are also included as
enumerated constants. For example to enable and disable interrupts the following C Code
may be used:

INTCON|=(1<<GIE); // Enable interrupts

INTCON&=~(1<<GIE); // Disable interrupts

This type of C code is translated into PIC BSF and BCF instructions, and is, therefore,
efficient.

3.2. Port Bits

There is a header file called PortBits.h. It is included automatically by pic.h.

Include this file to define the port bits in the form

 29

bRA0, bRA1… bRB0… bRE1

etc.

Similarly the tris bits are also defined as :

bTRA0, bTRA1… bTRB0… bTRE1

etc.

The following code places bit 0 of PORT B into the driving state and then turns on bit 0 :

#include <PortBits.h>

bTRB0=1; // Drive
bRB0=1; // Turn on bit 0

The following code reads bit 4 of PORTC into variable x, returning 0 or 1 dependant on
whether the bit is set or reset:

#include <PortBits.h>

x=bRC4; // Test bit 4 (return 0 or 1)

For compatibility with compilers which only define the register bit as a bit not as a number,
there is an option to define the bits without the b in front of them – see Support for 3rd party
compilers

Note that the bit type used is non-ANSI and so will not be portable to all compilers.

3.3. Register Bits

Each processor has a header file which defines all the bits in special file registers as bit types.
This file is automatically included by including pic.h.

Each bit is the same name as the normal bit name with a b in front of it. For example the GIE
bit has a bit type called bGIE :

bGIE=1; // Enable interrupts
bGIE=0; // Disable interrupts
x=GIE; // Constant GIE has the value 7 (the bit number)

For compatibility with compilers which only define the register bit as a bit not as a number,
there is an option to define the bits without the b in front of them – see Support for 3rd party
compilers

If it is desired to fix the PIC type then there is a header file for every type of PIC supported by
the FED PIC C Compiler. The header files are called "P1nnnnn_bits.h" where nnnn is the
processor type, e.g. P16F84_bits.h or P18F4520_bits.h.

This file may be included using #include, eg.

#include <p16f84_bits.h>

30

 Forest Electronic Developments June 1999

3.4. Port Structure

Within the header file ports are defined as normal unsigned char types and as structures.
The structures are named type is sPort, and the names are PA,PB,PC,PD and PE, or PG for the
8 pin devices. The bits are named B0 to B7.

The following code turns on bit 0 of PORTB, firstly by using the unsigned char variable
PORTB, and secondly by using the structure:

PORTB|=1; // Turn on bit 0
PB.B0=1; // Turn on bit 0

The following code reads bit 4 of PORTC into variable x, returning 0 or 1 dependant on
whether the bit is set or reset:

x=(PORTC&0x10)>0; // Test bit 4 (return 0 or 1)
x=PC.B4; // Test bit 4 (return 0 or 1)

3.5. Macros

The following macros are provided in pic.h :
bitset

bitset(reg,bit)

e.g.

bitset(PORTB,8);

This macro will set the specified bit in the specified variable.
bitclear

bitclear(reg,bit)

e.g.

bitclear(ADCON0,ADEN);

This macro will clear the specified bit in the specified variable.

3.6. Memory allocation

Memory is allocated automatically for all global variables. The most frequently accessed
variables are held in the lowest memory pages.

You can manually allocate memory for large arrays, or when it is necessary to know where
an array is to be stored. The following example shows how to allocate memory to a large
array:

int GreenScore; // Allocated by compiler
int RedScore; // Allocated automatically
extern int Individual[32]; // Array of integers
#pragma locate Individual 0x120; // Locates array at 0x120

It is possible to force a variable into page 0. To do this use the register keyword :

int register GreenScore; // In lower RAM page

 31
This is useful when assembler routines need to assume a page for efficiency, or when
frequently used variables need to be the most efficient. For example using 18F devices you
can use the access bank, and not have to worry about setting the BSR register if you are
addressing register variables.

Be careful with register variables – if too many are defined the compiler will simply allocate
them back into higher ram pages, this will not cause any problem with the compiler, but may
cause problems with assembler routines, including some of the FED library routines. In
general between 50 and 100 bytes of register variables (dependant on processor family)
may be defined before they are pushed into higher pages.

3.7. EEPROM Support

Support for EEPROM data is provided by #pragma extensions to the C language :

#pragma eeprom data,data,address=data,data…

or

#eeprom data,data…

The EEPROM data is stored in the hex file and loaded by the simulator on reset.

Use either #pragma eeprom or #eeprom at the start of a line to intorduce EEPROM data.
This is followed by any number of bytes to be written in turn to the data area. If an item is of
the form :

Address=data

then the data is written to the supplied address and all following items will be written to
consequent addresses.

For example
const int val=0xb6;

#eeprom 0=1,7=8,9,10,val
#pragma eeprom 16=8
#eeprom 0xf7
#eeprom 0x78,99

In this example the first 32 bytes of EEPROM data will look like this :

Note that the simulator loads the EEPROM data from the hex file on program reset, and it
can be seen on the “Special” tab in the debugging window.

3.8. Creating new devices

FED provide a program to assist in creating new devices - the Creator program which allows
users to take new devices and add support into the compiler and Application Designer. The
newly created devices will be supported fully in the compiler, however the simulator relies
on identification of a similar device which is already supported.

32

 Forest Electronic Developments June 1999

Please follow the creator manual carefully, step by step to add new devices. Creator and its
manual are provided in the root directory of the C Compiler or the WIZ-C program.

Newer devices are so complex that the Creator program only defines a relatively limited
range of the required parameters – contact FED to add new devices in a comprehensive
fashion.

3.9. Large Programs

Note that for processors with more than 32K words of program the standard 2 byte pointer
can only point to the bottom 32K of ROM memory. To allow pointers to address functions in
this situation any function which may be called through a pointer on a device with more
than 32K ROM should be defined as pointed :

void pointed MyCallableFunction(int param);

The function will be placed in the bottom 32K words of ROM.

Therefore there is a limit imposed on the program that no more than 32K of functions may
be called through a pointer. In practice this limit is far greater than required - if more then
this size of program is required then small functions can be defined which call bigger
functions.

There is no need to use the pointed keyword for processors or programs which utilise less
than 32K words of program memory.

3.10. Configuration Fuses

The C Compiler provides support for simple set up of the configuration fuses.

To bring up the Configuration fuses dialog use the Project | Set configuration fuses menu
option, or in WIZ-C use the button on the application designer :

This will bring up the Set Configuration fuses dialog box :

 33

The Current Fuse Value(s) line shows the hex value of the configuration fuse (or fuses if
there are more than one).

The Set Default button will return all the fuse values to the unprogrammed (erased) value.

The Ignore Settings Button will close the dialog box and will force the compiler to ignore any
settings made in this box. The fuses will be left unprogrammed, or will be read from the
source files if present.

The Copy to Clip button will copy the fuses to the clipboard in a form that they can be read
in the program.

To change a fuse value select the fuse from the first (Fuse) drop down box. The second
(“Select Options”) box will then show all the options available for that fuse when it is
selected. Click this box to select the desired option for the fuse. Alternatively click a cell in
the table to select that fuse and allow its values to be set.

When the processor type is changed from the application designer (WIZ-C only), or from the
Project | Options dialog box the configuration fuses are then ignored. They must be set
using the Set Configuration fuses box again before they will be included in the hex file.

#__config statements in the main source files take precedence over this dialog box. For
example the following statements included in a C file set the config fuses as shown :

#ifdef __18F14K50
 #__config _CONFIG1L,0x00
 #__config _CONFIG1H,0x32
 #__config _CONFIG2L,0x06
 #__config _CONFIG2H,0x1e
 #__config _CONFIG2H+1,0
 #__config _CONFIG3H,0x08
 #__config _CONFIG4L,0x01
 #__config _CONFIG4L+1,0
 #__config _CONFIG5L,0x03
 #__config _CONFIG5H,0xc0

34

 Forest Electronic Developments June 1999

 #__config _CONFIG6L,0x03
 #__config _CONFIG6H,0xe0
 #__config _CONFIG7L,0x03
 #__config _CONFIG7H,0x40
#endif

Note this method works equally well with devices which store configuration fuses at the top
of ROM rather than a non-volatile config fuse space. (An Example is the 18F87J50).

3.11. Extended Instruction Set

The compiler supports the use of the 18 series extended instruction set. This is normally
disabled as the FED compiler Local Optimisation space makes the extended instruction set
less efficient than the normal optimisations.

However re-entrant code which cannot use the “Function Parameters can be global”
optimisation may benefit from the extended instruction set.

To use the Extended Set clear the box in the Compiler Options, Optimisation tab “Do not use
extended instruction set if available”. The Configuration Fuses will be set automatically to
allow the use of the instruction set to allow simulation and the real program to run correctly.
It is always worth checking that the fuse is enabled correctly in the programmer.

 35

4 Support for 3rd party compilers
Introduction
Notes on incompatibilities

4.1. Introduction

With WIZ-C MX support for 3rd party compilers has not been upgraded to the most recent
capabilities – FED recommend that source code is manually converted where possible if the
most recent upgrades are assumed.

The FED compiler supports 3rd party compilers in that it is possible to compile source files
designed for these compilers. Normally C source can be compiled directly although
embedded assembler may require some work. Most special syntax is supported directly
although not documented here, for example the FED #asmend directive may be replaced by
#endasm in source files and both will work fine. The latter form is provided for compatibility
with 3rd party compilers.

Special headers are provided which define macros to allow compatibility and these should
be included at the top of each source file:

The files are:

hitec.h for files intended for the HiTec compiler

ccs.h for files intended for the CCS compiler

An example of their use is shown below:

There are a number of extensions to the C syntax provided for 3rd party compatibility. These
are not fully documented here as they are all duplicated by FED C constructs and there is
little point in providing full documentation for several methods of achieving the same end.
However they are summarised below:

#pragma interrupt_level Sets the interrupt level of the following interrupt function.

@ Use of @ symbols to locate variables.

interrupt Keyword used to define a function as an interrupt function

persistent Keyword which has no function in FED PIC C compiler

4.2. Compatibility Options

The Compiler Options Dialog Box has a tab for compatibility options. To show this dialog
then use the Project | Set options for Project menu option. This tab includes a number of
features which it is desireable to disable unless a specific compiler syntax is to be supported.

There a number of buttons on the tab to set the default for the compatibility options for the
particular target compiler. Click the button to set the options for the compiler required.

36

 Forest Electronic Developments June 1999

The types int1, int8, int16 and int32 are provided for 8 bit, 16 bit and 32 bit integers
(identical to FED PIC C compiler types bit, char, int and long). These are used for internal
conversion where compilers have a different bit length and are referenced in the header file.

The options are as follows:

_ in front of asm names. This option forces the compiler to create a macro for each C
variable with the C variable name with an _ in front of it. For example if the C variable ix is
defined then in assembler it may be referenced with the name ix or _ix when this option is
selected.

This DOES NOT apply to internal register names such as STATUS which must be defined in
assembler without the underscore. Conversion must be undertaken manually.

No ‘b’_ in front of bit names. This option forces the compiler to define a macro value
_BITTYPES_OPT. This will then define bit names for register without the ‘b’ in front of them.
For example the bit T0IF is defined in the FED compiler as bT0IF. If this option is selected
then the bit may be addressed either as T0IF or bT0IF.

Automatically include Header. This selections allows entry of a header file name which will
be included automatically by pic.h. The header file usually includes macro replacements to
substitute 3rd party function names for FED function names. Normally this is set by
automatically clicking the button for the compiler with which compatibility is required.

4.3. Notes on incompatibilities
Assembler

The most likely source of problems is likely to be complete assembler functions. The FED
compiler includes some options to assist with assembler – for example the option to
prepend an underscore before C variable names, however some work may be required to
convert assembler. See Using Assembler.
Assembler blocks and comments

Some compilers mix C and assembler syntax in assembler blocks. FED C does not allow this.
For example // to comment in assembler files may be allowed by 3rd party compilers, this
should be replaced with a ; character as normal for assembler..
Converter programs

Some 3rd party compilers require a conversion program to be run in advance of the main
program – the converter program will create a new C file called xxx_conv.c where xxx is the
original file name. FED recommend that the converted file should now be worked on and the
original file discarded. At present the following conversion programs are supplied within the
converters sub-directory :

ConvertCCS.exe To convert CCS programs in advance of compiling with the
FED compiler.

Interrupt function

The FED C compiler operates interrupt functions differently from other compilers, there
being no consistent approach. See the manual section Interrupts & Memory.

 37
Existing interrupt code may require re-writing, or the code may be moved outside the
interrupt and tested with a flag set inside the interrupt. Some compilers support a named
function for each interrupt and these will need to converted to code inside the main
interrupt function.

Untyped functions

The FED C compiler does not allow for untyped function declarations. The following is illegal
:

GetADC()
{
}

Please replace with the following :

void GetADC()
{
}

38

 Forest Electronic Developments June 1999

5 Development Environment
Reference Manual

Project
Compiling a project and reviewing errors
On-line help
Project Archiving
Menu Commands
Windows
Please note enhancements available in The Professional Version are
shown in the section at the end of this manual.

5.1. Project

A project is the name for the collection of files. These files are tagged to show that they will
be included in the compiler process, or that they are text files which may document aspects
of the project.

Those files which are tagged as C or assembler files are compiled to a binary object file.
Simply add all the files which make up the program into the project window, and when the
make command is used they will be assembled in the order in which they appear in the
window.

When you add an item (or items) to the project a dialog box is shown which allows the file
type to be selected. These types are C/CPP/H/ASM, Stimulus, Inject, or comment. The
Stimulus and Inject file types are used with the simulator and are shown in the simulator
help file. The C/ASM type of file is included when the project is compiled and assembled, the
file extension is used to decide if it is a C or assembler file. The comment type is not used by
the compiler, the assembler or simulator, it is normally used for “readme.txt” files, or other
help associated with the project.

 39
To create a new project then use the Project | Open/New menu option and type in a name
for a project which does not exist. (Note for the professional version the menu option will
refer to a project Group – for now it does exactly the same). Now use the Project | Add Item
menu option (Professional Version Project | Add/Insert Item to Current Project), (or select
the project window and press insert) to add the first file to be assembled. This will normally
be an include file. Now you must create assembly files to make up the program. Either open
existing files, or use the File | New menu option to create a new file and then use File | Save
As to save it with a new file name. Finally use the Project | Add item menu to add it to the
list of files in the project. If the Project | Add command is used on a file that does not exist
then it will be created, double clicking the project item will load it into the editor window.

Projects are saved automatically when a new project is opened, or when you exit PICDE.
When you re-enter PICDE the last project that was used is automatically opened. A project
file has an extension of .PIC, and it saves the position, size and type of all the windows that
were open when it was saved. This allows users to continue work from where it was left.

The project window shows a list of all the files which are compiled and linked for the current
program. Note that C, Assembler, Stimulus/Injction and comment files are included under
different tabs in the project window. Double click on a file in the project window to open
that file for editing. To add and delete files use the commands on the project menu.

5.2. Compiling a project and reviewing errors

To compile a project then use the command on the button bar, or use the menu option
Compile | Generate Application. For the very first time that the project is compiled the
Compiler Options Dialog Box will come up with a number of options, which are saved with
the project file, this dialog box is described below. For all subsequent times if it is required to
set the project options then use the Project | Set options for Project menu option.

Whilst compiling the information window displays the file currently being compiled. Once
compiled the message window will display the errors which were found in the program.
Messages, and warnings are only displayed in the error file and the listing file (.ERR and .LST
extensions). To immediately open the file and go to the line with an error then double click
the mouse pointer on an error in the error window. Use the Alt F8 and Alt F7 keys to move
forward and backwards through the list of errors and jump to their locations in the source
files (The menu options Compile | Next Error & Compile | Prev Error perform the same
operation).

Compiler Options Dialog Box

To show this dialog then use the Project | Set options for Project menu option The dialog
box has a number of tabs each of which configures one area of the compilation.

40

 Forest Electronic Developments June 1999

Main

Processor

The processor which is to be used as a target is selected here. Note when a new processor is
selected it will change the stack pointer on the memory tab. Using the “Show Only Devices
Containing box” enter text to filter the list. For example type in “K50” in this box to show
only processors which haveK50 in their names. The Device Family box restricts to only those
processors which are members or the 12/16 or 18 series families.

Case Sensitive

Normally this should be selected to ensure that the compilation is case sensitive.

Processor Frequency

The processor frequency is selected here, note that a constant integer called PROCFREQ is
defined and may be used in any of the C files in the project. The value defined is set to that
of the Processor Frequency box..

ICD

The options available under this tab are described in the separate ICD manual:

 41

Note that the Use ICD box should be checked to include the ICD code, and that the manual
can be shown using the button on this tab.

Defines

This box allows the user to enter a list of items which will appear as if the C pre-processor
directive #define had been used.

For example if the label DEBUG is added with a value of 1, then for all files compiled the
token DEBUG will be replaced with the value 1. The three buttons Add, Edit and Delete allow
new items to be added, old ones to be deleted, or the value to be changed. The tick box
allows the DEFINE to be included or not. If the tick is removed then the define will not be
included. In the example below the value DIAGNOSTIC will be defined in each C file and
replaced by the value 1.

42

 Forest Electronic Developments June 1999

Memory

Areas of RAM

This box shows the available areas of RAM for the selected processor, it may not be
changed, but is shown for reference to assist with selection of the stack pointer.

Stack Pointer

The stack pointer is automatically assigned to the highest value of RAM when the processor
is selected. It may be changed by the user to any value in memory to allow areas of memory
to be set aside for program use, see the sections on Memory Allocation for further details.

Heap Address

The Heap is used for storing interim results (e.g. when an array is returned from a function).
It is automatically assigned to the lowest value of RAM in the highest memory page, or if
there is only one RAM page then to the first free address in RAM. When there is more than
one page it may be changed by the user to any value in memory to allow areas of memory to
be set aside for program use, see the sections on Memory Allocation for further details.

Top ROM address used by compiler

This address allows the user to clear an area of ROM at the top of memory. Set the value to
an address lower in memory to reserve free space for in-circuit debuggers, flash boot
controllers etc.

 43
Optimisations

Optimise for Space

This causes the compiler/assembler to generate code optimised for space. This option
should normally be used. This option applies solely to the compiler, block optimisation is
covered by the Pre Assembly optimiser (see below).

Optimise for Speed

This causes the compiler/assembler to generate code optimised for speed. This option
applies solely to the compiler, block optimisation is covered by the Pre Assembly optimiser
(see below).

Use PIC Call Stack (QuickCall)

This option causes the compiler to use normal PIC Call and Return instructions when
selected, this allows up to 6 levels (29 levels for the 18X series) of function call within a C
program (or one less if interrupts are in use). When not selected the software stack will be
used which allows greater call depth, but is slower. Note that the main() function is not
included in the call stack.

Function Parameters may be global

This option allows the compiler to optimise function parameters to the LocOpt memory area
instead of using the call stack. This is much faster than the call stack. The compiler
automatically determines when functions may use LocOpt rather than the stack. For
example recursive functions (those which call themselves directly or indirectly) will never
use LocOpt. This option should not be used if your program uses pointers to functions - in
this case the compiler cannot automatically determine how functions may call each other.

44

 Forest Electronic Developments June 1999

Local Optimise Bytes

This selects the number of bytes to be assigned in PIC global memory to which local variables
and function parameters will be assigned if possible. Normally set to 16,can be increased if
you have a large number of local variables in functions. This considerably speeds access to
these variables.

Pre Assembly Optimiser

This optimiser runs after the compiler and before the assembler. It optimises in two ways.
Firstly by searching for commonly repeated blocks of code which can be replaced by simpler
constructs (Run Code Optimiser). Secondly by looking for duplicate blocks of code and
replacing them by a sub routine which is called (Run Duplicate Optimiser). For the duplicate
optimiser the Duplicate Block Size shows the minimum and maximum number of words in a
block for which a replacement may be made. Typically this will be from 4 to 32 words.

Together these options typically save 10-25% from the overall code size although this is
dependant on the source. For example a small program with use of char variables will
probably not be optimised very much, a large program making use of large C types may
show a much bigger reduction.

It is important that the duplicate block optimiser does not operate on assembler functions
or files. To prevent this then use the following special key words :

Within C

#pragma optdup 0 // Turns off the optimiser for the rest of the file, or until
 // the next optdup

#pragma optdup 1 // Turns on the optimiser for the rest of the file, or until
 // the next optdup

Within Assembler

dupmodoff ; Turns off the optimiser for the rest of the file, or until
 ; the next optdup

dupmodon ; Turns on the optimiser for the rest of the file, or until
 ; the next optdup

List

These options are intended for compiler debugging and are of little use to the end users of
the compiler. They are left available for end users to run specific tests under guidance of FED
software engineers.

Compatibility

This tab provides a number of options for accepting non-standard syntax to allow files
intended for 3rd party compilers to be compiled with the FED compiler. Please see
Compatibility Options.

 45
5.3. On-line help

To obtain immediate help on any command or opcode then position the cursor in an editing
window on to a keyword, and then

press Control and F1, if a help topic exists on that keyword then the help file will be opened
at that topic.

5.4. Project Archiving

WIZ-C MX supports project archiving. This allows for all the files in a project to be stored
together in a compressed archive. Archives can be created manually and will automatically
include all project files and referenced header files, project definition and simulation files.
However the most powerful use of archiving is the automatic archiving of project files at
regular intervals. The interval can be set to daily, weekly, monthly or yearly. At the specified
interval, and when the project is opened it will be archived. For example with a daily
archive, then at the first time, on every day that the project is opened, then the source and
project files will be saved in an archive file.

By default archives are created daily.

Archive files are small, a typical medium sized project will have archives of around 25K in
size. Archive files are saved in the Archive folder under the main project.

Automatic Archiving Interval

To set the interval at which archive files are created then use the File | Options menu :

The interval may set in the archiving box.

46

 Forest Electronic Developments June 1999

Manual Creation of Archives

Archives may be created manually. To do this use the Project | Archive Project menu option.
This will firstly allow a file name for the archive to be selected, and then bring up the archive
dialog box :

By default all the files in the project, the WIZ-C definition files which support the project, and
any headers found in source files will be included. The archive includes the folder from
which the files were originally saved. It is possible to include additional files here – the Add
More Files button allows other files to be seleced. Please note that in the automatic
archiving any additional files are not included, the best way to ensure additional files are
included in automatic archives is to include them as comment files in the project window.

Click the “Archive Checked Items” button to copy the selected files to the archive.

Restoring Archives

To restore archive files then use the Project | Restore Archive option, this will allow an
archive file to be selected (archive files are saved in the Archive folder under the project).
Then the dialog box to allow files to be extracted will be shown :

 47

This shows the list of files in the archive and the folder to which they will be extracted. To
change the folder then use the Change Folder/File button. This will allow the folder and/or
project file name to be changed. Note that if the project file name is changed then all the
files which have that name as a base will be changed as well, however external files, or
header files will not be changed.

The traffic light shown by the file name is only shown when the file exists and is a warning to
the user that the file exists. It is red if the archive file is older than the current existing file,
amber if the archive and existing file is the same date, and green if the archive is a newer
date than the existing file. It is up to the user to then decide which files to extract by
checking the box next to all those files. The check all and Clear All buttons act to check or
clear all tick boxes at once.

To view a file click the “View Checked Item” button, this will open the first selected file for
examination :

Here you can read the file and scroll up and down, select text and copy to the clipboard
(using Ctrl+C or the right menu key), or extract just this file using the button. Return to the

48

 Forest Electronic Developments June 1999

file list using the Back to File List button, or cancel out if you just want to copy text to the
clipboard and paste into an existing file.

Finally files will be extracted if the Extract Checked Item button is used.

File History

Rather than examining all the files in an archive it is possible to examine all the versions of a
file held in every archive. To do this Open a file which you wish to examine in the editor, now
use the File History button at the top of the edit window :

 In this example we want to see all the previoius versions of the file “PICPROGUSB.EQU” held
in the archives folder, so the File History button is pressed. This brings up the File History list
:

Here you can see that file history for this file goes right back to 2008. Click any file to either
extract it, or view that file from the archive using the View Checked Item button :

 49

Here you can read the file and scroll up and down, select text and copy to the clipboard
(using Ctrl+C or the right menu key), or extract just this file using the button. Return to the
file list using the Back to File List button, or cancel out if you just want to copy text to the
clipboard and paste into an existing file.

Finally files will be extracted if the Extract Checked Item button is used.

5.5. Menu Commands

The following sub-menus are available:
File Menu
Edit Menu
Project Menu
Compile Menu
Simulate Menu
ICD
Tools Menu
Window Menu
Help Menu

File Menu

The File menu contains the following commands:

New : This creates a new empty file ready for entering text. To give the new file a name then
save it, this will prompt for a file name.

Open : This brings up a dialog box which allows an existing file to be opened.

Reload All Files: This reopens all the currently open files.

50

 Forest Electronic Developments June 1999

Libraries : This allows additional libraries to be added to the standard list. See the chapter
on Creating Libraries for more details - Set Libraries Dialog Box

Save : This saves the Current File.

Save As : This saves the Current File allowing a new file name to be chosen.

Save All : This saves all open files which have changed.

Insert File : This brings up a dialog box which allows an existing file to be inserted in to the
current file at the current editing location.

Close Page: This closes the file which is currently displayed in the edit window.

Close All Pages: This closes all open files which are currently displayed in the edit window.

Print : This prints the Current File

Print All : This prints all open files.

Printer Setup : This brings up the printer setup dialog.

Options : This brings up a dialog box which allows various options to be set including the
number of pages printed on each printer page. It allows the user to set the tab size, turn
Syntax Highlighting and Hover Help on and off and allows the maximum size of the
simulation trace file to be set. In addition code and comment fonts may be set and sounds
may be turned on and off.

Past Files: At the bottom of the menu is shown a list of recent fiels, click any of these to
open that file.

Exit : This leaves the program, prompting for any changed files to be saved, and saves all the
current Project information in the project file.

Edit Menu

The Edit menu contains commands which are concerned with the Current File and are as
follows:

Cut (Delete) (or Ctrl+X): This command deletes the text currently selected and copies it to
the clipboard

Copy (Ctrl + Insert) (or Ctrl+C):This command copies the currently selected text to the
clipboard where it may be pasted in to any open file in BASIC, or in any other file.

Paste (Shift + Insert) (or Ctrl+V): This command pastes the text currently in the clipboard
into the current editing window at the location of the cursor.

Undo (Alt + Backspace) : This command undoes the most recent typing, or the most recent
delete command.

Clear : This command clears the entire editing file. If the file has been changed since it was
last changed then the user will be prompted to save the file before it is cleared.

 51
Select All : This command selects all text in the current file.

Copy Device Picture to Clipboaurd: This command copies the PIC outline and named pins to
the clip board in windows picture format suitable for pasting into another appliction – only
for WIZ-C users.

Find/Replace (Shift + F3) : This command brings up the Find/Replace dialog box which
allows text to be found in the file being currently edited.

Repeat Find/Replace (F3) : This command repeats the last find or replace operation. If the
last operation was on a different file then the text used for the find or replace operation on
the different file is still used for the operation on the current file.

Set Bookmark (Shift+Control+n): This commands set a mark in the file. To return to the
same point later then use Jump Bookmark n. Note that up to 10 bookmarks can be set, use
control+shift+number keys 1 to 9 to set a different bookmark number.

Jump Bookmark (Control+n): This command jumps to the previously marked point in the
file. Note that up to 10 bookmarks can be set, use control+number keys 1 to 9 to jump to a
different bookmark number.

Clear All Bookmarks : This command clears all bookmarks from the file.

Goto Line: This command brings up a dialog box allowing any specific line number to be
brought up.

Goto Label: This command brings up a dialog box allowing the line containing the entered
label in the assembled program to be shown in the edit window.

Goto Label Under Cursor: This command shows the line (containing the label under the
cursor) in the assembled program in the edit window.

Project Menu

The Project menu contains a series of commands which are associated with the
management of the Project. Note that some of these commands change when The
Professional Version is in use, the commands are the same as below but refer to project
groups or the current project. The commands are as follows:

Open/New Project : This commands opens an existing project file, or creates a new project
file. A project file contains a list of all the files which make up the project, and saves a list of
all the files which are open for editing. The project file also saves the options selected for the
project. When a project is opened then any current project is automatically saved first. To
create a new project then enter a project file name which does not yet exist. The project will
be created with this name automatically.

Close Project : This command closes the current project and opens a new blank project.

Archive Project : This command brings up the Project Archiving system for archiving the
project.

Restore Project : This command brings up the Project Archiving system for restoring the
project from an archive.

52

 Forest Electronic Developments June 1999

Current Project Options : This command brings up the Compiler Options Dialog Box.

Save Project As : This command brings up a dialog box and allows a new project and path
name to be entered. Note that all files are saved relative to the new path, so that the project
window files are not copied - they simply show a link to the position of the file in the old
project.

Add Project to Group : Professional users only – this will add a new project to the project
group in a multi-project simulation..

Delete Project from Group : Professional users only – this will delete a project from the
project group.

New Projects use settings from Current Project : This forces any new projects created to
use the same processor, clock rate, window layout etc. as the current project.

Add/Insert Item (Insert key when the Project Window is active) : This command adds a file
name to the Project Window, or inserts before the currently selected file.

Delete Item (Delete key when a file is highlighted in the Project Window) : This command
deletes the file in the project window which is currently highlighted from the project.

Modify Item : This command allows the type of the currently selected item to be changed,
for example changing a C file to a text comment file..

Show as Icons: This command shows items in the project window as icons instead of a list
when selected..

Use Application Designer : For WIZ-C users this menu option turns the application designer
on or off. If turned off then the system works identically to the FED PIC C Compiler.

App Designer Verify : For WIZ-C users this menu option verifies that all elements included in
the design are correctly connected..

Open All Files: This command opens all the files in the project.

Past Projects: At the bottom of the menu is shown a list of recent projects, click any of these
to open that project.

Compile Menu

The Compile menu brings up a list of commands which are applicable to compiling the entire
Project . The menu contains the following commands.

Generate Application (Ctrl+F9) : This command for compiles all projects in the project
group.

Compile Current Project (Alt + F9) : This command compiles all the C files which are
members of the current Project only. This command brings up the Compiler Options Dialog
Box.

 53
Next Error (Alt + F8) : Once the project has been compiled, there may be errors. The errors
are listed in the Message Window This command will find the next error in the error list and
bring up the file with the error with the cursor at the line which contains the error.

Prev Error (Alt + F7) : This command operates in the same way as the Next Error command,
but finds the previous error.

Simulate Menu

Please see the simulator help file (under Help | Simulator contents) for more details on this
menu which is identical to the PICDESIM Simulator menu and is described in the PICDESIM
simulator manuals.

ICD

This menu contains items of specific use for the In Circuit Debugger which is explained within
its own manual.

Tools Menu

The tools menu includes the Run MPLAB (C) and Run MPLAB direct options. Please see: Use
with MPLAB.

The Tools menu contains a number of standard user defined commands which may be
added at will. The user defined commands may be changed or deleted as required by using
the Tools | Configure menu option

Configure : This command allows the list of tools to be changed. It brings up the Tools
Configuration Dialog box.

Tools Configuration Dialog

This dialog box lists all the current tools. To remove a tool from the tools menu then select a
tool in the list and click the remove box. To add a new tool then decide on a name for the
tool and then enter it into the edit box in the form of the name, then a comma, then the full
path of the command. Put an & character in front of the character to be used for the
shortcut key. For example:

File &Manager,C:\windows\winfile.exe

To add command line arguments then special characters %f and %p may be used. %p inserts
the current project name WITHOUT an extension. %f inserts the current editing filename for
the edit window which is currently being used, with its extension. %t inserts the name of the
current processor. If a file replacement (%f or %p) is followed by an underscore ("_") then
the short form of the filename is used for older applications. For example this is the line for
the FED PIC Programmer:

Pic &Programmer,C:\Program Files\FED\PICPROG.EXE %p.HEX /P%t

When the OK button is clicked then the menu is changed for the new tools. The tool list is
not stored with the project file, but is stored in the global initialisation file.

The maximum number of tools is 10.

54

 Forest Electronic Developments June 1999

Window Menu

This menu contains the following commands:

Small Fonts: This is a toggle option which reduces the size of fonts in the Project,
Information, and Debugging Windows, allowing more information to be shown on lower
resolution screens.

Arrange for Debug : (ALT+D) This command arranges all the windows on the main FED PIC C
window so that they are visible and sized according to their function particularly for
simulation and debugging.

Arrange for Edit : (ALT+E) This command arranges all the windows on the main FED PIC C
window so that they are visible and sized according to their function particularly for when a
project is being editted.

Arrange in compact form: (ALT+C) This command arranges all the windows on the main FED
PIC C window so that they are visible and sized with a smaller debug window.

Tile : This command tiles all the sub windows on the main screen, so that they are all visible
simultaneously.

Help Menu

This menu contains the following commands:

C Compiler Contents (F1 key) : This command brings up the contents list of the help file.

Assembler Help : This command brings up the contents list of the help file for the assembler
which is identical to the PICDESIM assembler.

Simulator Contents: This command brings up the contents list of the help file for the
simulator which is identical to the PICDESIM simulator.

Elements: A help file for WIZ-C - showing the WIZ-C element reference.

Application Designer: A help file for the WIZ-C application designer.

MPLAB: A help file showing how MPLAB should be used with PIC C Compiler and PICDESIM.

Lookup Keyword (Ctrl+F1) : With the cursor positioned on a key word in the Current File
then this command will bring up the help file with the topic describing that key word.

About : Shows version number and copyright information about FED PIC C..

 55

5.6. Windows

All the Windows in FED PIC C contain a "speed menu", use the right mouse key when the
pointer is over the window to bring up a list of menu options relevant to that window. The
following windows are open permanently:

Edit Window
Project Window
Information and Error Window
Debugging Window

Edit Window

The edit window holds all the current files which are being edited. Each file is shown on a
tab. Click a tab to bring that file to the front.

To open a file click the file in the Project Window, or use the File | Open menu option. To
open all the files in the project use the Project Window menu (right click the window and
select the Open All Files menu option). To open an include file then position the cursor on
the line with the #include statement and press Ctrl+Enter.

To close a file then use the File | Close Page menu option (or press Ctrl+L). To close all the
pages use the File | Close All Pages menu option.

There are a number of Edit Window related menu options which are duplicated on the right
mouse button in the Edit Window.

Project Window

A window which holds a list of files to be compiled. Each type of file has its own tab in the
project window.

The project window shows a list of all the files which are associated with the current
program. When files are added they are selected as being of type C, H, Assembler,
Stimulus/Injection or Comment.

C and H type files are compiled. Stimulus/Injection files are used by the simulator. Comment
type files are ignored by the compiler, and are used normally for documentation or
instructions for use with the project.

Double click on a file in the project window to open that file for editing. Select a file and
press Enter to change the file type. To add and delete files use the commands on the Project
Menu, or right click the window. Files are added to the project window before the selected
file (if one is selected), or at the end of the list if no files are selected.

There are a number of Project Window related menu options which are duplicated on the
right mouse button in the Project Window.

56

 Forest Electronic Developments June 1999

Information and Error Window

The information window contains information about the current compilation. Information is
included about the files being compiled, copyright statement, and the number of bytes
occupied by the program.

The Error Window in the lower half of the Information window shows the current list of
errors. See Compiling a project and reviewing errors

Debugging Window

The debugging window is used in the same way as the PICDESIM Simulator, please see the
help file for PICDESIM for more details.

In The Professional Version there is one debugging window for each project which is a
member of the project group.

 57

6 Example projects
The FED Development Board
Using an LCD Display
EEPROM Programmer
Example projects are shown here for all versions – see The
Professional Version for examples which apply to that version only.

6.1. The FED development board

FED have a simple development/evaluation board for 18 pin devices which is suitable for use
with all the examples and the tutorial. (Version 9 note – please note this board is no longer
available). The board has the following features:

• Supports all 18 pin PIC's

• Has on board 5V regulator - supports 100mA or 1A regulators

• Serial interface compatible with PC/MAC serial interfaces.

• Supports 8 pin EEPROM/RAM devices with IIC interface

• 4/20MHz crystal oscillator

• Port B available on 16 pin DIL connnector

The circuit diagram is shown below:

58

 Forest Electronic Developments June 1999

IC3 provides the power supply, the 78L05 may be used for lower consumption projects, the
7805 can be used for projects of up to 1A consumption. In target projects IC3 may be left out
and replaced by the power supply used in the main circuitry.

IC2 is the EEPROM or RAM. Devices of any size may be used provided that they have the pin
out shown in the circuit diagram, and that they have the I2C interface. Two types of EEPROM
are common, 12 bit address devices (e.g. 2Kbyte and below), and 16 bit address devices (e.g.
8Kbyte). R1 and R2 pull up the data and clock lines used on the I2C interface and should be
2K7 with a 20MHz clock.

IC1 is the PIC. The lower 4 bits of port A are used for the EEPROM interface, and also for the
external serial interface, these bits are not available for use by the application, however the
RTCC input (which forms the RA4 input of the PIC16C71, and PIC16C84) may be freely used.

The oscillator circuitry around pins 15 and 16 of the PIC is based on crystal or ceramic
resonator devices. The frequency of the oscillator may be 4MHz or 20MHz

The serial interface is provided as standard, the FED PIC C serin() and serout() functions may
be used to drive the interface. The interface at the PIC is inactive high - i.e. when the
interface is idle the input and output of the PIC is held at +5V. The start bit is signalled by a
low going pulse followed by the 8 data bits. C201 stores the negative voltage which is
normally present on the inactive input line, filters it, and uses it as a negative supply for the
signal driven from the module. This circuit may only be used for communication with other
systems which provide a standard RS232 output, and worked with all PC’s with which it was
tested.

The Component list is shown below:

10
kR202

22k
30

0R

2k
7

100u

4MHz

22p 22p

PL101/3

PL101/2

PL101/5

Serial Interface

D201

R205

R201

TR101

R204 C201

TR202

XL1

C4 C5
RC7

Osc1

Osc2

16

17

RA3

RA2

Gnd

5

Vcc

IC1

PIC16C58 or PIC16C84

RB0

RB1

RB2

RB3

RB4

RB5

RB7

RB6

6

7

8

9

10

11

13

12

RTCC 3

A0
A1
A2
WP
VSS

22
k

22
k

Vcc
8

RA0

RA1

17

18

SCL

SDA

6

5

1
2
3
7
4

IC2 - EEPROM

10k
R3

2

R6
MCLR

4

1M 1M

22
0k

TR1

R4

IC3
In

78L05

Gnd
Out

47u
IC2

PL1/2

+

C3PL1/2

PL1/1

C1
10u

+C2
100n

R1 R2

R5

22k
R203

Brown out reset circuit

Power supply

14

LK1
Boot

PL3/20

PL3/1

PL3/2

PL3/3

PL3/4

PL3/5

PL3/6

PL3/7

PL3/8

1

PL3/15,16

PL1/11,12,13

9 pin serial connector

16 pin DIL connector

 59

Resistors Semiconductors

R1,2 22K IC1 PIC - see text

R3 10K IC2 24LC16 etc. see text

R4,R5 1M IC3 7805 or 78L05

R6 220K TR201 BC548

R201 22K TR1,TR202 BC557

R202 4K7 D201 1N4148

R203 10K

R204 2K7 Other

R205 300R XL1 4.000MHz crystal or
ceramic resonator

Capacitors PCB

C1 10uF 10V Electrolytic PL101 9 pin D socket

C2 100n, Ceramic PL1 16 pin DIL IC socket

C3 100uF 10V
Electrolytic

LK1 0.1" link with jumper

C4,5 15pF, Ceramic IC sockets 8pin, 18pin

C201 100uF 16V
Electrolytic

Veropins 2

 Heatsink IC3, optional

The PCB layout is shown below:

R205

R201
R202

R203

R204

D201
T201

T202

C201 +

+5V

RSin

RSout

Gnd

Rs

R
1 R
2

R
3

C
1 C
2

C
3

XL
1

C
4

C
5

LK1

IC1

IC2 IC3

R
5

R
6

R
5

TR
1

+

+

PL1

+9VGnd

See the Example Program using the demo board

60

 Forest Electronic Developments June 1999

Example program using the demo board

The program below (in the "Serial Test" directory, project "Dump") is a very simple test of
the demonstration board. When the call dump() is executed all PIC memory variables from
Start to End are sent in hex form to the attached PC. This is a useful diagnostic to show
values of variables as a program is running.

The demonstration program dumps all variables from 5 to 20 hex. The information is shown
in the form:

05=1F
06=87
07=00
etc

The project can be opened and the program compiled and assembled in PICDE. It can be
programmed to a PIC16F84. The system uses a 4MHz clock and no watchdog timer. Use the
terminal on PICDE to display information from the board. When power is applied the
memory dump will be shown on the terminal

//
// Simple diagnostic, write all variables from start address to
end addres
// to attached PC
//

#include <pic.h>
#include <DataLib.h>

void Dump(BYTE Start,BYTE End);
void PrtHex(BYTE n,BYTE *s);

void main()
{
 PORTA=0x1F;
 TRISA=0x17;
 Dump(0x5,0x20);
endit:
 while(1);
}

//
// Dump in hex to serial port on PORT A, bit 3
//

const int SERIAL_RATE=9600; // Set serial port rate
const int BITTIME_IN=PROCFREQ*1000/SERIAL_RATE/4;
const int BITTIME_OUT=PROCFREQ*1000/SERIAL_RATE/4;

const int SERIALPORT_IN=5; // Port for serial i/f
const int SERIALBIT_IN=2; // Bit for serial i/f

const int SERIALPORT_OUT=5; // Port for serial i/f
const int SERIALBIT_OUT=3; // Bit for seiral i/f

void Dump(BYTE Start,BYTE End)
{
 BYTE i;
 BYTE d[2];

 for(i=Start; i<=End; i++)
 {
 BYTE v=*(BYTE *)i;

 61
 PrtHex(i,d); pSerialOut(d[0]); pSerialOut(d[1]);
pSerialOut('=');
 PrtHex(v,d); pSerialOut(d[0]); pSerialOut(d[1]);
pSerialOut('\n');
 }
}

//
// Print Number in hex to 2 character string
//
void PrtHex(BYTE n,BYTE *s)
{
 BYTE l,h;

 l=n&0xf; h=n>>4;

 s[1]=l+'0'; if (l>=0xa) s[1]+=7;
 s[0]=h+'0'; if (h>=0xa) s[0]+=7;
}

6.2. Using an LCD display
Introduction to LCD Displays
Complete LCD Example

Introduction to LCD Displays

Functions are provided to drive an LCD module based on the Hitachi chip set. The functions
handle the 4 bit interface, and the device timing to the module. They also read the module
busy flag and hold future transfers whilst the module is still performing the last operation.
Functions are provided to initialise the module, to transfer single characters to the module,
to transfer LCD module commands, and to write strings to the module.

Such modules are the LM020, LM016, LM018 and LM032, however there are a number of
other modules based on this chip which is numbered HD44780. The module is driven from
port B, there is no option to change the default port. The pin connections are as follows:

LCD Module LCD Port number Pin Number

(2 line display
LM016L)

RS B1 4
R/W B2 5

E B3 6
D4 B4 11
D5 B5 12
D6 B6 13
D7 B7 14
Vss - 1
Vdd - 2

Vo (LCD Supply) - 3

Connections D0, D1, D2 and D3 on the module can be left floating.

62

 Forest Electronic Developments June 1999

The LCD display has an 8 bit interface, but read and write operations are executed in two 4
bit transfers. For ports which do not have pull up resistors the D4 to D7 signals should be
pulled up to +5V with 10k-100K resistors. Bits 0 to 3 of the LCD should be left floating, or tied
high. Port bit 0 on the LCD port is still available for general use, in this case the tris-state
command for the LCD port should be set to drive on bits 2 , 3 and 4, and to read on bits 4, 5,
6, and 7. Bits D4 to D7 are available for general purpose inputs when the module is not being
used, but in this case should be coupled with resistors to allow the main program to
overdrive the inputs when the module is being written.

The functions used to drive the module are LCD and LCDString. The LCD function takes one
parameter. This has different values depending on the function as described below. The
LCDString function writes a complete string to the display.

The program must define the port to be used with the display. This is done by defining a
constant integer which must be set to the port. For example to use port B then the line
shown below is used:

const int LCDPORT=&PORTB;

It is possible to connect the E, RS and RW pins of the LCD display to other pins of the PIC -
although the data pins must still be connected to bits 4 to 7 of the LCDPORT. For example
here is how to define an LCD where the data bits (D4-D7) are connected to port D bits 4 to 7,
E is connected to PORTE bit 1, RS to port D bit 2, and RW to Port D bit 3. NOTE YOU ONLY
NEED TO DO this if the LCD is connected other than as shown above.

const int LCDPORT=&PORTD;
const int LCDEPORT=&PORTE;
const int LCDEBIT=1;
const int LCDRSPORT=&PORTD;
const int LCDRSBIT=2;
const int LCDRWPORT=&PORTD;
const int LCDRWBIT=3;

To initialise the display which must be done before any information is written, the LCD
function is used with a negative number. To initialise a one line display then use the function
LCD(-1), alternatively to initialise a two line display then use the function LCD(-2). The LCD
funciton defines the Port to drive on the correct bits, the display is set to the specified
number of lines, the display is turned on, and the cursor is set to an underline at the start of
line 1.

To write a character to the display then use the LCD() function. Thus to write an A character
to the display use LCD(‘A’).

To send a function to the display then add 256 to the function number and use the LCD
function. These functions are documented in the Hitachi controller driver documentation,
however a summary of some of the more important functions is included below:

Function Function

 63
LCD(-1); Initialise display to 1 line
LCD(-2); Initialise display to 2 lines
LCD(257); Clear display, return cursor to home position
LCD(258); Return cursor to home position
LCD(256+128+N); Return cursor to line 1, position N, where N=0 is the

first character on line 1
LCD(256+192+N); Return cursor to line 2, position N, where N=0 is the

first character on line 2

The LCDSTRING function sends the supplied string to the display. Thus to write “HELLO” to
the display then the following can be used:

LCDSTRING("HELLO")

HINT

Many single line displays are actually implemented as two 8 character
lines which are connected to appear as one 16 character line. Use LCD(-2)
to initialise these displays, and print on the second line to print to the
second 8 characters.

Complete LCD Example

Adaptor
for 16F84
developmen
board

1
2
3
4
5
6
7
89

13

16
10k

16
pi
n
DI
L

1

2
3

4
5
6
11

12

13

14
D7

D6

D5
D4

E

R/W

RS

VO
Vdd

Vss

LCD
LM016
(2 lines x

The board with the 16F84 is used for the complete example, an interface board with a 16 pin
socket should be wired as shown below:

The example program below (which is in the LCD directory) shows a typical interface to this
circuit. Note that this program is not very efficient on space owing to the extensive use of
integer types.

Version 9 update – The copy in the LCD directory (which is sub-directory of the projects
directory) is now modified to operate on the FED Development board with a 16F877 and
includes an LCD device simulation. It needs to be run for several simulation seconds to see
the display updating.

64

 Forest Electronic Developments June 1999

#include <displays.h>
#include <delays.h>
#include <pic.h>

#define LCDPrintAt(x,y) LCD(0x100+0x80+x+y*0x40)
#define LCDOnOff(display,cursor,blink)
LCD(0x108+display*4+cursor*2+blink)
#define LCDShift(cursor,right) LCD(0x110+(!cursor)*8+right*4)

const int LCDPORT=6; // Define LCD port as Port B

void main();
void LCDClear(); // Clear LCD display and set cursor to
origin
void LCDNum(int number); // Print a number to the display

void main()
{
 int i;

 LCD(-2); // 2 line display

 LCDClear();
 Wait(1000);
 LCDString("LCD Display");
 Wait(3000);
 LCDClear();
 LCDPrintAt(0,0);
 LCDString("At 0,0");
 LCDPrintAt(1,1);
 LCDString("At 1,1");
 Wait(3000);
 LCDClear();
 LCDOnOff(1,1,1);
 LCDString("Blinking");
 Wait(3000);
 LCDClear();
 LCDString("Shift left");
 LCDPrintAt(0,1);
 LCDString("<<<<<<<<<<");
 Wait(1000);
 for(i=15; i; i--)
 {
 Wait(200);
 LCDShift(0,0);
 }
 LCDClear();
 for(i=-5; i<=5; i++)
 {
 LCDNum(i);
 Wait(512);
 LCDPrintAt(0,0);
 }
 LCDClear();
 for(i=1; i<10000; i+=i)
 {
 LCDNum(i);
 Wait(512);
 LCDPrintAt(0,0);
 }
 Wait(2000);
 LCDClear();
 LCDString("Tests Complete");
 while(1);
}

void LCDClear()
{

 65
 LCD(0x108); // Display off
 LCD(0x101); // Clear display
 LCD(0x10C); // Display on
 LCD(0x180); // Print at 0,0
}

void LCDNum(int number)
{
 BYTE numflag=0;
 if (number<0) {LCD('-'); number=-number;}

 if (number>9999)
 {LCD(number/10000+'0'); number=number%10000; numflag=1;}
 if ((number>999) || numflag)
 {LCD(number/1000+'0'); number=number%1000; numflag=1;}
 if ((number>99) || numflag)
 {LCD(number/100+'0'); number=number%100; numflag=1;}
 if (number>9)
 {LCD(number/10+'0'); number=number%10;}
 LCD(number+'0');
}

6.3. EEPROM Programmer

Programmer Introduction

Driving the 24LC65

Programmer

C Program for the PIC

PC Application Program

Further notes on using I2C EEPROMs

Programmer Introduction

Microchip (and others) manufacture I2C EEPROM's in a range of sizes. In this example we
shall construct a programmer for the 24LC65 (and compatible devices), which is an 8Kx8
memory and which is suitable for data logging applications. For simple storage of
configuration variables smaller devices are probably more suitable, however all the devices
are driven in similar fashion.

Driving the 24LC65

The figure below shows the pinout of the EEPROM. The SCL and SDA pins are for the I2C bus,
the address pins A0, A1, and A2 are connected to ground or Vdd. When the device is
addressed these bits are used as part of the I2C address selector to choose the particular
device. By using these pins it is possible to use up to 8 devices on a single I2C bus, therefore

24LC65A0

A1

A2

Vss SDA

SCL

NC

Vcc1

2

3

4

5

6

7

8

66

 Forest Electronic Developments June 1999

allowing up to 64K of EEPROM to be addressed on a 2 wire bus.

The first byte transferred on the I2C bus is the control byte which selects the specific chip to
be addressed. The figure shows the control byte for the 24LC65, note that the bottom 3 bits
of the address within the control byte for the 24LC65 are the address bits which match the
pins on the device.

The 24LC65 has a number of modes to access the memory array. We will not go into all of

these modes, but will simply consider the Byte Write, Random Read, and Current Address
(sequential) Read modes.

Byte Write.

This mode allows a single byte of data to be written to any address in the memory. The
control byte is written first with the R/W bit set to 0 to indicate a write, this is followed by
the address which is transmitted as two byte transfers to the EEPROM, the most significant
byte of the address is written first, followed by the least significant byte. As in all other
transfers the data is written Most Significant Bit first. The final byte written is the data byte.
At the end of each of the 4 bytes written the 24LC65 generates an acknowledge bit. After all
4 bytes have been written the master device generates a stop state and the 24LC65 initiates
an internal write cycle. The time taken to write the data is guaranteed not to exceed 5mS, so
the master may either wait for this time to allow the data write to complete, or it may
continuously poll the device sending control bytes until the 24LC65 acknowledges which

indicates the end of the write cycle. The Byte write cycle is shown below:

Read current address - sequential reads.

To read a byte from the EEPROM then the same control byte is used but with the R/W bit set
to 1. Following the acknowledge bit from the 24LC65, the master sends an additional 8
clocks to the 24LC65, the 24LC65 then clocks out the requested byte. Following the last bit
sent by the 24LC65, the master may either send an acknowledge bit, or will not
acknowledge. If the master acknowledges then the 24LC65 increments the current address,

Start
State

Master to Slave

Slave to Master
Address of Slave Device Ack

1 0 1 0 A2 A1 A0 R/W Ack
(0)

I2C Control Byte

24LC65 Control Byte

R/W

24LC65
Device
Address

24LC65
Address
Pins

1 0 1 0Start
State

Stop
State

A2 A1 A0

A
C
K
0

R
/
W
0

0 0 0 A
12

D7A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

D6 D5 D4 D3 D2 D1 D0

A
C
K
0

A
C
K
0

A
C
K
0 5mS (Max)

Period during
which the LC65 will
not acknowledge

Control Byte Address Upper Address Lower Data Byte

 67
and the master may then send a further 8 clocks to read the next byte, this allows the entire

contents of the memory to be read rapidly. The read cycle is illustrated below:

Random Read.

A random read is performed by setting the current address as if a write cycle were to be
undertaken. However following the lower byte of the address another start condition is
generated by the master, this is followed by a control byte to read the current address, and
then the contents of the supplied address may be read. The figure shows the random read
cycle. Note that the random read cycle takes 5 byte transfers on the I2C bus, and using the
routines shown last month this can be as much as 500uS. Therefore, wherever possible the
random read should only be used when absolutely necessary, use sequential reads
otherwise which take only one byte transfer per byte read.

Other modes.

The other write mode which is also very useful is the page write mode which allows up to 64
bytes to be written simultaneously and therefore can increase write speed by up to 64
times. In similar fashion to the sequential read the master continues to send up to 64 data
bytes before the stop state, and when the stop is received all 64 data bytes are written to
the memory simultaneously. This mode is not shown further as the code required to drive it
would occupy too much space.

It is possible to program internal security bits to prevent further writes to the EEPROM array.

The 24LC65 device has two EEPROM areas internally, one has the capability for considerably
more write operations than the other, this is known as the high endurance memory. There is
also a mode available to re-map the high endurance memory internally.

Programmer

The EEPROM programmer is based on The FED development board. The 24LC65 fits into the
8 pin IIC socket - IC2. This socket is also pin compatible with other EEPROM devices such as
the 24LC16. The programmer communicates with a PC over the serial port on the board.

1 0 1 0Start
State

Stop
State

A2 A1 A0

A
C
K
0

R
/

W
1

D7 D6 D5 D4 D3 D2 D1 D0

A
C
K
1

Control Byte Data Byte
(from 24LC65)

Read Current Address Cycle

1 0 1 0Start
State

A2 A1 A0

A
C
K
0

R
/

W
1

A
C
K
0

Control Byte Data Byte
(from 24LC65)

Sequential Read
(until stop)

A
C
K
0

Data Byte
(from 24LC65)

D7 D6 D5 D4 D3 D2 D1 D0

A
C
K
0

Data Byte
(from 24LC65)

Current Address Current Address+1 Current Address+2 (etc)

Current Address

D7 D6 D5 D4 D3 D2 D1 D0D7 D6 D5 D4 D3 D2 D1 D0

1 0 1 0Start
State

A2 A1 A0

A
C
K
0

R
/
W
0

0 0 0 A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

A
C
K
0

A
C
K
0

Control Byte Address Upper Address Lower

1 0 1 0Start
State

Stop
State

A2 A1 A0

A
C
K
0

R
/

W
1

D7 D6 D5 D4 D3 D2 D1 D0

A
C
K
1

Control Byte Data Byte
(from 24LC65)

68

 Forest Electronic Developments June 1999

The programmer uses a simple serial protocol to communicate to the PC. This is illustrated
below.

EEPROM Programmer - Serial Protocol

Command
Byte

Parameters Returns Notes

A Address Low

Address High

Byte at supplied
address

Reads from address supplied,
acknowledges internally to allow
further sequential reads

B None Byte at next address Sequential read

C Address Low

Address High

Data Byte

Acknowledgement (K
character) after
10mS

Writes byte to supplied address

D None K Confirms programmer present

There are 4 commands sent from the PC to the programmer, the first (A) reads from a
defined address and leaves the programmer in a state to read the next byte sequentially, the
second command (B) reads the next byte sequentially, the third command (C) writes a byte
to a supplied address. Finally therefore is a simple command (D) which forces the
programmer to return a ‘K’ character, this confirms that the programmer is present.

C Program for the PIC

The Program for the PIC is designed for the 16F84, it is included in the EEProm Prog
subdirectory of the Projects directory.

The listing is shown below:

#include <delays.h>
#include <datalib.h>
#include <pic.h>

const int SERIAL_RATE=9600; // Set serial
port rate
const int BITTIME_IN=PROCFREQ*1000/SERIAL_RATE/4;
const int BITTIME_OUT=PROCFREQ*1000/SERIAL_RATE/4;

const int SERIALPORT_IN=&PORTA; // Port
for serial i/f
const int SERIALBIT_IN=2; // Bit for
serial i/f

const int SERIALPORT_OUT=&PORTA; // Port
for serial i/f
const int SERIALBIT_OUT=3; // Bit for
seiral i/f

const BYTE PICIO=&PORTA;
const BYTE _SDA=1;

 69
const BYTE _SCL=0;

BYTE AddrLo; // EEPROM address - Low word
BYTE AddrHi; // EEPROM address - High word
BYTE EEData; // Data read or written from device

void RxAddr();
void WriteAddress();

void main()
{
 PORTA=0xff; // Set IIC bus bits high
 TRISA=~((1<<_SCL)|(1<<SERIALBIT_OUT)); // Drive Clock &
Serial Data
 IIRead(IISTOP); // Terminate pending read

 pSerialOut('K'); // Transmit OK Character
 while(1)
 {
 switch(pSerialIn())
 {
 case 'A' : RxAddr();
 WriteAddress();
 PORTA|=(1<<_SCL); // Set clock high for
start bit
 IIWrite(0xA1,IISTART|IIACK); // Control byte for a
read
 case 'B' : TRISA|=(1<<_SDA);
 pSerialOut(IIRead(IIACK)); break;
 case 'C' : RxAddr();
 EEData=pSerialIn();
 WriteAddress();
 IIWrite(EEData,IIACK|IISTOP);
 Wait(10);
 case 'D' : pSerialOut('K'); break;
 }
 }
}

//
// Read an address to operate at in Lo-Hi form
//
void RxAddr()
{
 AddrLo=pSerialIn(); // Read low byte of address
 AddrHi=pSerialIn(); // Read high byte of address
}

//
// We generate a stop state first (to terminate a possible read
operation)
// Then we address the LC65 with the control byte 0xA0
// Finally we send both upper and lower bytes of the address
//

void WriteAddress()
{
 QuickStop(); // generate stop state on bus
 IIWrite(0xA0,IISTART|IIACK); // Inform LC65 we are about to send
an address
 IIWrite(AddrHi,IIACK); // Write upper byte of address
 IIWrite(AddrLo,IIACK); // Write lower byte of address
}

The intialisation routines at the top of the main function set the PIC pins on Port A to drive
and receive for the serial port and IIC device. The initialisation for the IIC port simply does a
read with a stop bit using the IIRead function. This is not strictly necessary, but is included in

70

 Forest Electronic Developments June 1999

case the PIC is reset without the EEPROM device also being reset (such as during a brown
out), in this case the EEPROM may be in the middle of a transaction and requires the stop bit
to terminate. The first action of the board is to send a K character to confirm operation.

The main loop is a simple switch statement which reads a command character and acts upon
it.

The RxAddr() function reads an address in low high format.

The WriteAddress() function terminates any current operation and then writes an address to
the EEPROM. It is used before reading from a specified address (command A), and before
programming a byte to the EEPROM (command C).

PC Application Program

To use the programmer from the PC we shall examine a very simple QBASIC program which
allows the EEPROM to be read or a file to be programmed to it. QBASIC is supplied as part of
DOS.

Owing to lack of space for listings the program is minimal and can be much improved, it is
presented here with just the essential features for reading and writing EEPROM’s. The BASIC
program is shown below, press key 1 to read the first 256 bytes of the EEPROM, press 2 to
read the next 256 bytes (sequentially), and press 3 to write a file to the EEPROM. Note that
the file to be written is presented as a series of bytes in ASCII decimal, one byte per line, the
first byte is written to address 0, the second byte to address 1 etc. There is little commenting
in the file, or within this article, the program is quite straightforward and QBASIC has
comprehensive on-line help. This program is also supplied in the EEProm Prog directory
along with a short example hex file called Test.Hex.

Important Note. Please note that within this BASIC program the communications port is set
to send 2 stop bits, this is important to allow the PIC program to undertake processing
between received bytes.

DECLARE SUB WriteFile ()
DECLARE FUNCTION NeatHex$ (x!, places!)
DECLARE SUB waitkey ()
DECLARE SUB Read256 ()
DECLARE SUB ReadFirst ()
DECLARE SUB ReadNext (Num!)
OPEN "COM1:9600,N,8,2,RS,DS,BIN" FOR RANDOM AS #1

DIM SHARED Address

WHILE 1
 CLS
 PRINT "EEPROM Programmer": PRINT
 PRINT "1-Read 1st 256 bytes of EEPROM"
 PRINT "2-Read sequentially - next 256 bytes of EEPROM"
 PRINT "3-Write file to EEPROM"

 a$ = "": WHILE a$ = "": a$ = INKEY$: WEND
 IF (a$ = "1") THEN ReadFirst
 IF (a$ = "2") THEN Read256
 IF (a$ = "3") THEN WriteFile
 IF (ASC(a$) = 27) THEN STOP
WEND

 71
FUNCTION NeatHex$ (x, places)
 a$ = HEX$(x)
 WHILE LEN(a$) < places: a$ = "0" + a$: WEND
 PRINT a$; " ";
END FUNCTION

SUB Read256
 CLS
 FOR i = 1 TO 16
 PRINT (NeatHex$(Address, 4)); ": "; : ReadNext (16): PRINT
 NEXT
 waitkey
END SUB

SUB ReadFirst
 Address = 1
 PRINT #1, "A"; CHR$(0); CHR$(0);
 WHILE LOC(1) < 1: WEND
 CLS
 PRINT "0000 : "; NeatHex$(ASC(INPUT$(LOC(1), #1)), 2);
 ReadNext (15)
 PRINT
 FOR i = 1 TO 15
 PRINT NeatHex$(Address, 4); ": "; : ReadNext (16): PRINT
 NEXT
 waitkey
END SUB

SUB ReadNext (Num)
 FOR i = 1 TO Num
 PRINT #1, "B";
 WHILE LOC(1) < 1: WEND
 PRINT NeatHex$(ASC(INPUT$(LOC(1), #1)), 2);
 Address = Address + 1
 NEXT
END SUB

SUB waitkey
 PRINT : PRINT "Press a key to continue"
 WHILE INKEY$ = "": WEND
END SUB

SUB WriteFile
 Address = 0
 CLS
 PRINT "Enter filename >"; : INPUT f$
 OPEN f$ FOR INPUT AS #2
 DO WHILE NOT EOF(2)
 LINE INPUT #2, a$
 IF a$ <> "" THEN
 IF (ASC(a$) >= 48) AND (ASC(a$) <= 57) THEN
 x = VAL(a$)
 PRINT #1, "C"; CHR$(Address MOD 256); CHR$(INT(Address /
256)); CHR$(x);
 WHILE LOC(1) < 1: WEND
 IF INPUT$(LOC(1), #1) <> "K" THEN PRINT "Error on Receive"
 PRINT "Programmed "; NeatHex$(x, 2); " to "; NeatHex$(Address,
4)
 Address = Address + 1
 END IF
 END IF
 LOOP
 CLOSE #2
 waitkey
END SUB

72

 Forest Electronic Developments June 1999

Further notes on using I2C EEPROMs

Please note that the circuit application has a brown out reset circuit, this was originally
inserted because the board was intended for use as the basis of the ETI PIC BASIC series. In
this application the EEPROM is nearly always being read, and glitchey I/O lines during power
down caused corruption of the EEPROM. It is recommended that such a circuit should
always be used.

Even with a brown out circuit it is possible for corruption and failure to occur if the power
supply disappears during a write operation. In important applications it is recommended
that EEPROM data should be protected with a checksum, or by writing data 3 times - a vote
being taken to decide on the correct data.

There are a number of other EEPROM devices with I2C interfaces which may be used, they
are similar, and can be driven with little change to the application program.

 73

7 Optimising your output
Introduction to Optimisation
Optimising Variables
Optimising Loops
Optimisation options
Optimising Variables and functions
Optimising Pointers

7.1. Introduction to optimisation

This chapter describes in brief, how to write C Code which results in the most efficient
assembly code possible.

7.2. Optimising Variables

The PIC is an 8 bit microcontroller, and therefore the most efficient type of variable is the
char type. Unsigned char types are more efficient than signed for some operations. All of the
header files supplied with FED PIC C define the type BYTE which is an unsigned char type.

Optimisation 1

Use the BYTE type for all variables which may hold values between 0 and
+255.

Use the char type for all variables which may hold values between -128
and +127.

7.3. Optimising Loops

The PIC has a special loop instruction DECFSZ. The compiler detects a specific type of loop
and translates it to this special instruction type, such loops are very compact and fast. The
form of the loop is as shown:

for(var=expr; var; var--)

var is signed or unsigned char type. For example the following code toggles a bit on PORTB 8
times:

BYTE i;
BYTE Mask=8;

TRISB=0;
for(i=8; i; i--)
{
 PORTB^=Mask;
 PORTB^=Mask;
}

Although it takes some practice to write loops in this fashion the saving in code and time is
worth the extra effort.

74

 Forest Electronic Developments June 1999

Optimisation 2

Use the following loop form for efficient loops:

for(i=expression; i; i--)

where i is a variable which is of type signed, or unsigned char

7.4. Optimisation options

For the 14 bit core controllers use the PIC call stack provided that no more than 6 levels of
function call are to be used (5 if interrupts are in use). For the 16 bit core controllers (18cxxx
series) use the PIC call stack provided than no more than 20 levels of function call are in use
(in practice this allows nearly all 18Cxxx core programs to use the PIC call stack).

Use the Optimise for Space option unless extra speed is essential.

Set the number of Local Optimise Bytes to a reasonably large number, 16 is recommended
on larger processors, 4 or 8 on smaller processors.

Optimisation 3

You can set the options for compilation optimisation by using the tab on
the compiler options box which is shown when the project is compiled -
when F9 is pressed or the Compile | Compile menu option is used. Use
the Optimisations Tab, select Optimise for Space and Use PIC Call Stack
(Quick Call). Finally set the number of Local Optimise Bytes to 4 (or
greater if you can afford it).

7.5. Optimising Variables and functions

Some processors have multiple pages of RAM or ROM (such as the 16C558 which has two
pages of RAM, or the 16C74 which has two pages of RAM and two pages of ROM). On these
processors access to the lower pages is faster than the higher pages.

Optimisation 4

With the larger PIC processors place the more often used global variables
and functions earliest in the program, or use the register keyword to force
into the lower page.

7.6. Optimising Pointers

FED PIC C allows the use of 1 or 2 byte pointers. 1 byte pointers may be used whenever an
item is in the bottom 256 bytes of PIC address space. To define a pointer as one byte then
include the keyword "ram" in the definition :

BYTE x;
BYTE ram *xp;
xp=&x;
*xp=9; // set variable x to 9
1 byte (ram) pointers are very much more efficient than normal
pointers, and can be used in the same way as any other pointer

 75
provided that the item is within the lower 256 bytes of RAM
address.
For the 18Cxxx and 18Fxxx series of devices the ram pointer is
still used to force the compiler to use FSR as a pointer
accumulator, this considerably improves efficiency for accesses
using those variables.

Optimisation 5

When the PIC has only two RAM pages (i.e. the top byte of RAM is at
address hex 0xff or lower, then use RAM pointers at all times to point to
items in RAM. If it has more than one page then use RAM pointers when
you know that the item to which a pointer is directed is in the bottom 256
bytes of RAM.

Hint

If you want to use RAM pointers for the 16F877 or other devices with
more than 2 pages of RAM then set the Stack Pointer to the value 0FF
(use the Memory tab when the project is compiled). Now the stack and all
variables will be in the bottom pages of RAM.

Hint

If you want to make your program portable to other compilers whilst still
using RAM pointers then use the following code at the top of your
program:

#ifndef _FEDPICC

 #define ram

#endif

76

 Forest Electronic Developments June 1999

8 Using Assembler
Introduction to assembler
Simple use of Assembler
The FED PIC C Programmers model
Example of use of assembler
Example of use of assembler (2)
Macro Reference
Compiler sub-routine Reference
Assembler Projects (Professional Version only)

8.1. Introduction to assembler

It is quite straightforward to use Assembler within an FED PIC C program. At its simplest level
it is possible to use assembler instructions directly within functions, more complex use such
as writing complete C functions with assembler language requires a deeper understanding of
the operation of FED PIC C.

8.2. Simple use of Assembler

To insert assembler mnemonics within a program simply use the #pragma asm and #pragma
asmend directives. All lines following a #pragma asm directive will be inserted directly into
the assembler code (after normal macro expansion and other C pre-processor directives
have been obeyed).

Example

The code below inserts a CLRWDT instruction into the function. This instruction clears the
watchdog timer.

#pragma asm

CLRWDT ; Clear the watchdog timer

#pragma asmend

An alternative if there is only one line of assembler code to be inserted is to use the
#pragma asmline directive. In this case only one line of information is passed to the
assembler - the code on the line following the directive. Note that if there is a comment on
the line it should be preceded by a semi-colon (;) as this will also be passed to the assembler.

Example

The code below inserts a CLRWDT instruction into the function. This instruction clears the
watchdog timer.

#pragma asmline CLRWDT ; Clear the watchdog timer

8.3. The FED PIC C programmers model
Memory Map
Memory Organisation

 77
Common Functions and program operation
Use of … form for function parameters

Memory Map

FED PIC C has a number of variables which are used in the operation of the program. These
are known as the Program Variables. These variables (not shown in order) are as follows:

Name Length Notes
ACC 2 or 4 This is the internal accumulator. It is 2 bytes long (to allow

for pointers), or is 4 bytes long if the program makes any use
of long or float types. The Accumulator is used for holding
intermediate results, and for returning values from functions

ACC2 2 or 4 This is the secondary accumulator which is used by internal
routines. For example to multiply two numbers together ACC
is loaded with the first number, ACC2 with the second, and
then the multiply routine called, the result is stored in ACC

Temp 1 A temporary variable used by internal routines
Temp2 1 A temporary variable used by internal routines
Flags 1 A single byte used by internal routines
Heap 0 or 1 A pointer to the heap, only used if the heap is used. The

heap is used to initialise complex objects (structures and
arrays), and to pass complex objects back from functions.

HeapU 0 or 1 Upper byte of heap pointer used with processors with more
than 256 bytes of RAM

PCLATHS 0 or 1 Used on PIC's with 2 or more pages of ROM to save the
wanted value of PCLATH prior to a jump

Sp 1 The software stack pointer used to implement the software
stack. This pointer always points to the first free byte on the
stack. It is only used for simple 14 bit core models, the
medium 14 bit model uses FSR 1 for stack, the 18 series uses
FSR 2 for stack.

IntSave 0-3 Registers used to save interrupt status if interrupts are in use
(on some processor models) (W, FSR and STATUS)

SaveInt 0+ Area used for saving program variables during an interrupt.
This area is zero length when interrupts are not used, and is
also zero length when Quick Interrupts are in use. If normal
interrupts are in use then it is large enough to save most of
the system variables.

IntFlags 0+ 1 byte used on some PIC's to store information through a
call.

LocOpt 0+ Memory bytes used for local variables in place of stack to
optimise program operation. See Optimising your output.

At a minimum 8 bytes of memory are used in addition to any memory used by the program.
The location of these variables depends on the processor type and is shown in the Memory
Organisation section. When long variables are used together with the heap and interrupts
then 16 bytes of memory are used in addition to that used by the program and the locally
optimised variables Optimising your output.

78

 Forest Electronic Developments June 1999

It is possible to refer to any of these variables by name within assembler routines. The
following program includes an assembler function which simply returns the value 7 – it loads
7 into the accumulator and returns, the other lines in this assembler function are described
in the following sections:

int Return7();
int x=-1;

void main()
{
 x=Return7();
endit:
 while(1);
}

#pragma asm
 module "Return7"
 Return7::
 movlw 7
 movwf ACC
 clrf ACC+1
 MRET 0
 endmodule
#pragma asmend

Memory Organisation

The program variables, stack, heap and variables are stored in different locations on
different processors. This section shows how the various elements are stored on different
processors.

14 bit core

 PAGE 0 PAGE 1

0 System
Variable
s

 8
0

System
Variable
s

12 Program
Variable
s

 Memory
Variable
s

 Heap

R Stack

All addresses are shown in hex. R is the top address in memory, the stack starts at the top
address in memory and moves downwards as items are pushed on to it.

 79
14 bit core and Enhanced Mid-range Core

 PAGE 0 PAGE 1

0 System
Variable
s

 8
0

System
Variable
s

20 Program
Variable
s

 A
0

Memory
Variable
s

 Memory
Variable
s

 Heap

 R Stack

All addresses are shown in hex. R is the top address in memory, the stack starts at the top
address in memory and moves downwards as items are pushed on to it.

Note that the stack cannot drop below address A0 as this requires a jump in memory (which
would take more program space and time), so the stack is limited to the upper page.
Similarly the heap always starts at address A0 even if every byte is not used by memory
variables in the lower page. It is possible to set SP into the lower memory page using the
Compile Options dialog box on the Memory tab, or by using the #stack directive. For the
Enhanced Mid Range the Stack pointer uses FSR1 which is set in linear memory.

14 bit core

 PAGE 0 PAGE 1 PAGE 2 PAGE 3

0 System
Variable
s

 8
0

System
Variables

0 System
Variables

 180 System
Variables

20 Program
Variable
s

 A
0

Memory
Variables

2
0

100 Memory
Variables

R

Heap

Stack Memory
Variable
s

70 Program
Variable
s

 F
0

Program
Variables

 170 Program
Variables

 1F0 Program
Variables

80

 Forest Electronic Developments June 1999

All addresses are shown in hex. R is the top address in memory, the stack starts at the top
address in memory and moves downwards as items are pushed on to it. Note that some of
the program variables are stored at address 0x70 which is repetitive throughout RAM and
appears in each memory page

Note that the stack cannot drop below address 180 as this requires a jump in memory
(which would take more program space and time), so the stack is limited to the upper page.

16 bit core

 PAGE 0
(0 to FF)

 PAGE
1 - N-1

 Last Page Systems
Var

0 System
Variable
s

 1
0
0

Memory
Variables

0 500 Heap

Stack

 F80

PIC
control
registers

20 Program
Variable
s

 2
0

 Memory
Variable
s

All addresses are shown in hex. Note that the last page is the last RAM page, for the 18C452
this is shown from 500H to 5FFH. If a stack of more than 256 bytes is required then the heap
can be manually relocated to a lower page using the Compiler Options Dialog Box.

Common Functions and program operation
Introduction to common functions
Using subroutines in assembler code
Calling C functions from assembler
Use of Enhanced Mid Range processors
Notes for use of PCLATH and RP0,RP1 in the STATUS register
Notes for use of paging in 16 bit core devices
Notify the compiler of an assembler function
The Stack and Function calling
Complete C functions in assembler
Defines in FED PIC C

 Introduction to common functions

The FED PIC C compiler generates code as efficiently as possible, however some operations
require the use of subroutines which are called. All of the compiler subroutines are stored in
the bottom page of ROM, and only those needed are included.

 81
These subroutines may be used by assembler routines, but the compiler must be informed
about their use as it has to include them in the final hex file.

The common functions are described at the end of this chapter.

Using subroutines in assembler code

All internal routines are in the bottom memory page. For 14 bit core devices (16xxx etc.), the
linker directive SETPCLATH sets the PCLATH register back to the bottom page and must be
used before any macros if the function could be located in higher ROM pages.

To tell the compiler to include the correct routines use the #pragma asmdefine (or #pragma
asmdefine) pre-processor directive. Open the file "Bit14_nK.asm" which is in the libs sub-
directory of the C Compiler. This includes all of the routines for the C Compiler. Search for
the label CopyMem, in this file - it should look like this:

ifdef _CopyMem
;;;
;
; Copy W bytes from address in PACC to address in PACC2, preserve
PACC2
;
;;

CopyMem
 _LAROM=1
 _PCLW=1
 _Push2D=1
 _PopD=1
 _Pop2D=1

 movwf Temp2 ; Save count
 call Push2D ; Save PACC2

Note that the CopyMem function will only be included if the definition _CopyMem is
included in the file. To do this use the #pragma asmdefine function as shown here in this
example:

#pragma asmdefine _CopyMem

#pragma asm
 movlw x
 movwf ACC
 clrf ACC+1
 movlw y
 movwf ACC2
 clrf ACC2+1
 movlw 4
 call CopyMem
#pragma asmend

This example copies 4 bytes from the address x to the address x. If x and y were long
variables it would copy x to y. Here is a complete example program which will work with 16
or 18 Series devices:

void cp();
long x,y;

void main()
{

82

 Forest Electronic Developments June 1999

 x=0x12345678;
 cp();
 while(1);
}

void cp()
{

#pragma asmdefine _CopyMem

#pragma asm
 movlw x
 movwf ACC
 clrf ACC+1
 movlw y
 movwf ACC2
 clrf ACC2+1
 movlw 4
 call CopyMem
#pragma asmend

}

In practice this is not as onerous a task as it may appear at first. Most assembler routines will
use only one or two compiler subroutines - otherwise the C code may as well be used
directly.

Calling C functions from assembler

If an assembler or C library function is to be called within a different module, then the
#callfunction macro must be used. E.g. If the functions Delays in a different C file is to be
called then use :

#callfunction Delays

To call another C function the macro MCALL must be used.

This will probably only affect advanced users.

Use of Enhanced Mid Range processors ()

The enhanced mid range processors are not compatible with the standard 14 bit core
processors. FED have rewritten all the library assembler routines to support the Enhanced
Mid Range. However in so doing we have tried to maintain the same macro names as for the
standard range so that exisiting code will work as much as possible. For example MSETIRP
will set the IRP to the value of the supplied argument in the standard core, for the Enhanced
Mid Range it will set the value of FSR0H to the supplied argument. Similarly any macros
which set RP0 and RP1 will set BSR instead for the Enhanced Mid Range.

For the Enhanced Mid Range the stack uses linear addressing space and is set to the top of
memory, the heap is also set into linear space. There is no sp variable, instead FSR1 is used
as the stack pointer and always points to the first free address on the stack.

Notes for use of PCLATH and RP0,RP1 (& BSR) in
the STATUS register

This section only applies to 14 bit core processors with two or more ROM pages or two or
more RAM pages.

 83
The IRP bit, FSR the accumulators (ACC & ACC2), Temp, Temp2, and Flags may be changed at
will within a function. The return value from a function is stored in ACC or ACC2.

ROM Paging - PCLATH

When the function is called…

When a function is called PCLATH is set to the address of the function. PCLATH must be
cleared before any macros are used within the function, as the C core functions are all
located in the bottom memory page.

The SETPCLATH or SETPCLATHA special Linker instructions may be used to set PCLATH if the
processor has more than 1 page of ROM.

The syntax of the SETPCLATH instruction is as follows:

SETPCLATH Expression[,CurrentValue][,CanClrf]

The first parameter – Expression is the value of the memory address for which PCLATH has
to be modified. The other two parameters are optional. The CurrentValue parameter is
supplied if the current value of PCLATH is known, if it is unknown it may be left out, or set to
–1. The CanClrf parameter is set if the linker is permitted to use the clrf instruction to clear
PCLATH which will set the Z flag. The linker will set PCLATH if it needs to (for example if
Expression and CurrentValue are in the same page then PCLATH may be left as it stands).
Therefore this instruction may result in zero, one or two words of hex code. Here is an
example from the Data library – the start of the SerialIn function:

SerialIn::

 SETPCLATH 0,SerialIn,1
 if _QUICKCALL==1
 MGETFSRSPO 1 ; FSR points to Count
 else
 MGETFSRSPO 3 ; FSR points to Count
 endif
 movfw 0
 movwf ACC2 ; PORT to ACC2

Note that the SETPCLATH instruction needs to set the memory page to 0 where all the
common functions reside, and that the current value is known to be SerialIn as this is the
label which has just been called.

The SETPCLATHA instruction is similar, but has the following syntax:

SETPCLATHA Expression

This instruction always takes exactly two words in the hex file (even for processors with only
one page) and is essential for software delay loops where the exact code length must be
guaranteed.

Whether a C function is written in assembler (see Complete C functions in assembler), or as
inline assembly within a C function it, then it will use modules. This will guarantee that all
the code in the function is within a single memory page.

When a function returns…

84

 Forest Electronic Developments June 1999

The following simple rules are followed - when QuickCall is set then PCLATH is always
cleared before returning from a function. When QuickCall is clear then PCLATH is always set
to the address of the module which called the function when the function returns. It will
always be cleared from a call to a common function in the base area.

This may sound complicated but in practice is very simply achieved by using the MRET
macro. This has the following syntax:

MRET 0

The parameter is ignored for the 14 bit core series and should always be supplied as 0.

Example

Consider the following simple example program which includes a function called func, which
takes a parameter (N) and increments PORTB N times. It makes use of the instructions
discussed in this section. Note that this function is written in assembler as a linker module
and therefore the whole function will always be in a single ROM page. Please also note the
use of #pragma asmfunc which tells the compiler that func is an assembly function and that
parameters must not be optimised on to the stack.

#include <pic.h>
void func(unsigned char x);
#pragma asmfunc func

void main()
{
 PORTB=0;
 TRISB=0;
 func(7);
endit:
 while(1);
}

#pragma asm

 module "func"
func::

 SETPCLATH 0,func,1 ; Clear PCLATH (if set)
 if _QUICKCALL==1 ; Test quickcall option
 MGETFSRSPO 1 ; FSR points to Count
 else
 MGETFSRSPO 3 ; FSR points to Count
 endif

 movfw 0 ; Pick up the count
 movwf ACC ; Use ACC as a counter

 SETPCLATH func,0,1 ; Set PCLATH back to func

funcLoop:
 incf PORTB
 decfsz ACC
 goto funcLoop

 MRET 0 ; Return

#pragma asmend

 85
RAM Paging

In normal operation the RAM paging bits (RP0 and RP1, or BSR for the Enhanced Mid Range)
are set to 0. They may be adjusted in a function but must be reset to 0 before returning from
a function. There are two macros of use for the RAM paging bits MSETRP and MCLEARRP.
They both take a memory address. MSETRP sets RP0 and RP1 (or BSR) to the correct address,
MCLEARRP clears the bits if they were set by the MSETRP macro.

For example the following code clears the TRISB register and sets the paging bits back to 0
afterwards.

MSETRP TRISB
clrf TRISB
MCLEARRP TRISB

This will work for the standard and Enhanced Mid Range cores.

FSR operations need to take account of the IRP bit. IRP (or the FSR0H register for the
Enhanced Mid Range) may be set to any value when a function is called, and does not have
to be cleared on return..

Notes for use of paging in 16 bit core devices

This section only applies to 16 bit core processors.

The BSR may be changed at will within user defined assembler functions, but should be
saved through in line assembler within C functions.

ROM Paging

The PCLATH/PCLATU registers may be changed at will. It is strongly suggested that user
functions should always use the linker instructions SMARTCALL or SMARTJUMP instead of
CALL or GOTO when a label is not known. These instruction have a single parameter that is
the address to be called, the linker will insert an rcall or call, or bra or goto dependent on the
distance of the jump.

The linker manual shows the other SMART instructions which may be used with the 16
series.

Examples:

SMARTCALL GetSPOW

SMARTJUMP 4

Complete C functions in assembler

It is possible to write complete C functions in assembler – several examples have already
been given. Assembler functions must use the linker, and must be defined as modules.
Please see the linker manual for full details (which is online in the menu option Help |
Assembler Help, the linker manual is a top level link from this file).

The module is defined using the MODULE directive. For an assembler function the only
relevant option is the name of the function which is defined in inverted commas :

86

 Forest Electronic Developments June 1999

module "MyFunction"

Now all labels in the function will be local except for those which are followed by a double
colon (::), these will be global. For any C function this will only ever be the first label, which is
the function address:

MyFunction::

After this the function may be written as described above, and then the module must be
terminated with an endmodule directive :

endmodule

For most assembler functions the programmer will not want the duplicate block optimiser to
“attack” the code, especially during debugging. For this reason the module line should be
followed by the line :

dupmodoff

and prior to the end module the duplicate optimiser can be turned back on again :

dupmodon

If the source file only contains assembler functions then only one dupmodoff needs to be
given at the top of the first module.

As described above the best method of returning is to use the MRET macro which will
automatically set PCLATH (for 14 bit core processors) and return using the internal or
software stack dependant on the compiler options.

Here is the complete function MyFunction() clears all the ports of the processor.

#pragma asm
module "MyFunction"

dupmodoff ; Turn off optimiser, ignored by assembler

MyFunction::
 movlw PORTA
 movwf FSR ; PORTA address to FSR
 if RAMPAGES>2
 bcf STATUS,IRP ; Clear IRP if necessary
 endif

 movlw 5
 movwf ACC ; Use ACC as a counter

ClearLoop:
 clrf 0
 incf FSR
 decfsz ACC
 goto ClearLoop

 MRET 0 ; return

dupmodon ; Turn on optimiser

endmodule
pragma asmend

 87
Defines in FED PIC C

Any constant integer in FED PIC C will be converted to a value in the assembler routines with
an underscore prefixed. Thus

const int Port=6;

is converted to the following in the assembler file:

_Port=6

Thus your assembler routine may use _Port in the routine and it will be replaced by the
value 6. This also applies to the constants which are automatically defined in FED PIC C (See
Defines).

Use of … form for function parameters

The … form for function parameters is supported in FED PIC C – but there are no macros
provided to decompose the parameters, this must be undertaken in assembler. A function
using … must be declared as an assembler function, this is achieved with the asmfunction
preprocessor directive:

#pragma asmfunction printf

This ensures that parameters will always be passed on the stack. Now the item at the top of
the stack (the last item pushed before the return address) will be a single byte value which is
the number of parameters pushed. This is followed by the fixed parameters, then the
optional parameters.

Optional parameters are pushed as integer (2 byte) or long (4 byte) values. Characters and 8
bit values are pushed as integers and always appear on the stack as 2 bytes.

For an example written in assembler see the fnprintf function in the strings.c library file.

Notify the compiler of an assembler function

The compiler must be notified if a function is written entirely in assembler. This is to stop
any attempt to optimise its local variables or parameters. To do this use the following
directive:

#pragma asmfunc FunctionName

For example the following definition is used within the header file for the library assembler
function WriteEEData:

void WriteEEData(unsigned char Addr,unsigned char Data);
#pragma asmfunc WriteEEData

Now the parameters for the assembler function will always be pushed on the stack. The
following section shows how to read them.

88

 Forest Electronic Developments June 1999

The Stack and Function calling

The stack is implemented in software as the PIC stack cannot be used to save and recall data.
The stack pointer is called sp, it points to the first free byte on the stack. For the Enhanced
Mid Range there is no sp, the stack pointer is held in FSR1. Within 16 bit core devices there is
no sp variable - the stack pointer is held within FSR2. Throughout this section sp should be
replaced with FSR 1 for Enhanced Mid Range, or FSR2 when considering 16 bit core devices.

 Consider the stack on the 16C74. The figure below shows the empty stack, sp holds the
value 0xFF:

 Address Content
s

Stack Pointer

0xFF -

 0xFE -

 0xFD -

Now if the integer value (2 bytes) 0x1234 is pushed on to the stack it will change and sp now
holds the value 0xFD as follows:

 Address Content
s

 0xFF 12

 0xFE 34

Stack Pointer

0xFD -

Finally if the single byte 0xFD is popped from the stack then sp will hold the value 0xFE, and
the stack is:

 Address Content
s

 0xFF 12

Stack Pointer

0xFE 34

 0xFD -

Now if a function is called, the parameters for the function are stored on the stack. If the
compiler is not set to use Quick Calling (see Optimising Your Output), then the return
address from the function is also stored on the stack. If the compiler is using Quick Calling
(which is the default), then the return address is stored on the PIC's internal call stack.

 89
Parameters for a function are pushed on to the stack from right to left. Consider the
following C code:

unsigned char func(int x,char y);
.
.
.
func(1000,-1);

The dots show that there is other C code in here. Now when the function is called from
within the initial function (main) the stack will look like this:

 Address Content
s

Notes

 0xFF 0xFF Parameter y

 0xFE 0x03 Upper byte parameter x

 0xFD 0xE8 Lower byte parameter x

 0xFC RH Return address upper byte

 0xFB RL Return address lower byte

Stack Pointer

0xFA -

If the compiler is using Quick Calling then the stack will look like this

 Address Content
s

Notes

 0xFF 0xFF Parameter y

 0xFE 0x03 Upper byte parameter x

 0xFD 0xE8 Lower byte parameter x

Stack Pointer

0xFC - Return address on PIC
stack

So it is possible to read a parameter from the stack using assembler by using the stack
pointer sp. For example using Quick Calling the following code will read the value of
parameter y into the W register:

90

 Forest Electronic Developments June 1999

movlw 3 ; Offset of parameter y from sp
addwf sp,w ; Move address of parameter y to W
movwf FSR ; Move to FSR
movfw 0 ; and read value of y indirectly

If we are not using Quick Calling then the first line would replace "movlw 3" by "movlw
5" as there are another 2 bytes on the stack.

There is another method of achieving the same effect using a macro (note all macros are
defined in the Macro Reference).

#pragma asmdefine _Getspo // Needed for use of MGETFSRSPO

MGETFSRSPO 3 ; Get address of y to FSR
movfw 0 ; and read value of y indirectly

8.4. Example of use of assembler

We’ll look in detail at the complete development of a C function written in assembler for the
16 series (after this example we’ll show it again for the 18 series).

Consider a function to address an 8 bit port as a bi-directional data port. It will need to read
or write data and will have two control signals – a read strobe and a write clock. The read
and write signals will stay low for at least 1uS whatever the clock rate of the processor. The
function we will use to drive the port will have the following template which could be
included in a header file.

unsigned char Drive8(char Read,unsigned char *vp);
#pragma asmfunc Drive8

The function will either write the value addressed by the pointer vp, or read the value from
the port into that variable. The flag Read will be set if bus is to be read, and reset if it is to be
written. The returned value will be the contents of the variable addressed by vp whether it
has been read or written. Note the use of asmfunc to stop the compiler from optimising
parameters in calls to the function.

Establishing a 1uS delay

Firstly we need to look at establishing the delay macro which will insert at least 1uS delay
with faster clock rates. Look at the following code:

ClockDelay equ D'1000'
FreqNS equ (D'1000000000'/_APROCFREQ)*4 ; Cycle period in
nS
LowCyc equ ClockDelay/FreqNS

Clock Delay is the time we need to wait in nano-Seconds, FreqNS will be the cycle period in
nano-seconds (the time in nS required to execute one instruction). Finally LowCyc will be the
number of cycles that we need to keep the read or write strobes low.

Now we can write a macro to insert the number of cycles (with nop instructions) required to
ensure at least 5uS delay:

STROBETIME macro exdelay

 91
 dx=exdelay
 while dx>0
 NOP
 dx-=1
 endw
endm

Note that for slow clock rates the LowCyc time will be 0, and therefore the macro will insert
no NOP instructions.

Setting up the port and control bits

We need to allow the user of this function to define the 8 bit port for bi-directional data, and
also the port and bits for the read and write signals. We can do this by using constant
integers and we can choose any names we like. We’ll use the following – and the example
shows the C code required to set up the function to use PORTD as the 8 bit port and Port C
bits 0 and 1 as the read and write signals respectively.

const int DataPort8=&PORTD;
const int ReadStrobePort=&PORTC;
const int ReadStrobeBit=0;
const int WriteStrobePort=&PORTC;
const int WriteStrobeBit=1;

Recall that in assembler we will now have five constants defined as follows :

_DataPort8
_ReadStrobePort
_ReadStrobeBit
_WriteStrobePort
_WriteStrobeBit

Writing the function

We’ll look at the code first, and then take a look at the wrapper to turn it into a module.

The first thing we need to do is to get the parameters and store them, we’ll store the flag to
define read or write into the system variable ACC, and the address pointer vp into FSR:

Drive8:: ; Function label (global)

 bsf _WriteStrobePort,_WriteStrobeBit
 bsf _ReadStrobePort,_ReadStrobeBit
 bsf STATUS,RP0
 bcf _WriteStrobePort,_WriteStrobeBit
 bcf _ReadStrobePort,_ReadStrobeBit
 bcf STATUS,RP0

 SETPCLATH 0,Drive8 ; Set PCLATH to common functions
 if _QUICKCALL==1
 MGETFSRSPO 1 ; Set FSR to point to 1st parameter
 else
 MGETFSRSPO 3 ; (When software stack is used)
 endif
 movfw 0
 movwf ACC ; First parameter (ReadFlag) to ACC
 incf FSR
 movfw 0
 movwf ACC+1 ; Temporary store
 incf FSR
 movfw 0 ; Upper byte of the address
pointer

92

 Forest Electronic Developments June 1999

 bcf STATUS,IRP
 skpz
 bsf STATUS,IRP
 movfw ACC+1
 movwf FSR
 SETPCLATH Drive8,0 ; Set PCLATH back to this module

This code is straightforward. Bear in mind that functions have RP0 and RP1 set to the lowest
page before they are called so that we can address the system variables (including ACC)
without changing them. The first action we undertake is to set the read and write strobe bits
high, and the TRIS bits for those lines low so that they drive a high value.

The MGETFSRSPO macro gets the stack pointer offset to FSR so that FSR points to the
parameters for the function. A test is undertaken so that if _QUICKCALL is set (the PIC calling
stack is used) then the parameters will be offset by 1 byte instead of 3. The ReadFlag is read
and stored in the ACC variable. The variable pointer (vp) lower byte is read, stored in ACC+1
temporarily, and then the upper byte is read and used to set IRP. Finally the lower byte is
stored back in FSR so that FSR now addresses our variable.

The next action is to test whether we are to read or write. The following code fragment tests
the flag and the section which writes to the bus is shown:

 movf ACC,f ; Test the read flag
 skpz
 goto Read8 ; Jump forward if Read

 movfw 0 ; Read the variable
 movwf _DataPort8 ; Write to the port
 bsf STATUS,RP0 ; Point to Upper bank
 clrf _DataPort8 ; Drive data port
 bcf STATUS,RP0 ; Back to lower page

 bcf _WriteStrobePort,_WriteStrobeBit

 STROBETIME LowCyc ; Delay strobe

 bsf _WriteStrobePort,_WriteStrobeBit

 bsf STATUS,RP0 ; Point to Upper bank
 decf _DataPort8 ; Read data port again
 bcf STATUS,RP0 ; Back to lower page

 goto Drive8End ; Go to the end of the
function

We simply write the variable to the port and then set the port to drive. The write strobe is
asserted low for 1uS and then the port set to drive again.

Finally we’ll take a look at the wrapper around the function – the read section will not be
presented in detail, but shown as part of the overall program.

Here is the wrapper :

#pragma asm
#pragma asmdefine _GetSPOtoFSR0

module "Drive8"

; Code here

Drive8End: ; End of function
 movfw 0

 93
 movwf ACC ; Return value

 MRET 0 ; Macro to return

endmodule

#pragma asmend

The line with the asmdefine is used to tell the compiler to include a function in the common
area – see the table in the Macro Reference section below. Note that the return value from
the function is stored in ACC. The macro MRET executes a return using the PIC stack or the
software stack dependant on the use of quick calling.

Here is the complete function together with a test program which can be assembled and
run:

#include <pic.h>

unsigned char Drive8(char Read,unsigned char *vp);
#pragma asmfunc Drive8

const int DataPort8=&PORTD;
const int ReadStrobePort=&PORTC;
const int ReadStrobeBit=0;
const int WriteStrobePort=&PORTC;
const int WriteStrobeBit=1;

BYTE x,y,z;

void main()
{
 x=0x55;
 z=Drive8(0,&x); // Write 0x55 to Port B
 z=Drive8(1,&y); // Read the port to y and to z

endit:
 while(1);
}

#pragma asm

 ClockDelay equ D'1000'
 FreqNS equ (D'1000000000'/_APROCFREQ)*4 ; Cycle period in
nS
 LowCyc equ ClockDelay/FreqNS

 STROBETIME macro exdelay
 dx=exdelay
 while dx>0
 NOP
 dx-=1
 endw
 endm

module "Drive8"

dupmodoff ; Turn off optimiser, ignored by assembler

Drive8:: ; Function label (global)

 bsf _WriteStrobePort,_WriteStrobeBit
 bsf _ReadStrobePort,_ReadStrobeBit
 bsf STATUS,RP0
 bcf _WriteStrobePort,_WriteStrobeBit
 bcf _ReadStrobePort,_ReadStrobeBit

94

 Forest Electronic Developments June 1999

 bcf STATUS,RP0

 SETPCLATH 0,Drive8 ; Set PCLATH to common functions
 if _QUICKCALL==1
 MGETFSRSPO 1 ; Set FSR to point to 1st parameter
 else
 MGETFSRSPO 3 ; (When software stack is used)
 endif
 movfw 0
 movwf ACC ; First parameter (ReadFlag) to ACC
 incf FSR
 movfw 0
 movwf ACC+1 ; Temporary store
 incf FSR
 movfw 0 ; Upper byte of the address
pointer
 bcf STATUS,IRP
 skpz
 bsf STATUS,IRP
 movfw ACC+1
 movwf FSR
 SETPCLATH Drive8,0 ; Set PCLATH back to this module

 movf ACC,f ; Test the read flag
 skpz
 goto Read8 ; Jump forward if Read

 movfw 0 ; Read the variable
 movwf _DataPort8 ; Write to the port
 bsf STATUS,RP0 ; Point to Upper bank
 clrf _DataPort8 ; Drive data port
 bcf STATUS,RP0 ; Back to lower page

 bcf _WriteStrobePort,_WriteStrobeBit

 STROBETIME LowCyc ; Delay strobe

 bsf _WriteStrobePort,_WriteStrobeBit

 bsf STATUS,RP0 ; Point to Upper bank
 decf _DataPort8 ; Read data port again
 bcf STATUS,RP0 ; Back to lower page

 goto Drive8End ; Go to the end of the
function

Read8: bcf _ReadStrobePort,_ReadStrobeBit

 STROBETIME LowCyc ; At least 1uS

 movfw _DataPort8
 movwf 0 ; Save to variable

 bsf _ReadStrobePort,_ReadStrobeBit

Drive8End: ; End of function
 movfw 0
 movwf ACC ; Return value

 MRET 0 ; Macro to return

dupmodon ; Turn optimiser back on

#pragma asmend

 95
Here is the waveforms shown by this simple test program using a 20MHz clock – as can be
seen the write and read strobes are of the correct width:

Here is the version for the 18 series :

#pragma asm

 #pragma asmdefine _GetSPOtoFSR0

 ClockDelay equ D'1000'
 FreqNS equ (D'1000000000'/_APROCFREQ)*4 ; Cycle period in
nS
 LowCyc equ ClockDelay/FreqNS

 STROBETIME macro exdelay
 dx=exdelay
 while dx>0
 NOP
 dx-=1
 endw
 endm

module "Drive8"

dupmodoff ; Turn off optimiser, ignored by assembler

96

 Forest Electronic Developments June 1999

Drive8:: ; Function label (global)

 bsf _WriteStrobePort,_WriteStrobeBit
 bsf _ReadStrobePort,_ReadStrobeBit
 bcf _WriteStrobePort+0x12,_WriteStrobeBit
 bcf _ReadStrobePort+0x12,_ReadStrobeBit

 if _QUICKCALL==1
 MGETFSRSPO 1 ; Set FSR to point to 1st parameter
 else
 MGETFSRSPO 3 ; (When software stack is used)
 endif
 movf POSTINC0,w
 movwf ACC ; First parameter (ReadFlag) to ACC
 movf POSTINC0,w
 movwf FSR1L ; Address in FSR1
 movf INDF0,w ; Upper byte of the address pointer
 movwf FSR1H

 tstfsz ACC ; Test the read flag
 bra Read8 ; Jump forward if Read

 movf INDF1,w ; Read the variable
 movwf _DataPort8 ; Write to the port
 clrf _DataPort8+0x12 ; Drive data port

 bcf _WriteStrobePort,_WriteStrobeBit

 STROBETIME LowCyc ; Delay strobe

 bsf _WriteStrobePort,_WriteStrobeBit

 setf _DataPort8+0x12 ; Read data port again
 bra Drive8End ; Go to the end of the function

Read8: bcf _ReadStrobePort,_ReadStrobeBit

 STROBETIME LowCyc ; At least 1uS

 movf _DataPort8,w
 movwf INDF1 ; Save to variable

 bsf _ReadStrobePort,_ReadStrobeBit

Drive8End: ; End of function
 movff INDF1,ACC ; Return value

 MRET 0 ; Macro to return

dupmodon ; Turn optimiser back on

endmodule

#pragma asmend

8.5. Example of use of assembler (2)

Here is the commented assembler function for the library function :

void Wait(unsigned int WaitmS);

 97
This function waits for the specified number of milliseconds.

#ifdef _Wait
#asmdefine _LoadSPD
#pragma asm

dupmodoff ; Turn off optimiser for rest of file

 module "_Wait"
#define _Delays ; Needed to use _DTIME macro

;;
;;;;;;;
;
; void Wait(unsigned int DelaymS)
;
;;
;;;;;;;

Wait::
 SETPCLATH 0,Wait,1
 if _QUICKCALL==1
 movlw 1
 call LoadSPD
 else
 movlw 3
 call LoadSPD
 endif
 incf FSR
 SETPCLATH _WL0
 call _WL0
 clrf PCLATH
 MRET 0

if ROMPAGES>1
_DTIME=_APROCFREQ/4000-10
else
_DTIME=_APROCFREQ/4000-8
endif

_WL0::
 movf ACC,w ; 1
 iorwf ACC+1,w ; 1
 btfsc STATUS,Z ; 2
 return
 DELAY _DTIME ; Macro to delay exactly _DTIME
cycles
 SETPCLATHA _WL0 ; 0/2 (Dependant on processor)
 decf ACC ; 1
 incfsz ACC,w ; 1
 goto _WL0 ; 2
 decf ACC+1 ; 1
 goto _WL0 ; 2

 endmodule

#pragma asmend
#endif

98

 Forest Electronic Developments June 1999

8.6. Macro Reference

Please note that some of the macros require a knowledge of the operation of the compiler
and are not useful within user defined assembler routines. They are provided here as a
reference for experienced programmers or to trace operation of the core library routines,
and FED cannot provide more detail on their operation than provided here.

Macro Parameters Siz

e
Flags Notes

MCALL N 6 Call C function with label
or address n
To use this macro you must
use the following
definition:

#pragma asmdefine
_PushRA

MCLEARRP N 0-2 Clear RP0 and/or RP1 if they

would have been set to
address location N. Or sets
BSR for the Enhanced Mid
Range.

MGETFSRSPO n 2 Load PACC with address of
Stack offset n
To use this macro you must
use the following
definition:

#pragma asmdefine
_Getspo

For the 18 series you must
use the following :

#pragma asmdefine
_GetSPOtoFSR0

MRET N 1+ Return from C function -

note the parameter should
always be 0 (1 is used for
interrupts)

MSETIRP Addr 0-1 Set IRP to point to the
correct page for Addr. No
effect on processors with 2
or less pages of RAM. For
the Enhanced Mid Range sets
FSR0H.

MSETIRPSP 0-1 Set IRP to point to the same
page as sp. No effect on
processors with 2 or less
pages of RAM. Sets FSR0H to
FSR1H for the Enhanced Mid
Range.

MSETRP Address 0-2 Set RP0 and RP1 to address

 99
Macro Parameters Siz

e
Flags Notes

if required (initially RP0
and RP1 are assumed to be
0). For the Enhanced Mid
Range sets BSR.

8.7. Compiler sub-routine Reference

Any of the subroutines in the compiler general purpose library can be called from assembler.
Most require the use of #asmdefine. They are all shown together with the #asmdefine
statement required to use them. Note 16 and 32 bit values are held in memory least
significant byte first.

Subroutine How to define Notes
AddA #asmdefine _AddA Add single byte in ACC to ACC2 -

result in ACC
AddD #asmdefine _AddD Add 16 bit integer in ACC to ACC2

- result in ACC
AddQ #asmdefine _AddQ Add 32 bit long integer ACC to

ACC2 - result in ACC
AndA #asmdefine _AndA Bitwise And single byte in ACC to

ACC2 - result in ACC
AndD #asmdefine _AndD Bitwise And 16 bit integer in ACC

to ACC2 - result in ACC
AndQ #asmdefine _AndQ Bitwise And 32 bit long integer

ACC to ACC2 - result in ACC
BitNotD #asmdefine _BitNotD Bitwise invert all bits of 16 bit

integer in ACC
BitNotQ #asmdefine _BitNotQ Bitwise invert all bits of 32 bit

integer in ACC
CheckQ #asmdefine _CheckQ Set zero flag if 32 bit integer

in ACC is zero
ClearHeap #asmdefine _Clearheap Clear the heap
CompSA #asmdefine _CompSA Compare 8 bit signed integer in

ACC with ACC2 - set flags (Z and
C)

CompSD #asmdefine _CompSD Compare 16 bit signed integer in
ACC with ACC2 - set flags (Z and
C)

CompSD #asmdefine _CompSD Compare 16 bit signed integer in
ACC with ACC2 - set flags (Z and
C)

CompSQ #asmdefine _CompSQ Compare 32 bit signed integer in
ACC with ACC2 - set flags (Z and
C)

CompUSD #asmdefine _CompUSD Compare 16 bit unsigned integer
in ACC with ACC2 - set flags (Z
and C)

CompUSQ #asmdefine _CompUSQ Compare 32 bit unsigned integer
in ACC with ACC2 - set flags (Z
and C)

100

 Forest Electronic Developments June 1999

Subroutine How to define Notes
ConvGT #asmdefine _ConvGT Convert flags Z and C which

result from a PIC subtraction
operation (subwf) into a Z if a
GT operation is true

ConvGTE #asmdefine _ConvGTE Convert flags Z and C which
result from a PIC subtraction
operation (subwf) into a Z if a
>= operation is true

ConvLT #asmdefine _ConvLT Convert flags Z and C which
result from a PIC subtraction
operation (subwf) into a Z if a <
operation is true

ConvLTE #asmdefine _ConvLTE Convert flags Z and C which
result from a PIC subtraction
operation (subwf) into a Z if a
<= operation is true

ConvNEQ #asmdefine _ConvNEQ Convert flags Z and C which
result from a PIC subtraction
operation (subwf) into a Z if a
!= operation is true

Copy2A #asmdefine _Copy2A Copy Acc2 to Acc (8 bits)
Copy2D #asmdefine _Copy2D Copy Acc2 to Acc (16 bits)
Copy2Q #asmdefine _Copy2Q Copy Acc2 to Acc (32 bits)
CopyA #asmdefine _CopyA Copy Acc to Acc2 (8 bits)
CopyD #asmdefine _CopyD Copy Acc to Acc2 (16 bits)
CopyMem #asmdefine _CopyMem Copy W bytes from address in ACC

to the address in ACC2. Note
address to copy from can be in
ROM in which case bit 15 is set.

CopyQ #asmdefine _CopyQ Copy Acc to Acc2 (32 bits)
CopyROMHeap #asmdefine _CopyROMHeap Copy W bytes from ROM to heap

address in PACC2
DecD #asmdefine _DecD Decement 16 bits in ACC
DecQ #asmdefine _DecQ Decement 32 bits in ACC
DivA #asmdefine _DivA Signed Divide 8 bits in ACC by

ACC2 - result in ACC
DivD #asmdefine _DivD Signed Divide 16 bits in ACC by

ACC2 - result in ACC
DivQ #asmdefine _DivQ Signed Divide 16 bits in ACC by

ACC2 - result in ACC
DivUSA #asmdefine _DivUSA Unsigned Divide 8 bits in ACC by

ACC2 - result in ACC
DivUSD #asmdefine _DivUSD Unsigned Divide 16 bits in ACC by

ACC2 - result in ACC
DivUSQ #asmdefine _DivUSQ Unsigned Divide 16 bits in ACC by

ACC2 - result in ACC
DoSwitch #asmdefine _DoSwitch Do a switch table, Temp and

PCLATH will hold address, ACC
holds the switch value (8 to 32
bits), ACC2 holds nitems (16
bit), Temp2 holds length of
comparison

Getspo #asmdefine _Getspo Get stack pointer offset in W to
FSR

 101
Subroutine How to define Notes
GetSPO #asmdefine _GetSPO Get stack pointer offset in W to

an address in ACC
GetSPO2 #asmdefine _GetSPO2 Get stack pointer offset in W to

an address in ACC2
GetspoW #asmdefine _GetspoW Get stack pointer offset by W

bytes to FSR
GotoPACC #asmdefine _GotoPACC Goto 16 bit address in ACC
IncD #asmdefine _IncD Incement 16 bits in ACC
IncQ #asmdefine _IncQ Incement 32 bits in ACC
LeftShiftA #asmdefine _LeftShiftA Shift ACC (8 bits) left by number

of bits specified in ACC2
LeftShiftD #asmdefine _LeftShiftD Shift ACC (16 bits) left by

number of bits specified in ACC2
LeftShiftQ #asmdefine _LeftShiftQ Shift ACC (32 bits) left by

number of bits specified in ACC2
LoadField #asmdefine _LoadField Load a bit field. Temp holds the

number of bits. W holds the
starting bit number. The Address
is in ACC. 16 or 32 bit result in
ACC.

LoadFSRA #asmdefine _LoadWA Move 8 bits from address in FSR
to ACC

LoadFSRD #asmdefine _LoadWD Move 16 bits from address in FSR
to ACC

LoadFSRQ #asmdefine _LoadWQ Move 32 bits from address in FSR
to ACC

LoadHeap2A #asmdefine _LoadHeap2A Load 8 bits from heap offset in W
to ACC2

LoadHeap2D #asmdefine _LoadHeap2D Load 16 bits from heap offset in
W to ACC2

LoadHeap2Q #asmdefine _LoadHeap2Q Load 32 bits from heap offset in
W to ACC2

LoadHeapA #asmdefine _LoadHeapA Load 8 bits from heap offset in W
to ACC

LoadHeapD #asmdefine _LoadHeapD Load 16 bits from heap offset in
W to ACC

LoadHeapLabel #asmdefine _LoadHeapLabel Load address of heap offset in W
to ACC (16 bits)

LoadHeapLabel2 #asmdefine _LoadHeapLabel2 Load address of heap offset in W
to ACC2 (16 bits)

LoadHeapQ #asmdefine _LoadHeapQ Load 32 bits from heap offset in
W to ACC

LoadPACCA #asmdefine _LoadPACCA Load ACC (8 bits) from address in
ACC (16 bits). Note if top bit is
set (bit 15) then an address in
ROM will be used

LoadPACCD #asmdefine _LoadPACCD Load ACC (16 bits) from address
in ACC (16 bits). Note if top bit
is set (bit 15) then an address
in ROM will be used

LoadPACCQ #asmdefine _LoadPACCQ Load ACC (32 bits) from address
in ACC (16 bits). Note if top bit
is set (bit 15) then an address

102

 Forest Electronic Developments June 1999

Subroutine How to define Notes
in ROM will be used

LoadROM2A #asmdefine _LoadROM2A Load ACC2 (8 bits) from ROM
address in W and in PCLATHS (16
bits).

LoadROM2D #asmdefine _LoadROM2D Load ACC2 (16 bits) from ROM
address in W and in PCLATHS (16
bits).

LoadROM2Q #asmdefine _LoadROM2Q Load ACC2 (32 bits) from ROM
address in W and in PCLATHS (16
bits).

LoadROMA #asmdefine _LoadROMA Load ACC (8 bits) from ROM
address in W and in PCLATHS (16
bits).

LoadROMD #asmdefine _LoadROMD Load ACC (16 bits) from ROM
address in W and in PCLATHS (16
bits).

LoadROMQ #asmdefine _LoadROMQ Load ACC (32 bits) from ROM
address in W and in PCLATHS (16
bits).

LoadSP2A #asmdefine _LoadSP2A Load ACC2 (8 bits) from Stack
offset in W

LoadSP2D #asmdefine _LoadSP2D Load ACC2 (16 bits) from Stack
offset in W

LoadSP2Q #asmdefine _LoadSP2Q Load ACC2 (32 bits) from Stack
offset in W

LoadSPA #asmdefine _LoadSPA Load ACC (8 bits) from Stack
offset in W

LoadSPD #asmdefine _LoadSPD Load ACC (16 bits) from Stack
offset in W

LoadSPQ #asmdefine _LoadSPQ Load ACC (32 bits) from Stack
offset in W

LoadWD #asmdefine _LoadWD Load ACC (16 bits) with contents
of memory addressed by W, and IRP
bit

LoadWD2 #asmdefine _LoadWD2 Load ACC2 (16 bits) with contents
of memory addressed by W, and IRP
bit

LoadWQ #asmdefine _LoadWQ Load ACC (32 bits) with contents
of memory addressed by W, and IRP
bit

LoadWQ2 #asmdefine _LoadWQ2 Load ACC2 (32 bits) with contents
of memory addressed by W, and IRP
bit

LSEQ #asmdefine _ConvEQ Convert flags Z and C which
result from a PIC subtraction
operation (subwf) into a 0 or 1
in ACC for a == operation

LSGT #asmdefine _ConvGT Convert flags Z and C which
result from a PIC subtraction
operation (subwf) into a 0 or 1
in ACC for a > operation

LSGTE #asmdefine _ConvGTE Convert flags Z and C which
result from a PIC subtraction
operation (subwf) into a 0 or 1

 103
Subroutine How to define Notes

in ACC for a >= operation
LSLT #asmdefine _ConvLT Convert flags Z and C which

result from a PIC subtraction
operation (subwf) into a 0 or 1
in ACC for a < operation

LSLTE #asmdefine _ConvLTE Convert flags Z and C which
result from a PIC subtraction
operation (subwf) into a 0 or 1
in ACC for a <= operation

LSNEQ #asmdefine _ConvNEQ Convert flags Z and C which
result from a PIC subtraction
operation (subwf) into a 0 or 1
in ACC for a != operation

ModA #asmdefine _ModA Signed Modulus (remainder of
division) 8 bits in ACC by ACC2 -
result in ACC

ModD #asmdefine _ModD Signed Modulus (remainder of
division) 16 bits in ACC by ACC2
- result in ACC

ModQ #asmdefine _ModQ
#asmdefine _ExtACC

Signed Modulus (remainder of
division) 16 bits in ACC by ACC2
- result in ACC

ModUSA #asmdefine _ModUSA Unsigned Modulus (remainder of
division) 8 bits in ACC by ACC2 -
result in ACC

ModUSD #asmdefine _ModUSD Unsigned Modulus (remainder of
division) 16 bits in ACC by ACC2
- result in ACC

ModUSQ #asmdefine _ModUSQ
#asmdefine _ExtACC

Unsigned Modulus (remainder of
division) 16 bits in ACC by ACC2
- result in ACC

MulA #asmdefine _MulA Signed Multiply 8 bits in ACC by
ACC2 - result in ACC

MulD #asmdefine _MulD Signed Multiply 16 bits in ACC by
ACC2 - result in ACC

MulQ #asmdefine _MulQ
#asmdefine _ExtACC

Signed Multiply 16 bits in ACC by
ACC2 - result in ACC

MulUSA #asmdefine _MulUSA Unsigned Multiply 8 bits in ACC
by ACC2 - result in ACC

MulUSD #asmdefine _MulUSD Unsigned Multiply 16 bits in ACC
by ACC2 - result in ACC

MulUSQ #asmdefine _MulUSQ
#asmdefine _ExtACC

Unsigned Multiply 16 bits in ACC
by ACC2 - result in ACC

NegA #asmdefine _NegA Negate 8 bit value in ACC
NegD #asmdefine _NegD Negate 16 bit value in ACC
NegQ #asmdefine _NegQ Negate 32 bit value in ACC
OrA #asmdefine _OrA Bitwise Or single byte in ACC to

ACC2 - result in ACC
OrD #asmdefine _OrD Bitwise Or 16 bit integer in ACC

to ACC2 - result in ACC
OrQ #asmdefine _OrQ Bitwise Or 32 bit long integer

ACC to ACC2 - result in ACC
Pop2A #asmdefine _Pop2A Pop 8 bit value to ACC2 from the

stack

104

 Forest Electronic Developments June 1999

Subroutine How to define Notes
Pop2D #asmdefine _Pop2D Pop 16 bit value to ACC2 from the

stack
Pop2Q #asmdefine _Pop2Q Pop 32 bit value to ACC2 from the

stack
PopA #asmdefine _PopA Pop 8 bit value to ACC from the

stack
PopD #asmdefine _PopD Pop 16 bit value to ACC from the

stack
PopQ #asmdefine _PopQ Pop 32 bit value to ACC from the

stack
Push2A #asmdefine _Push2A Push 8 bit value in ACC2 to the

stack
Push2D #asmdefine _Push2D Push 16 bit value in ACC2 to the

stack
Push2Q #asmdefine _Push2Q Push 32 bit value in ACC2 to the

stack
PushA #asmdefine _PushA Push 8 bit value in ACC to the

stack
PushD #asmdefine _PushD Push 16 bit value in ACC to the

stack
Pushn #asmdefine _PushA

#asmdefine _GotoPACC
Push 8 bit value in W to the
stack and also copy to ACC

PushQ #asmdefine _PushQ Push 32 bit value in ACC to the
stack

PushW #asmdefine _PushW Push W onto stack
RightShiftA #asmdefine _RightShiftA Shift ACC (8 bits) right by

number of bits specified in ACC2
(signed)

RightShiftD #asmdefine _RightShiftD Shift ACC (16 bits) right by
number of bits specified in ACC2
(signed)

RightShiftQ #asmdefine _RightShiftQ Shift ACC (32 bits) right by
number of bits specified in ACC2
(signed)

RightShiftUSA #asmdefine _RightShiftUSA Shift ACC (8 bits) right by
number of bits specified in ACC2
(unsigned)

RightShiftUSD #asmdefine _RightShiftUSD Shift ACC (16 bits) right by
number of bits specified in ACC2
(unsigned)

RightShiftUSQ #asmdefine _RightShiftUSQ Shift ACC (32 bits) right by
number of bits specified in ACC2
(unsigned)

SaveField #asmdefine _SaveField Save a bit field. Temp holds the
number of bits. W holds the
starting bit number. The Address
is in ACC. Value in ACC.

SaveFSRA #asmdefine _PushA Save 8 bits from ACC to address
in FSR

SaveFSRD #asmdefine _SaveFSRD Save 16 bits from ACC to address
in FSR. Note FSR points to the
upper byte first and ends up
pointing to the lower byte.

SaveFSRnD #asmdefine _SaveFSRnD Save 16 bits from ACC to address

 105
Subroutine How to define Notes

in FSR. Note FSR points to the
lower byte first and ends up
pointing to the upper byte.

SaveFSRnQ #asmdefine _SaveFSRnQ Save 32 bits from ACC to address
in FSR. Note FSR points to the
lower byte first and ends up
pointing to the upper byte.

SaveFSRQ #asmdefine _SaveFSRQ Save 32 bits from ACC to address
in FSR. Note FSR points to the
upper byte first and ends up
pointing to the lower byte.

SavePACC2A #asmdefine _SavePACC2A Save 8 bits from ACC to the
memory address specified in ACC2
(16 bits)

SavePACC2D #asmdefine _SavePACC2D Save 16 bits from ACC to the
memory address specified in ACC2
(16 bits)

SavePACC2Q #asmdefine _SavePACC2Q Save 32 bits from ACC to the
memory address specified in ACC2
(16 bits)

Sex2AD #asmdefine _Sex2AD Sign extend ACC2 (8 bits) to ACC2
(16 bits)

Sex2AQ #asmdefine _Sex2AQ Sign extend ACC2 (8 bits) to ACC2
(32 bits)

Sex2DQ #asmdefine _Sex2DQ Sign extend ACC2 (16 bits) to
ACC2 (32 bits)

SexAD #asmdefine _SexAD Sign extend ACC (8 bits) to ACC
(16 bits)

SexAQ #asmdefine _SexAQ Sign extend ACC (8 bits) to ACC
(32 bits)

SexDQ #asmdefine _SexDQ Sign extend ACC (16 bits) to ACC
(32 bits)

SubA #asmdefine _SubA Subtract single byte in ACC from
ACC2 - result in ACC

SubD #asmdefine _SubD Subtract 16 bit integer in ACC
from ACC2 - result in ACC

SubQ #asmdefine _SubQ Subtract 32 bit long integer ACC
to ACC2 - result in ACC

SwapA #asmdefine _SwapA Swap ACC and ACC2 - 8 bits
SwapD #asmdefine _SwapD Swap ACC and ACC2 - 16 bits
SwapQ #asmdefine _SwapQ Swap ACC and ACC2 - 32 bits
SwapTosA #asmdefine _SwapTosA Swap ACC (8 bit) with the 8 bit

value on the Top of the Stack
SwapTosD #asmdefine _SwapTosD Swap ACC (16 bit) with the 16 bit

value on the Top of the Stack
SwapTosQ #asmdefine _SwapTosQ Swap ACC (32 bit) with the 32 bit

value on the Top of the Stack
UsexAQ #asmdefine _UsexAQ Unsigned extend 8 bit ACC to 32

bit ACC
UsexDQ #asmdefine _UsexDQ Unsigned extend 16 bit ACC to 32

bit ACC
XOrA #asmdefine _XOrA Bitwise XOr single byte in ACC to

ACC2 - result in ACC

106

 Forest Electronic Developments June 1999

Subroutine How to define Notes
XOrD #asmdefine _XOrD Bitwise XOr 16 bit integer in ACC

to ACC2 - result in ACC
XOrQ #asmdefine _XOrQ Bitwise XOr 32 bit long integer

ACC to ACC2 - result in ACC
ZLTE #asmdefine _ZLTE Set Z flag if result of last PIC

subtraction would result in a <=
comparison being true

 107

9 Interrupts & Memory
Interrupts
Normal Interrupts
Quick Interrupts
High Priority Interrupts
Allocation of memory

9.1. Interrupts

There are two types of interrupt, Normal Interrupts and Quick Interrupts. Normal interrupts
allow most C functions to be used, quick interrupts are much more restrictive, but use much
less program and file register memory. It is recommended that Quick Interrupts are always
used where possible.

It is also recommended that as little as possible is undertaken within the Interrupt routine -
detect the interrupt source, set a flag, and test and operate on the flag in the main program.
However if it is essential to undertake operations within an Interrupt routine for speed then
it is recommended that they are written in assembler.

Note that using quick interrupts then C functions called from within an interrupt routine are
always called using the PIC call instruction - therefore within an interrupt routine you
cannot call normal C functions, but only assembler functions.

Normal Interrupts

The FED PIC C compiler supports interrupts which are available on all the processors
supported by the compiler. The interrupt function is a void function with no parameters and
should be called Interrupt. The interrupt function will be called automatically every time that
a PIC interrupt occurs. It is important that the Interrupt function tests and clears the flags
which caused the interrupt, however the GIE flag is automatically set by the compiler.

Normal interrupts have quite a big overhead on PIC memory but they do allow the full use of
C constructs, local variables, and any C function can be freely called from an interrupt
function. Interrupt latency is quite high with a normal interrupt owing to the need to push
the C status on the stack (or save it in the interrupt area).

To define a normal interrupt then the following constant integer should be defined within
one of the C source files:

const int NormalInt=1;

Assembler and Normal Interrupts

Within the interrupt routine for a Normal Interrupt it is safe to alter any of the C system
variables (ACC, ACC2 etc), FSR, BSR, W and STATUS (which are all saved). For the 18 series
FSR0 and FSR1 may be freely altered without saving them (of course FSR2 is used for the
software stack), also PCLATH, PRODL, PRODH, and the TBLPTR registers are also saved
automatically by the compiler. For the 12/16 series the interrupt status is saved in an area of
memory called SaveInterrupt, for the 18 series the status is saved on the stack.

108

 Forest Electronic Developments June 1999

Here is a very simple example program for the 16F84, it may be found in the Interrupt1
directory. Timer 0 is set to operate on the internal clock divided by 16 and so it will overflow
every 4.096mS with a 4MHz clock. The variable x is incremented once every 4mS by the
Timer0 interrupt caused when Timer 0 overflows.

//
// Simple interrupt demonstration, increment variable x and set
variable Flag
// once every 4.096mS
//

#include <pic.h>

void Interrupt();

BYTE Flag; // Flag set when interrupt has passed
BYTE x; // Variable which is incremented

void main()
{
 TMR0=0; // Clear timer 0
 OPTION_REG=(1<<NOT_RBPU)|(1<<PS1)|(1<<PS0); // Timer 0
internal, div by 16
 INTCON=(1<<GIE)|(1<<T0IE); // Enable Timer 0
interrupts

 while(1)
 {
 if (Flag) {Flag=0; x++;} // 4mS has passed, increment x
 }
}

const int NormalInt=1;

void Interrupt()
{
 if (INTCON&(1<<T0IF)) // Test TMR0 interrupt flag
 {
 INTCON&=~(1<<T0IF); // Clear TMR0 interrupt flag
 Flag=1; // Set flag to show 4mS has passed
 }
}

Quick Interrupts

The FED PIC C compiler supports interrupts which are available on all the processors
supported by the compiler. The interrupt function is a void function with no parameters and
should be called Interrupt. The interrupt function will be called automatically every time that
a PIC interrupt occurs. It is important that the Interrupt function tests and clears the flags
which caused the interrupt, however the GIE flag is automatically set by the compiler.

Quick Interrupts are only permitted to use very simple C instructions and may not use local
variables. These are the following operations provided that the variables used on the left of
the operation are unsigned char types, and on the right are constants:

if

&=
|=
&
=

 109
Thus the following may all be used in a quick interrupt routine

if (PIR1&(1<<CMIE))
PIE1&=~(1<<CMIF);
Flag=1;
Flag|=2;

Provided that Flag is an unsigned char. Note that PIR1 and PIE1 are defined in the header file
as file registers.

Assembler functions may be freely used in an interrupt routine, but please do not change
the compiler memory areas (e.g. ACC). For the 16 series W and FSR are saved during an
interrupt routine and may be freely changed. For the 18 series BSR, W and STATUS are
saved, any use of FSR0 and FSR1 is prohibited unless they are also saved and restored by the
assembler routine.

Thus the interrupt routine should simply check the interrupt flags and clear them, and set
flag registers which can be tested in the main program. This is good practice in any event as
undertaking significant processing within interrupt routines risks missing further interrupts.

Quick Interrupts is the default and no special action needs to be taken to use them. Previous
versions of the compiler mandated the definition of the constant integer QuickInt, the
necessity for this has been removed, but the definition may be left intact.

Here is the interrupt routine shown above again, but using quick interrupts, this is in the
Interrupt2 directory.

//
// Simple interrupt demonstration, increment variable x and set
variable Flag
// once every 4.096mS
//

#include <pic.h>

void Interrupt();

BYTE Flag; // Flag set when interrupt has passed
BYTE x; // Variable which is incremented

void main()
{
 TMR0=0; // Clear timer 0
 OPTION_REG=(1<<NOT_RBPU)|(1<<PS1)|(1<<PS0); // Timer 0
internal, div by 16
 INTCON=(1<<GIE)|(1<<T0IE); // Enable Timer 0
interrupts

 while(1)
 {
 if (Flag) {Flag=0; x++;} // 4mS has passed, increment x
 }
}

void Interrupt()
{
 if (INTCON&(1<<T0IF)) // Test TMR0 interrupt flag
 {
 INTCON&=~(1<<T0IF); // Clear TMR0 interrupt flag
 Flag=1; // Set flag to show 4mS has passed
 }

110

 Forest Electronic Developments June 1999

}

As an indication of the efficiency of quick interrupts, it is interesting to note that the second
version takes less bytes of RAM and less words of program memory.

High Priority Interrupts

High priority Interrupts are only permitted on the 18xxx series. The high priority interrupt
routine is a void function called InterruptHi. The other restrictions on interrupts also apply to
high priority interrupts – if normal interrupts are in use then full C constructs may be used in
either the high or normal priority routine, for quick interrupts only the simpler source code
may be used.

The compiler handles setting and clearing of GIEL, and GIEH.

Here is an example of a program with low priority and high priority interrupts:

#include <p18c452.h>

char IntCnt;
char IntCntHi;

void main()
{
 PIE1|=(1<<TMR1IE); // Timer 1 interrupt
 INTCON|=(1<<GIEL)|(1<<GIEH); // Enable Hi & low priority
 RCON|=(1<<IPEN); // 18Cxxx interrupt mode

 INTCON|=(1<<TMR0IE); // Timer 0 interrupts
 INTCON2&=~(1<<TMR0IP); // Timer 0 is low priority
 T0CON&=~(1<<T0CS); // Timer 0 on internal
 T1CON|=(1<<TMR1ON); // Timer 1 on
 T1CON&=~(1<<TMR1CS); // TImer 1 on internal

endit:
 while(1);
}

void Interrupt()
{
 if (INTCON&(1<<T0IF)) INTCON&=~(1<<T0IF);
 IntCnt++;
}

void InterruptHi()
{
 if (PIR1&(1<<TMR1IF)) PIR1&=~(1<<TMR1IF);
 IntCntHi++;
}

9.2. Allocation of memory

The FED PIC C compiler does not include library routines for allocating memory, this is owing
to the overhead of the structures required to keep track of memory allocations and freed
areas which is not appropriate for PIC's which have so little RAM.

To allow manual allocation of memory it is possible to reserve space above the stack which
will not be used by the compiler. This area can then be accessed by assigning variables and

 111
locating them using the #locate compiler directive, or by direct access using addresses and
pointers.

Here is an example program for the 16C558. The 16C558 has memory from 20H to 7FH and
another memory page from A0H to BFH. Normally the stack pointer will be placed at
location BFH. However it may be placed at 7FH. This can be done by using the Stack Pointer
box in the Memory tab of the Compile Options Dialog box (which is brought up when the
project is compiled). An alternative is to use the #STACK compiler directive which allows the
stack to be assigned within the main file, this takes priority over the value set in the Compile
Options Dialog box.

Here is an example program for the 16C558 which defines an array called arr of 16 integers
from address A0H to BFH. The 1st element of the array is set to 1 and then incremented, in
the first case by referencing array arr, and in the second by accessing through a direct
memory address.

#include <P16C558.h>

#pragma stack 0x7F

extern int arr[16];
#pragma locate arr 0xA0

void main()
{
 arr[1]=1;
 arr[1]++;
 (*(int *)0xA2)++;

endit:
 while(1);
}

112

 Forest Electronic Developments June 1999

10 Creating Libraries
Introduction to Libraries
Including libraries in the FED PIC C environment
Library Examples

10.1. Introduction to Libraries

Libraries are automatically included by the header file. The pre processor allows library files
to be included – for example here is the part of the datalib.h file which includes the correct
libraries for the selected processor :

#if _CORE==16
 #pragma wizcpp uselib "$(FEDPATH)\libs\commlib16.c"
 #pragma wizcpp uselib "$(FEDPATH)\libs\datalib16.c"
 #pragma wizcpp uselib "$(FEDPATH)\libs\delays16.c"
#else
 #if _HASEXTINS
 #pragma wizcpp uselib "$(FEDPATH)\libs\commlibx.c"
 #pragma wizcpp uselib "$(FEDPATH)\libs\datalibx.c"
 #pragma wizcpp uselib "$(FEDPATH)\libs\delaysx.c"
 #else
 #pragma wizcpp uselib "$(FEDPATH)\libs\commlib.c"
 #pragma wizcpp uselib "$(FEDPATH)\libs\datalib.c"
 #pragma wizcpp uselib "$(FEDPATH)\libs\delays.c"
 #endif
#end

Note how three library files are included and there are three processor types, the _CORE test
at the start if for the 16 bit, 18 series. The _HASEXTINS test is for the Enhanced Mid Range 14
bit processors.

Libraries on the FED PIC Compiler allow code to be written which will not be included if it is
not used. In practice library functions are quite easy to write.

Every time that a function is called a special record of that function is created which can be
tested using the #ifdef processor directive. The definition created may only be tested by
using #ifdef, and has the name of the function preceded by an underscore. Thus if the
program calls the function SerialIn(), then a definition _SerialIn is created. The C directive
#ifdef _SerialIn will then return true, and subsequent code will be compiled.

This record lives through all files included in the C Compiler project. Therefore the library
file(s) is/are included last in the project so that they are compiled after all other files. Then
each library function is conditionally included by the use of #ifdef directives.

10.2. Including libraries in the FED PIC C
environment

As standard a number of library files are included in FED PIC C, library files must be normal C
files and should be placed in the Libs subdirectory of the PIC C Compiler. Similarly header
files should also be included in this directory.

To add or remove a library file then use the File | Libraries menu option. This brings up the
Set Libraries dialog box. n.

 113
From version 12 onwards it is possible to include libraries automatically. There is a sub-
directory of the Libs directory called “Auto”. Any file with a .C extension in this directory will
be included as a library file automatically. This directory is also included in the search path
for header files. This is now obsolete and although it still works, should NOT be used – use
the pre-processor (uselib) format at the start of this section

Set Libraries Dialog Box

The set libraries dialog box allows new libraries to be added or removed. Click the Add
button to bring up a file dialog to allow a new library file to be selected and added. Select a
file in the library list and press Remove to delete a library file from the list. This is now
obsolete and although it still works, should NOT be used – use the pre-processor (uselib)
format at the start of this section

Library files are compiled in the order that they appear in the Current Libraries list.

10.3. Library Examples

Consider the following library C function called vstrcpy(char *a, char *b), this is a void
function which copies string b to string a:

#ifdef _vstrcpy

void vstrcpy(char *a,char *b)
{
 while(*b++=*a++);
}

#endif

114

 Forest Electronic Developments June 1999

11 Library Reference

BootLoader
ClockDataIn
ClockDataOut
Dallas 1 wire bus
EEPROM Routines
Graphic LCD functions
I2C Routines
IRDA IR Routines
RC5 IR Routines
Interrupt Driven Serial Port
isFunctions
Hex Keypad
LCD
LCDString
Maths Routines
mem functions
printf Functions
Random Numbers
SerialIn
SerialOut
stdio Functions
stdlib Functions
String Functions
String Print Functions
Wait

BootLoader

Specific functions defined in library;

Header file : None

Library file : <BootLoader.c>

These functions are provided in the BootLoader library. This library is not included in the
compilation by default, but must be added using the File | Libraries menu option. For full
details please see the separate manual BootLoader.pdf supplied in the Libraries sub-
directory of the installation CD.

 115
ClockDataIn

unsigned int ClockDataIn(char *Port,unsigned char Count,
; unsigned char ClockBitMask,unsigned char
DataBitMask);

unsigned int pClockDataIn(unsigned char Count);

Header file : <datalib.h>

Library file : <datalib.c>

These routines are used to clock in serial data at an input PIN of the PIC. The entire words
(specified from 1 to 16 bits) is then received and returned as an unsigned character. A clock
pulse of a minimum of 1uS width is given by XORing the specified port with ClockBitMask
twice, the input pin specified by DataBitMask is then read LSB first. Count bits are read (from
1 to 16) and the result returned as an unsigned integer (16 bits).

The first version of the routine allows for the user to define the port and the bit to be used
to detect the received data. The second version sets up the port and the bit with constants
which are defined in the C source file, and therefore this routine always operates on the
same port, and the same bit. The second version is more useful when there is only one
synchronous serial data port for input in use with the PIC, it also uses less space and is
slightly faster.

The port and bits used for the pClockDataIn version are set up with the following constants:

CDI_PORT

CDI_CLOCKMASK

CDI_DATAMASK

See the examples to see how these are set up. Note that the clock pin must be set up as an
output, and the data pin as an input.

Returns:

The received serial data.

Examples:
//
// Example 1 - ClockDataIn()
//

//
// Read a byte from Port B
// bit 0 is clock, bit 1 is data
//
#include <pic.h>
#include <datalib.h>

unsigned char x;

void main()
{
 PORTB=0;

116

 Forest Electronic Developments June 1999

 TRISB=0xfe;
 x=ClockDataIn(&PORTB,8,1,2);
 while(1);
}

//
// Example 2 - pClockDataIn()
//

//
// Read a byte from Port B
// bit 0 is clock, bit 1 is data
//
#include <pic.h>
#include <datalib.h>

const BYTE CDI_PORT=6;
const BYTE CDI_CLOCKMASK=1;
const BYTE CDI_DATAMASK=1;

unsigned char x;

void main()
{
 PORTB=0;
 TRISB=0xfe;
 x=pClockDataIn(8);
 while(1);
}

ClockDataOut

void ClockDataOut(char *Port,unsigned char Count,
; unsigned char ClockBitMask,unsigned char DataBitMask,
 unsigned int Data);

unsigned int pClockDataOut(unsigned char Count,unsigned int Data);

Header file : <datalib.h>

Library file : <datalib.c>

These routines are used to clock out serial data at an output PIN of the PIC. The entire work
is then received and returned as an unsigned character. A clock pulse of a minimum of 1uS
width is given by XORing the specified port with ClockBitMask, the output pin specified by
DataBitMask is then set low or high according to the next data output bit - LSB first. Finally
the clock mask is XOR'd with the port again. Count bits are transmitted (from 1 to 16).

The first version of the routine allows for the user to define the port and the bit to be used
to detect the received data. The second version sets up the port and the bit with constants
which are defined in the C source file, and therefore this routine always operates on the
same port, and the same bit. The second version is more useful when there is only one
synchronous serial data port for input in use with the PIC, it also uses less space and is
slightly faster.

The port and bits used for the pClockDataIn version are set up with the following constants:

CDO_PORT

 117
CDO_CLOCKMASK

CDO_DATAMASK

See the examples to see how these are set up. Note that the clock pin and data pins must be
set up as outputs.

Returns:

Void function - no return.

Examples:
//
// Example 1 - ClockDataOut()
//

//
// Transmit a byte to Port B
// bit 0 is clock, bit 1 is data
//
#include <pic.h>
#include <datalib.h>

unsigned char x;

void main()
{
 x=0x55;
 PORTB=0;
 TRISB=0xfc;
 ClockDataOut(&PORTB,8,1,2,x);
 while(1);
}

//
// Example 2 - pClockDataOut()
//

//
// Read a byte from Port B
// bit 0 is clock, bit 1 is data
//
#include <pic.h>
#include <datalib.h>

const BYTE CDI_PORT=6;
const BYTE CDI_CLOCKMASK=1;
const BYTE CDI_DATAMASK=1;

unsigned char x;

void main()
{
 x=0x55;
 PORTB=0;
 TRISB=0xfc
 ClockDataOut(8,x);
 while(1);
}

118

 Forest Electronic Developments June 1999

Dallas 1 Wire Bus

unsigned char ReadEEData(unsigned char Address);

char ResetCheck1W(void);

void Tx1Wire(unsigned char v);

unsigned char Rx1Wire(void);

Header file : <datalib.h>

Library file : <datalib.c>

The Dallas 1 wire interface provides an interface to the 1 wire bus used for "Memory
Buttons" and other devices. Three routines are provided to reset the bus and check for
devices on it, and to transmit and receive 8 bits at a time from the bus.

The full interface is described on the single wire interface web page at
http://www.ibutton.com/

There is one I/O pin for the bus, this may be connected to any pin on the PIC. This pin is
driven through the Tri-state register and therefore no external components bar the pull up
resistor are required.

The I/O pin should be connected to Vdd with a 5K resistor in accordance with the 1 wire bus
specification, note that if Port B pull ups are used then the internal resistor pull up is roughly
equivalent to a 10K resistor so another 10K resistor should be connected externally.

To use the bus the reset routine (ResetCheck1W) should be called regularly (say about once
every 20mS), this routine takes about 800uS to run. If a button is found then it can be
interrogated (using the Tx1Wire and Rx1Wire routines), if a button is not found then the
processor can run other tasks until checking again in another 20mS or so.

Interrupts should be disabled when using the bus routines.

To define the port used for the 1 bit bus then the constant integer TxRx1WirePort should be
defined and set to the correct port, to define the bit on that port then the integer
TxRx1WireBit should be defined and set to the port, the following shows how to set the port
to PORTB, bit 1:

const int TxRx1WirePort=&PORTB;
const int TxRx1WireBit=1;

char ResetCheck1W(void);
Call this routine to reset the bus and check for devices on it.
The routine returns with 0 if no device is present. It returns
with 1 if a button is found, and with -1 if the bus is stuck
low.

void Tx1Wire(unsigned char v);
This routine transmits the supplied byte (v) to the 1 bit bus.

unsigned char Rx1Wire(void);
This routine receives a byte from the bus and returns it.

 119
EEPROM Routines

unsigned char ReadEEData(unsigned char Address);

 void WriteEEData(unsigned char Address,unsigned char Data);

Header file : <datalib.h>

Library file : <datalib.c>

These routines are used to read and write the data EEPROM data within the 16C8x, 16F8x,
and 16F87x devices.

To write a value to an EEPROM data location then use the WriteEEData function, the two
parameters are the address, and the data value to write to that address. Note that the
function does not wait for the write operation to complete before returning. However it will
wait for a previous write to complete before undertaking a new write operation, so it can be
used repeatedly without compromising data integrity.

To read an address then simply use the ReadEEData() function, the parameter is the address.
The function returns the value read from the specified address.

Returns:

ReadEEData - Returns value read from EEPROM location.

WriteEEData - Void function - no return.

Examples:

Here is a simple EEPROM programmer utility which can be used with the FED 16F877
development board and the terminal within the C Compiler Debugging window. Press B and
follow with another character to read a value from EEPROM, press C and follow with an
address and a value to write to a location. For example press C,0,A to write the hex value
0x41 to location 0x30, press B and then 0 to return the value written to that location.

#include <pic.h>

const long SERIALRATE_IN=9600;
const int BITTIME_IN=APROCFREQ/SERIALRATE_IN/4;
const long SERIALRATE_OUT=9600;
const int BITTIME_OUT=APROCFREQ/SERIALRATE_OUT/4;

const BYTE SERIALPORT_IN=&PORTC;
const BYTE SERIALBIT_IN=7;
const BYTE SERIALPORT_OUT=&PORTC;
const BYTE SERIALBIT_OUT=6;
unsigned char x;

void main()
{
 unsigned char A,D,x;

TRISC=~(1<<SERIALBIT_OUT);

 pSerialOut('K'); // Transmit a 'K' to tell system that we're
here

 while(1)

120

 Forest Electronic Developments June 1999

 {
 x=pSerialIn();
 switch(x)
 {
 case 'B': pSerialOut(ReadEEData(pSerialIn()));
 break; // Return from Address
x
 case 'C': A=pSerialIn(); D=pSerialIn();
 WriteEEData(A,D);
 case 'A': pSerialOut('K');
 break; // Acknowledge
 }
 }
}

Graphic LCD Functions

void GLCDInit();

Other functions defined in the library reference

Header file : <GraphicLCD.h>

Library file : <GraphicLCD.c>

These functions are provided in the Graphic LCD library. This library is not included in the
compilation by default, but must be added using the File | Libraries menu option. For full
details please see the separate manual Graphic LCD Library.pdf supplied in the Libraries sub-
directory of the installation CD.

I2C Routines (hIIInit)

Software Routines

unsigned char IIRead(unsigned char Definition);

unsigned char IIWrite(unsigned char Data,unsigned char Definition);

void QuickStop();

Hardware Routines

unsigned char hIIRead(unsigned char Definition);

unsigned char hIIWrite(unsigned char Data,unsigned char Definition);

void hQuickStop();

void hIIInit();

Header file : <datalib.h>

Library file : <datalib.c>

These routines are used to drive the I2C bus.

 121
The software versions drive the bus with software control, the hardware versions use the
internal PIC hardware. As the bus transfer rate is high the hardware versions do not use
interrupts as standard. The hardware and software versions are deliberately very similar and
a system written to use the software can be quickly changed to use the internal hardware.
The two versions are shown below.

Software versions

IIRead and IIWrite transfer 8 bits with an optional acknowledgement to the IIC bus.

IIRead will read 8 bits from the bus and return the read value. The SDA data bit should be set
by the program to read before undertaking the function call.

IIWrite will write 8 bits from the parameter Data to the bus. It returns the state of the
acknowledgement bit (either 0 or 1). The SDA data bit should be set by the program to drive
before undertaking this function call.

QuickStop clocks 8 data bits on the bus and then sends a stop state. It is used to terminate
pending operations on the IIC bus.

The parameter Definition defines how the transfer should proceed. It is made up of up to
three controls IISTART, IISTOP and IIACK which may be OR'd together. IISTART forces a start
bit on the bus before the transfer, IIACK forces the PIC to drive an acknowledgement to the
bus (otherwise the acknowledgement bit will be read), and finally IISTOP forces a stop state
after the transfer. For example to undertake a read transfer with a START state and to send
an acknowledgement bit then the following function call could be used:

IIRead(IISTART|IIACK);

The routines return driving the data bit if an acknowledgement has been requested, and
return reading the data bit if no acknowledgement is requested. Use IINONE if no action is to
be used on the bus.

The port and bits used for the IIC port are set up with the following constant integers:

PICIO

_SDA

_SCL

IIStretch

See the examples to see how these are set up. Note that the clock pin and data pins must be
set up as outputs.

The only integer not described in the example is IIStretch which sets up the bus speed. It is
not compulsory to define IIStretch, if it is not defined (as in the examples) then the bus
operates at 400KHz - the high speed rate. To operate the bus at a lower rate then set
IIStretch to a multiplier value, then all the bus timing parameters will be multipled by this
value. For example to use a 100KHz bus then all times should be multiplied by four. This is
how to set up the II interface for the 100KHz bus:

const int IIStretch=4;

122

 Forest Electronic Developments June 1999

It may be necessary to increase IIStretch for any bus if the bus wires run for more than a
short distance.

Hardware Versions

hIIInit should be called at the start of the program to set up the I2C hardware, the SCL and
SDA pins are defined by the PIC pinout. The TRIS bits for the I2C bus bits should be left set to
‘1’ as inputs. The bus drivers are set automatically by the PIC hardware. Note both SCL and
SDA pins should be pulled high with 2K resistors.

hIIRead and hIIWrite transfer 8 bits with an optional acknowledgement to the IIC bus.
hIIRead will read 8 bits from the bus and return the read value. hIIWrite will write 8 bits from
the parameter Data to the bus. It returns the state of the acknowledgement bit (either 0 or
1). hQuickStop undertakes a read operation on the bus and then sends a stop state. It is used
to terminate pending operations on the IIC bus.

The parameter Definition defines how the transfer should proceed. It is made up of up to
four controls IISTART, IIRESTART, IISTOP and IIACK which may be OR'd together. IISTART
forces a start bit on the bus before the transfer, IIRESTART is similar for a bus which is
already in operation, IIACK forces the PIC to drive an acknowledgement to the bus
(otherwise the acknowledgement bit will be read), and finally IISTOP forces a stop state after
the transfer. For example to undertake a read transfer of a byte a START state and to send
an acknowledgement bit then the following function call could be used:

hIIRead(IISTART|IIACK);

Use IINONE if no action is to be used on the bus. The routines return driving the data bit if an
acknowledgement has been requested, and return reading the data bit if no
acknowledgement is requested.

The port and bits used for the IIC port are set up with the following constant integers:

PICIO

_SDA

_SCL

IIStretch

See the examples to see how these are set up. Note that the clock pin and data pins must be
set up as outputs.

I2CBusRate sets up the bus speed. It is not compulsory to define I2CBusRate, if it is not
defined then the bus operates at 400KHz - the high speed rate. It can be set to 1000 for the
top rate. To set up the bus for 100KHz then use :

const int I2CBUSRATE=100;

It may be necessary to reduce the bus rate for any bus if the bus wires run for more than a
short distance.

 123
Returns:

IIRead() hIIRead() - returns the read value.

IIWrite() hIIWrite() - returns the state of the acknowledgement bit.

QuickStop() hQuickStop() - Void function - no return.

hIIInit() - Void function - no return.

Examples:

See EEPROM Programmer

IRDA IR Routines

void IRTx(unsigned char Byte);

void IRRx(void);

extern unsigned char IRRxVal;

Header file : <datalib.h>

Library file : <datalib.c>

These routines are used to drive an IRDA infra-red transceiver according to the IRDA 1.0
standard for infra-red transmission from 9600bps up to 115000 bps (although the FED PIC C
implementation is limited by processor clock rate). Only the physical (link) level is supported.
IRDA transceivers are recommended as they are optimised for this type of transmission,
however discrete circuits may be used. The implementation supports multiple receivers.

The IRDA standard transmits data in the same format as normal asynchronous 8 bit serial
data with a low start bit and a high stop bit (10 bits in total). A 0 bit is sent as a pulse with a
width of 3/16 of a bit. So at 9600 bps the Zero bit is sent with an IR pulse of approximately
20uS. The idle state is defined as a one bit, so the IR transmitter is normally turned off.

These routines work with a high level logic IRDA transceiver. That is to turn the IR
transmitter on the pin of the PIC sends a high bit, and similarly the IRDA transceiver sends a
level 1 when an infra-red signal is detected. Both the transmitter and reciever

IRTx sends the supplied byte in IRDA format on the defined pin of the PIC (the description of
how to define the pins is presented below).

IRRx receives a byte from one or more pins of the PIC, it will wait until it detects a signal and
then will receive the Byte which is not returned, but is placed in the global external variable
called IRRxVal. The IRRx function has been designed to be called from a quick interrupt (if
required), and uses 3 bytes of global memory. If it is used in a quick interrupt then it must be
the first function in the interrupt, it cannot be used in a normal interrupt. To use it in an
interrupt then the IRDA receivers should be connected to an interrupt pin of the PIC (for
example Port B bit 0, or Port B bits 4 to 7). Now when the start bit is detected an interrupt
will be caused and the IRRx routine will detect the rest of the byte (see example below).
Note that if connected to one of the Port B change pins then the other pins should be

124

 Forest Electronic Developments June 1999

connected so that they cannot cause interrupts, or so that interrupts are disabled whilst the
other pins of Port B are changed.

Note that most IRDA transceivers are optically coupled (either directly or by reflection), and
therefore receive the information which is being transmitted, thus interrupts must be
disabled during transmission, and approximately 1mS allowed between transmission and
reception. As with all software based transmission it is wise to allow time between
transmitted bytes for the receiving device to process received information.

The port and bits used for the Infra-Red port are set up with the following constant integers:

IRPORT

IRRATE

IRTXMASK

IRDAMASK

IRINT

IRPORT is the port to which the transmitter and receiver are connected (they must be on the
same port). IRRATE is the bit rate to be used which at a 4MHz clock must be no greater than
9600 bps and may be scaled with processor clock frequecy (e.g at 16MHz a rate of 38400bps
may be used). IRTXMASK is a mask for the bits used for transmitter(s) on the defined port.
For example if the transmitter is connected to bit 1 then IRTXMASK will be 2. IRDAMASK is
the mask for the bits used for the receiver(s) on the defined port. For example if the receiver
is connected to bit 4 then IRTXMASK will be 0x10. IRINT should be defined and set to 1 if the
receiver is to be detected in an interrupt routine. See the examples for details of how to set
these up.

Returns:

IRTx() - Void function - no return.

IRRx() - Void function - no return, returned byte is placed in variable IRRxVal.

Examples:

The following example shows an infra red receiver which will receive a byte from an IRDA
transceiver connected to Port B pin 0. It will then transmit it using asynchronous serial
protocols on Port A, bit 3, this is suitable for use with the FED development board, and will
transmit received bytes to an attached PC. Note that this example needs at least 1mS
between transmitted IR bytes in order to send the information to the serial port.

#include <pic.h>
#include <Datalib.h>

const BYTE IRRATE=9600; // IR bit rate
const BYTE IRDAMASK=1; // Mask for received information
const BYTE IRPORT=&PORTB; // IR port

// Definitions for the serial port

const long SERIALRATE_OUT=9600;
const int BITTIME_OUT=(4000*1000)/SERIALRATE_OUT/4;

 125
const BYTE SERIALPORT_OUT=&PORTA;
const BYTE SERIALBIT_OUT=3;

BYTE Flag=0; // Set when an IR byte is received

void main()
{
 TRISA=~(1<<SERIALBIT_OUT); // Serial port output
 PORTA=0xff; // Initial value of serial output
 INTCON=(1<<GIE)|(1<<INTE); // Enable interrupt on port B, bit 0

 while(1) // Loop forever
 {
 if (Flag) {pSerialOut(IRRxVal); Flag=0;} // Send a received byte
 }
}

const int QuickInt=1; // Define use of quick interrupts
const int IRINT=1; // Show use of IR interrupt

void Interrupt()
{
 IRRx(); // Receive byte
 Flag=1; // Set a flag
 INTCON&=~(1<<INTF); // Clear the interrupt
}

RC5 IR Routines

void TransmitRC5 (unsigned int Word);

unsigned int GetRC5(void);

void RC5Rx(void);

extern unsigned int RC5Value;

Header file : <datalib.h>

Library file : <datalib.c>

These routines are used to drive a IR LED or to receive from an IR receiver module using the
Phillips RC5 code. Normally only the receive or transmit functions will be used on a project
unless duplex data transmission is set up.

WIZ-C users may find it easier to use the elements to set up the RC5 system.

This code has 14 bit transmission, the first two bits are always 1, the next bit is a check bit
which may be set to 1 or 0, the following 11 bits consist of a 5 bit control address and 6 bits
of data. The check bit alternates on each button press on the remote so that if the beam is
interrupted the receiving device can check that a new command has not been sent. The
control address identifies the device (TV, Video etc) and the command bits the function to
support. Normally in RC5 the command repeats at about 100mS intervals. Typically it takes
around 22mS to transmit a complete RC5 word.

The FED library functions do not differentiate between command, data and control bits – a
12 bit value is transmitted or received – it is up to the user to split this between check, data
and address. The code can transmit at up to about 500 bits per second for data transfer.

126

 Forest Electronic Developments June 1999

These routines work with a low level logic RC5 receiver and high level logic IR LED.. That is to
turn the IR LED on the pin of the PIC sends a high bit, however the RC5 receiver sends a level
0 when an infra-red signal is detected and a level 1 (+5v) when no signal is received.

TransmitRC5 sends the supplied 12 bit word in RC5 format on the defined pin of the PIC (the
description of how to define the pins is presented below). The check bit is the first bit
transmitted followed by bit 10, 9 and so on down to bit 0 of the supplied word.

RC5Rx receives a byte from one or more pins of the PIC, it will wait until it detects a signal
and then will receive the Byte which is not returned, but is placed in the global external
variable called RC5Value. The RC5Rx function has been designed to be called from a quick or
normal interrupt (if required), and uses 4 bytes of global memory in addition to the variable
RC5Value. To use it in an interrupt then the IRDA receivers should be connected to an
interrupt pin of the PIC (for example Port B bit 0, or Port B bits 4 to 7, or GPIO bit 2). The
interrupts should be set to trigger on a falling edge. Now when the start bit is detected an
interrupt will be caused and the RC5Rx routine will detect the rest of the byte (see example
below). Note that if connected to one of the Port B change pins then the other pins should
be connected so that they cannot cause interrupts, or so that interrupts are disabled whilst
the other pins of Port B are changed.

GetRC5 is used when interrupts are not required – the routine waits for the next word to be
received and returns it as well as loading it into the variable RC5Value.

Note that most receivers suffer from occasional noise when no signal is present, and also at
distance the signal may become corrupted. If the signal is not recognised, or is not in RC5
format the GetRC5() and RC5Rx() functions return the value 0xffff in the RC5Value variable.

The port and bits used for the Infra-Red port are set up with the following constant integers:

IRFREQ (used when TransmitRC5, GetRC5 or RC5Rx are used)

IRRXPORT (used when GetRC5 or RC5Rx are used)

IRRXBIT (used when GetRC5 or RC5Rx are used)

IRPORT (used when TransmitRC5 is used)

IRBIT (used when TransmitRC5 is used)

IRRXPORT is the port to which the receiver is connected (they must be on the same port).
IRPORT is the port to which the IR LED for transmission is connected. IRRXBIT and IRBIT are
the bit numbers of the receiver and IR LED respectively. IRRATE is the carrier frequency to be
used which must be matched to the receiver centre frequency. Typcially 36000, See the
examples for details of how to set these up.

Returns:

void TransmitRC5 (unsigned int Word); Void function - no return.

 127
void RC5Rx (unsigned int Word); Void function returned value is placed in the
global
 variable RC5Value.

unsigned int GetRC5(void); Returns the received word

IRTx()

IRRx() - Void function - no return, returned byte is placed in variable IRRxVal.

Examples:

The following example shows an IR receiver programme using interrupts – the receiver is
connected to PORT B bit 0.

#include <pic.h>
#include <datalib.h>

const int IRFREQ=38000;
const int IRRXPORT=&PORTB;
const int IRRXBIT=0;

int x;

void main()
{
 bINTEDG=0; // Interrupt on falling edge of RB0
 bINTE=1; // Enable Edge triggered Interrupt
 bGIE=1;
 RC5Value=0xffff; // Flag for received value

 while(1)
 {
 if (RC5Value!=0xffff) {x=RC5Value; RC5Value=0xffff;}
 }
}

const int QuickInt=1; // Show we must use Quick Interrupts

void Interrupt()
{
 if (bINTF) // Test interrupt flag
 {
 bINTF=0; // Clear interrupt flag
 RC5Rx(); // Call reception routine
 }
}

The following example shows an IR transmission programme for the 16F675, in this case the
transmitter is connected to pin GPIO bit 0 . The programme transmits the code 0x7f on
reset.

#include <pic.h>
#include <datalib.h>

const int IRFREQ=38000;
const int IRPORT=&PORTA;
const int IRBIT=0;

void main()
{
 TransmitRC5('~');

128

 Forest Electronic Developments June 1999

}

The following stimulus file is an example of transmission of a code – in this 0x3F1 into pin 0
of port B at an IR carrier rate of 38KHz, it is useful for checking operation, copy into a single
column of a STI file.

0
20000u
PORTB:0=1
20842u
PORTB:0=0
21684u
PORTB:0=1
22526u
PORTB:0=0
23368u
PORTB:0=0
24210u
PORTB:0=1
25052u
PORTB:0=0
25894u
PORTB:0=1
26736u
PORTB:0=1
27578u

PORTB:0=0
28421u
PORTB:0=1
29263u
PORTB:0=0
30105u
PORTB:0=1
30947u
PORTB:0=0
31789u
PORTB:0=1
32631u
PORTB:0=0
33473u
PORTB:0=1
34315u
PORTB:0=0
35157u
PORTB:0=1
36000u
PORTB:0=0

36842u
PORTB:0=0
37684u
PORTB:0=1
38526u
PORTB:0=0
39368u
PORTB:0=1
40210u
PORTB:0=0
41052u
PORTB:0=1
41894u
PORTB:0=1
42736u
PORTB:0=0
43578u
PORTB:0=1

FED provide an Excel spreadsheet which can be used to generate the stimulus file for any
RC5 sequence – it is on the CD and is called RC5.xls.

Interrupt Driven Serial Port

void AddTx(unsigned char TxChar); void AddTx2(unsigned char TxChar);

unsigned char GetRxSize(void); unsigned char GetRxSize2(void);

unsigned char GetTxSize(void); unsigned char GetTxSize2(void);

unsigned char WaitRx(void); unsigned char WaitRx2(void);

void SerIntHandler(void); void SerIntHandler2(void);

void SerIntInit(void); void SerIntInit2(void);

Header file : <datalib.h>

Library file : <datalib.c>

These routines are used to drive the serial interface hardware of all supported devices with
serial interface. These transmit and receive data on pins C6 and C7 for the majority of
devices and other pins for smaller (and bigger) PIC’s. The user defines buffers for
transmission and reception and the device will operate on interrupts receiving and
transmitting bytes in the background. XON/XOFF protocols may be used to flow control the
link. The example below shows a simple program which will loop received characters back to
the transmitter but with a 5 mS delay inserted so that flow control must be utilitsed.

 129
For all of the routines the same function may be called with a 2 appended to drive the
USART 2 hardware for those devices which have it.

The values and variables used for the Serial Routines are set up with the following constant
integers and variables:

TXBUFSZ;

RXBUFSZ;

SERINTRATE;

USEXON;

unsigned char TxTab[TXBUFSZ];

unsigned char RxTab[RXBUFSZ];

TXBUFSZ2;

RXBUFSZ2;

SERINTRATE2;

USEXON2;

unsigned char TxTab[TXBUFSZ2];

unsigned char RxTab[RXBUFSZ2];

TXBUFSZ and RXBUFSZ are the size of the transmit and receive buffers. These must be a
power of 2, and (as described below) FED recommend a size of 32 for the receive buffer if
the system is communicating with a standard PC, typically the transmit buffer (TXBUFSZ)
may be 8 or 32 bytes. SERINTRATE should be set to the required serial bit rate, e.g. 9600.
USEXON should be set to 0 or 1, if set to 1 then XON/XOFF signalling will be used, otherwise
no handshaking is used. TxTab and RxTab should be defined at the top of the program
exactly as shown.

The system is initialised with SerIntInit(). This void function sets up the serial communication
registers and defines the transmit and receive bits as outputs and inputs, however it is
recommended that users manually set the TRIS bits for devices as well. SerIntInit() should be
called at the beginning of the program. Please note this function leaves interrupts enabled.

The function SerIntHandler() must be called from within the Interrupt routine. This allows
the use of Quick Interrupts. See the example which shows how this may be achieved.

Now the AddTx(Value) function will add the byte Value to the transmit buffer, if there is no
room then the function will wait until room is available (when a byte is next transmitted by
the interrupt and hardware). The WaitRx() function waits until a character is available and

130

 Forest Electronic Developments June 1999

returns it. The GetTxSize() and GetRxSize() functions return the size of the transmit and
receive buffers respectively. Therefore if GetRxSize() returns a non-zero value there is a byte
waiting in the buffer, similarly if GetTxSize() is the same size as the defined transmit buffer
size then there is no room in the transmit buffer.

Please note the following if XON/XOFF signalling is in use. An XOFF character will be sent
when the receive buffer is 1/2 full, and an XON character is sent when the buffer is 1/8 full
again. If communicating to a PC the serial port on the PC usually has a buffer of 8 characters
which will be emptied regardless of received XOFF characters, therefore to avoid missing
characters it is essential that the RXBUFSIZE value is set to 32 bytes. Also when the system is
initialised an XON character is sent immediately by SerIntInit().

With XON/XOFF signalling if an XON, XOFF or ESCAPE (0x11, 0x13, 0x1b) character is
transmitted by AddTx(), then the character will be sent as an ESCAPE character (0x1b),
followed by the actual character with bit 7 set. Thus if AddTx(0x11) is called then characters
0x1b and 0x91 are transmitted. Similarly when an escape (0x1b) is received then the
following character with bit 7 reset is then added to the receive buffer, the 0x1b is not
added. This allows the complete character set from 0 to 0xff to be transmitted and received.

In all cases if the receive buffer is full and a new character is received, then the oldest
character in the buffer is overwritten.

Returns:

AddTx(); Void function, no return.

GetRxSize(); Returns the number of bytes in the receive buffer.

GetTxSize(); Returns the number of bytes in the transmit buffer.

WaitRx(); Returns the next byte from the receive buffer.

 SerIntHandler(); Void function, no return.

 SerIntInit(); Void function, no return.

Examples:

The following example shows an application which will loop back every received character,
but inserts a 5mS delay before doing so, thus XON/XOFF handshaking is essential. This
application is in the projects directory of the C compiler, under the Serial Interrupts sub-
directory. The bit rate is 9600 and the application is written for the 16F877.

//
// A test program for serial interrupts.
//

#include <datalib.h>
#include <delays.h>
#include <pic.h>

const int TXBUFSZ=32;
const int RXBUFSZ=32;
const int SERINTRATE=9600;
const int USEXON=1;
unsigned char TxTab[TXBUFSZ];

 131
unsigned char RxTab[RXBUFSZ];
unsigned char x,RxSz,TxSz;

void main()
{
 SerIntInit(); // Initialise serial interrupts
 AddTx('K'); // Transmit a 'K' to tell system that we're here

 while(1)
 {
 x=WaitRx();
 Wait(5); // Test XON/XOFF
 AddTx(x);
 RxSz=GetRxSize(); // Information only
 TxSz=GetTxSize(); // Information only
 }
}

const int QuickInt=1; // Quick interrupts

void Interrupt() // Interrupt handler
{
 SerIntHandler();
}

Hex Keypad

unsigned char KeyScan();

Header file : <displays.h>

Library file : <displays.c>

This function is provided to scan a hex keypad with 4 rows and 4 columns. The rows are
driven and the columns are read and should be pulled up with resistors :

The rows are outputs from the PIC, the columns are inputs, and may be shared with other
inputs, the inputs must be pulled up with resistors of 2K or more. The outputs may in similar
fashion be shared with other outputs, the KeyScan routine sets the outputs to drive, but if
the value KeyPadRelease is set to 1 then they will be set back to inputs after the keypad is
scanned. There is no debounce facility, this may be achieved within the main program.

0 1 2 3

4 5 6 7

8 9 A B

C D E F

Row1

Row4

Col1 Col4

132

 Forest Electronic Developments June 1999

The keypad is defined with 9 constant integers which indicate the port and bit number for
each row and column and define keypad release, see the example program below:

const int Row1Port Port number for row 1

const int Row2Port Port number for row 2

const int Row3Port Port number for row 3

const int Row4Port Port number for row 4

const int Col1Port Port number for Column 1

const int Col2Port Port number for Column 2

const int Col3Port Port number for Column 3

const int Col4Port Port number for Column 4

const int Row1Bit Bit number for Row 1

const int Row2Bit Bit number for Row 2

const int Row3Bit Bit number for Row 3

const int Row4Bit Bit number for Row 4

const int Col1Bit Bit number for Column 1

const int Col2Bit Bit number for Column 2

const int Col3Bit Bit number for Column 3

const int Col4Bit Bit number for Column 4

const int KeyPadRelease Set to 0 if rows are to remain driving after keyscan, or set to
1 if rows are to return to inputs.

Returns:

The function returns 0xff if no key is pressed, and a key number from 0 to 15 if a key is
detected.

Example:

The following example for the 16F877 on the FED PIC demonstration board sends any key
presses detected to the serial port which can be read on an attached PC. A new value is only
sent if it is different to the last value, and if a value has been detected.

//
// Hex keypad scanner - read key and transmit as hex value if it
changes
//
#include <pic.h>
#include <Displays.h>

 133
#include <Datalib.h>
const int Row1Port=&PORTD; // Set up keypad
const int Row2Port=&PORTD;
const int Row3Port=&PORTD;
const int Row4Port=&PORTD;
const int Col1Port=&PORTD;
const int Col2Port=&PORTD;
const int Col3Port=&PORTD;
const int Col4Port=&PORTD;
const int Row1Bit=0;
const int Row2Bit=1;
const int Row3Bit=2;
const int Row4Bit=3;
const int Col1Bit=4;
const int Col2Bit=5;
const int Col3Bit=6;
const int Col4Bit=7;
const int KeyPadRelease=0; // Leave driving when not in
use

const int TXBUFSZ=8;
const int RXBUFSZ=32;
const int SERINTRATE=9600;
const int USEXON=0;
unsigned char TxTab[TXBUFSZ];
unsigned char RxTab[RXBUFSZ];

void main()
{
 char ox=-1,nx;

 SerIntInit(); // Initialise serial interrupts
 AddTx('K'); // Transmit a 'K' to tell system that we're
here

 while(1)
 {
 nx=KeyScan();
 if (nx==ox || nx==0xff) {ox=nx; continue;}
 ox=nx;
 nx+='0';
 if (nx>'9') nx+='A'-'9'-1; //Hex display
 AddTx(nx);
 }
}

const int QuickInt=1;

void Interrupt()
{
 SerIntHandler();
}

134

 Forest Electronic Developments June 1999

isFunctions

unsigned char isalpha(char c);

unsigned char isalnum(char c);

unsigned char isascii(char c);

unsigned char iscntrl(char c);

unsigned char isdigit(char c);

unsigned char islower(char c);

unsigned char isprint(char c);

unsigned char ispunct(char c);

unsigned char isspace(char c);

unsigned char isupper(char c);

unsigned char isxdigit(char c);

char toascii(char c);

char tolower(char c);

char toupper(char c);

Header file : <ctype.h>

Library file : <ctype.c> <ctype16.c>

These functions are provided in the ctype libraries. These libraries are not included in the
compilation by default, but must be added using the File | Libraries menu option. For full
details please see the separate manual LibraryExtensions.pdf.

LCD

void LCD(int Data);

void LCDc(char Data);

Header file : <displays.h>

Library file : <displays.c>

These functions are provided to write data to a connected LCD display based on the Hitachi
chip set (by far the most common chip used in LCD modules).

LCD

The parameter takes on one of 3 functions according to its value:

 135
1) If the parameter is less than 0 then the LCD function initialises the display with the

specified number of lines. For example LCD(-1) initialises the display with one line.

2) If the parameter is less than 256 and greater than or equal to 0, then the supplied
character number is written to the display. For example LCD('A') writes the character A
to the display.

3) To send a command to the display then add 256 to the command number and use the
LCD command. These commands are documented in the Hitachi controller driver
documentation. Some examples are presented in the Example Section.

LCDc

The parameter is simply a character and is printed directly to the display. The LCDc function
is provided for compatibility with the fnprintf function (see printf Functions).

The port used by the LCD display is defined by setting a constant integer value to the address
of the port. This integer should be called LCDPORT. The pins of the display should be
connected as shown in the table below:

LCD Module Port number
RS BIT1

R/W BIT2
E BIT3

D4 BIT4
D5 BIT5
D6 BIT6
D7 BIT7

Bits D0-D3 of the display may be left floating.

Note that if required, it is possible to connect RS, R/W and E to other pins of the PIC. In this
case the constants LCDEPORT, LCDEBIT, LCDRSPORT, LCDRSBIT, LCDRWPORT, and LCDRWBIT
should be defined and set to the ports and bits respectively that the LCD Control pins are
connected to. LCDPORT should still be set to the port which the LCD data bits are connected
to as shown in the table above.

Note that there is no attempt to buffer commands to the LCD display, if the display is busy
the function simply waits until it is ready before allowing the next command to be written.
Most commands are completed within a few 10's of microseconds.

Returns:

Void function - no return.

Examples:

A full description and example of the use of an LCD Display is presented in the examples
section.

const int LCDPORT=&PORTB; // Define Port B as connected port

....

136

 Forest Electronic Developments June 1999

LCD(-1); // Initialise display to 1 line
LCD(-2); // Initialise display to 2 lines
LCD(0x100+1); // Clear display, return cursor to home position
LCD(0x100+2); // Return cursor to home position
LCD(0x100+0x80+N); // Return cursor to line 1, position N,
// where N=0 is the first character on line 1
LCD(0x100+0xC0+N); // Return cursor to line 2, position N,
// where N=0 is the first character on line 2

LCDString

void LCDString(char *Str);

Header file : <displays.h>

Library file : <displays.c>

This function writes the supplied string to the attached LCD display. Str is the supplied string.
The display must have been initialised using the LCD function.

Returns:

Void function - no return.

Examples:

A full description and example of the use of an LCD Display is presented in the examples
section.

LCDString("Start"); // Write string "Start" to display

 137
Maths Routines

float arcsin(float v);

float arccos(float v);

float arctan(float v);

float cos(float v); etc.

float exp(float y);

float exponent(float y);

float fabs(float v);

char * fPrtString(char *String,float v);

float log(float y);

float log10(float y);

float mantissa(float y);

float pow(float x, float y);

float pow10(float y);

float PowerSeries(float v,float *Coefficients,char n,char indices);

float sin(float v);

float sqrt(float v);

float tan(float v);

LN10

e

PI

Header file : <maths.h>

Library file : <maths.c>

These routines calculate various transcendental and power functions for floating point
numbers. Note that these functions are all heavily processor intensive, and typically take
between 100uS and 10mS to complete with a 20MHz clock. All routines have been optimised
for speed over the entire numeric range at the expense (on occasion) of small number
performance.

There is no range or error checking with any of these functions to ensure maximum speed. It
is up to the user to supply parameters in range, or provide range checking externally to the

138

 Forest Electronic Developments June 1999

functions. The accuracy of the function is as good as the numeric type barring rounding
errors in the power functions which accumulate to typically one significant figure.

All trigonometric functions operate in radians.

Operations:

arccos Returns cos-1 of the supplied parameter. The parameter must be greater than –1 and
less than +1.

arcsin Returns sin-1 of the supplied parameter. The parameter must be greater than –1 and
less than +1.

arctan Returns tan-1 of the supplied parameter. The parameter must be greater than –1 and
less than +1.

cos Returns the cosine value of the parameter v.

LN2 A macro. Defined as 0.69314718

e A macro. Defined as 2.7182818.

exp Returns e to the power y. (ey)

exponent Returns the exponent value of the floating point number. For example the
decimal number 5 is represented as 1.01x22 . This function will return 2 in this example. Used
in library functions.

fabs Returns the absolute value of the parameter v.

fPrtString Prints the number v in floating point form to the string "String".

LN10 A macro. Defines as natural log 10, 2.3025851.

log Returns the natural logarithm of y (ln y).

log10 Returns the logarithm of y to the base 10

LOG2_10 A macro. Defined as 3.32193, Log2(10)

mantissa Returns the mantissa value of the floating point number. For example the
decimal number 5 is represented as 1.01x22 . This function will return 1.25 in this example.
Used in library functions.

PI A Macro, defined as 3.14145962.

pow Returns x to the power y. (xy)

pow10 Returns 10 to the y (10y).

PowerSeries This function is used by library routines and calculates the sum of a power
series. v is the value to which the series is applied. Coefficients is a pointer to an array of
coefficients to be multiplied by each term in the series in turn. n is the number of terms to

 139
apply (the series will terminate early however if it converges). Finally indices is 0 if the series
applies to each power of v, 1 if it applies only to odd powers and 2 for even powers. Returns
the sum of the power series.

sin Returns the cosine value of the parameter v.

sqrt Returns the square root of v.

tan Returns the tan value of the parameter v.

Examples:

Here is a test program which uses most of the Maths Routines and prints the result of the
calculations to a string - ws.

#include <maths.h>

//
// Note won't work on 2K devices with no optimisation as stack
// use is too heavy
//

float y,cs;
char ws[16];

void main()
{

 y=sin(PI/4); cs+=y; // 7.071068e-1
 y=exp(1.5); cs+=y; // 4.481688e0
 y=mantissa(5); cs+=y; // 1.25e0
 y=exponent(5); cs+=y; // 2.00e0
 y=log(1024.000); cs+=y; // 6.931473e0
 y=cos(-.9); cs+=y; // 6.216100e-1
 y=tan(-1.3); cs+=y; // -3.602102e0
 y=log10(.7); cs+=y; // -1.549019e-01
 y=pow10(0.67); cs+=y; // 4.677328e+00
 y=2*fabs(-7)-2; cs+=y; // 1.2e01
 y=sqrt(169); cs+=y; // 1.3e-1

 fPrtString(ws,cs);

endit:
 while(1);
}

140

 Forest Electronic Developments June 1999

mem functions

void * memccpy(void * dest,void * src,int c,int n);

void * memchr(void *dest, int c,int n);

int memcmp(void *s1, void *s2,int n);

void *memset(void *s, int c,int n);

void * memcpy(void * dest,void * src,char n);

void * memcpy1(void * dest,void * src,int n);

void * memmove(void * dest,void * src,char n);

Header file : <mem.h>

Library file : <mem.c>

These functions are provided in the mem.c library. This library is not included in the
compilation by default, but must be added using the File | Libraries menu option. For full
details please see the separate manual LibraryExtensions.pdf.

printf Functions

void fnprintf(void (*out)(char x),char *str,...);

void fnprintfsm(void (*out)(char x),char *str,...);

void printf(char *str,...);

void printfsm(char *str,...);

void sprintf(char *Dest,char *str,...);

void sprintfsm(char *Dest,char *str,...);

Header file : <strings.h>

Library file : <strings.c>

These routines are used to print numbers, characters and strings in a user controlled
formatted form to a strings or output devices. There are two versions of the functions, the
normal and the compact version which has the same name with the letters sm appended.
The compact version is much less capable than the normal version, but is about half the size
and is more suitable for the smaller PIC’s.

The printf function prints characters using the pSerialOut function. Therefore the serial
interface must be set up before using printf. This is described in the manual entry for
SerialOut. Also to tell the compiler that the printf function is using SerialOut it is also
necessary to add the following line to the source code:

#callfunction pSerialOut

 141
The fnprintf function prints characters to a user supplied function. This function is set up to
output one character to an output device, built in functions (such as the LCDc function) may
be used, or the user may write a function – examples of both are shown below. The sprintf
function prints characters to a supplied string.

The name of the function call for fnprintf is the first parameter of the function. For example
the following function call prints the time held in three variables, hours, minutes and
seconds to an attached LCD. (More extensive examples are shown later on).

fnprintf(LCDc,”% 2d:%02d:%02d%”,hours,minutes,seconds);

The pointer to the string which is to hold the output is the first parameter of the sprintf
function. For example the following function call prints the time held in three variables,
hours, minutes and seconds to a string. (More extensive examples are shown later on).

char ws[16];
sprintf(ws,”% 2d:%02d:%02d”,hours,minutes,seconds);

Definition string for fnprintf and sprintf.

The definition string (the str parameter) defines the string to be printed, and the format of
any parameters supplied for printing. Each character in str is printed one after another.
Whenever a % sign is encountered it specifies a parameter is to be printed.

The parameters are supplied after str in order that the definition string shows them. Note
that characters are converted to 16 bit values before being handled.

For the definition string (str) the % sign is followed by optional modifiers and then a specifier
for the output:

 %[+-][[0]n][l][dcuxXs]

If a + is supplied then a number will be printed with a leading + or -.

If a – is supplied for numbers it has no effect. For a string it causes the string to be right
justified with spaces padding the result if the width (n) is greater than the string width.

n is the width to be printed. If the number or string is less than n characters then padding
characters are printed to fill the width up to n characters. If the width starts with a 0 then
numbers are printed with leading zeroes to fill the width, this has no effect for strings.

l (lower case L) causes the function that the parameter is long.

The parameter specifiers (one of d,c,u,x,X or s) specify how the parameter is to be printed.

d causes the parameter to be printed as an integer (2 bytes, or 4 if the l modifier is
used).

c causes the parameter to be printed as a single character

u causes the parameter to be printed as a single character

x causes the parameter to be printed as a hex value (lower case A to F)

142

 Forest Electronic Developments June 1999

X causes the parameter to be printed as a hex value (upper case A to F)

s causes the parameter to be printed as a string

To print a % sign use %%.

The examples below show how various definition strings appear:

char *s=”ABC”;
char c=’A’;
int x=-1;
long y=0x123456;
char ws[32];

sprintf(ws,"%d",x); // ws holds "-1"
sprintf(ws,"%u",x); // ws holds "65535"
sprintf(ws,"%5d",x); // ws holds " -1"
sprintf(ws,"%05d",x); // ws holds "-0001"
sprintf(ws,"%x",x); // ws holds "ffff"
sprintf(ws,"%X",x); // ws holds "FFFF"
sprintf(ws,"%04X",c); // ws holds "0041"
sprintf(ws,"%c",c); // ws holds "A"
sprintf(ws,"%lx",y); // ws holds "123456"
sprintf(ws,"%ld",y); // ws holds "1193046"
sprintf(ws,"%s",s); // ws holds "ABC"
sprintf(ws,"%5s",s); // ws holds "ABC "
sprintf(ws,"%-5s",s); // ws holds " ABC"
sprintf(ws,"%c,%d,%l",c,x,y); // ws holds "A,-1,1193046"

Note – if the last character of the definition string is a % sign then the string printed will not
be terminated with a zero character. This is important for the fnprintf function which
outputs to a device. If the device cannot handle a zero (such as an LCD display) then the last
character should be %.

Definition string for fnprintfsm and sprintfsm.

Note that these functions can only handle basic outputs. Definition strings can only hold %d,
%u, %c and %s. All other modifers – width, sign, justification and long values – cannot be
used with these functions.

Use of normal and compact versions.

It is strongly recommended that the normal version or the compact version is used
throughout without mixing calls. Thus if your program needs sprintf at any point then use
sprintf throughout rather than sprintfsm.

Special note for use of functions with fnprintf.

Owing to a quirk in the method used to compiler library functions it is necessary to declare
the call supplied to fnprintf in the main file. This is achieved by the following pragma - .

#callfunction FunctionName

For example:

#callfunction LCDc

This only needs to be declared once in the source, and then only if the function call is not
used directly.

 143
Returns:

fnprintf – void function, no return.

fnprintfsm – void function, no return.

sprintfsm– void function, no return.

sprintfsm – void function, no return.

Examples:

Here is a program to print “Hello World” using printf and the serial interface using PORT B
bits 0 (for transmission) and bit 1 (for reception).

#include <pic.h>
#include <stdio.h>

const long SERIALRATE=9600;

const int BITTIME_IN=APROCFREQ/SERIALRATE/4;
const int BITTIME_OUT=APROCFREQ/SERIALRATE/4;
const BYTE SERIALPORT_OUT=&PORTB;
const BYTE SERIALPORT_IN=&PORTB;
const BYTE SERIALBIT_OUT=0;
const BYTE SERIALBIT_IN=1;
#pragma callfunction pSerialOut

void main()
{
 bRB0=1; // Initialise output to level 1
 bTRB0=0;
 printf("%s %d\n%","Hello World",1);

endit:
 while(1);
}

Here is a complete test program which prints the contents of memory from address 0x20 to
address 0x7f on an attached terminal. It uses the internal interrupt driven serial port library.
Note the use of “#callfunction AddTx” which is used to tell the compiler to link in the AddTx
function. Note also that the last character of the definition string in the fnprintf function is a
% character which suppresses the final terminating zero normally printed by fnprintf.

//
// Dump contents of memory to terminal
//
#include <datalib.h>
#include <delays.h>
#include <strings.h>
#include <pic.h>

const int TXBUFSZ=32;
const int RXBUFSZ=32;
const int SERINTRATE=9600;
const int USEXON=1;
extern unsigned char TxTab[TXBUFSZ];
extern unsigned char RxTab[RXBUFSZ];
#pragma locate TxTab 0xa0
#pragma locate RxTab 0xc0
unsigned char x,RxSz,TxSz;

144

 Forest Electronic Developments June 1999

#callfunction AddTx

void main()
{
 char *i;

 SerIntInit(); // Initialise serial interrupts
 for(i=(char *)0x20; i<=(char *)0x7f; i++)
 {
 fnprintf(AddTx,"%04X - %02X\n%",i,*i);
 }
}

const int QuickInt=1; // Quick interrupts

void Interrupt() // Interrupt handler
{
 SerIntHandler();
}

Here is a test program which prints characters to Port B. Each character is output to Port B
and then a strobe line (Port A, bit 0) is asserted high and then low again to “clock out” the
character. This program uses the compact version (fnprintfsm). Note that the function which
“prints” to port B is declared as void return with a single character parameter, note also that
“#asmfunc PrintB” is used – this prevents the optimiser from optimising the PrintB function
which is essential for the correct operation of fnprintf and fnprintfsm.

//
// Dump a string to port B, strobed on port A0
//
#include <strings.h>
#include <pic.h>

void PrintB(char x);
#asmfunc PrintB(char x)

void main()
{
 ADCON1=7; // A to D converters set to digital
 PORTB=0;
 TRISB=0; // Port B to outputs
 PA.B0=0; // Strobe line low (Port A,bit 0)
 TRISA=~1; // Port A, bit 0 to output

 fnprintfsm(PrintB,"A test string - Number %d, Character
%c",123,'F');

while(1);
}

void PrintB(char x)
{
 PORTB=x;
 PA.B0=1; // Strobe clock line
 PA.B0=0;
}

Here is a complete program to print a floating point number using sprintfsm.

#include <maths.h>
#include <strings.h>
char fs[16];
char out[32];

 145

float f=3.141;

void main()
{
 fPrtString(fs,f);
 sprintfsm(out,"Floating Number %s",fs);
endit:
 while(1);
}

Random Numbers

void srand(int seed);

int rand(void);

Header file : <maths.h>

Library file : <maths.c>

These routines are used to generate pseudo random numbers.

srand seeds the random number generator, it is recommended that a value such as timer 0
is used to initialise this to avoid the same value being generated on each occasion. rand
returns a 16 bit signed number which will appear to the user to be random.

Returns:

srand – no return.

rand returns the random number.

SerialIn

unsigned char SerialIn(char *Port,int BitNumber);

unsigned char pSerialIn(void);

Header file : <datalib.h>

Library file : <datalib.c>

These routines are used to detect asynchronous serial data at an input PIN of the PIC. The
routines wait until the falling edge of the start bit of the serial data byte. The entire byte is
then received and returned as an unsigned character.

The first version of the routine allows for the user to define the port and the bit to be used
to detect the received data. The second version sets up the port and the bit with constants
which are defined in the C source file, and therefore this routine always operates on the
same port, and the same bit. The second version is more useful when there is only one serial
port connected to the PIC, it also uses less space and is slightly faster.

For both versions a global constant must be defined which is the serial bit rate to be used.
This is called BITTIME_IN. For the pSerialIn routine two constants must be defined :

146

 Forest Electronic Developments June 1999

SERIALPORT_IN and SERIALBIT_IN, the port defined by these constants will always
be used by pSerialIn to receive data.

Returns:

The received serial data byte. Note that all other processing is suspended until a start bit is
detected and the byte is received.

Examples:
//
// Example 1 - SerialIn()
//

//
// Receive a byte at 9600bps on Port B, bit 1 with 4MHz clock
//
#include <pic.h>
#include <datalib.h>

const long SERIALRATE_IN=9600;
const int BITTIME_IN=(4000*1000)/SERIALRATE_IN/4;

unsigned char x;

void main()
{
 x=SerialIn(&PORTB,1);
 while(1);
}

//
// Example 2 - pSerialIn()
//

//
// Receive a byte at 9600bps on Port B, bit 1 with 4MHz clock
//
#include <pic.h>
#include <datalib.h>

const long SERIALRATE_IN=9600;
const int BITTIME_IN=(4000*1000)/SERIALRATE_IN/4;
const BYTE SERIALPORT_IN=6;
const BYTE SERIALBIT_IN=1;

unsigned char x;

void main()
{
 x=SerialIn();
 while(1);
}

 147
SerialOut

unsigned char SerialOut(char *Port,unsigned char Bit,unsigned char Transmit);

unsigned char pSerialOut(unsigned char Transmit);

Header file : <datalib.h>

Library file : <datalib.c>

These routines are used to transmit asynchronous serial data at an output PIN of the PIC.
The routines expect the output pin to have been defined as an output using one of the Tri-
State registers, and set high in the idle state. A zero start bit is transmitted first followed by 8
data bits (LSB first), and finally a high stop bit - 10 bits in total.

The first version of the routine allows for the user to define the port and the bit to be used
to transmit the data. The second version sets up the port and the bit with constants which
are defined in the C source file, and therefore this routine always operates on the same port,
and the same bit. The second version is more useful when there is only one serial port
connected to the PIC, it also uses less space and is slightly faster.

For both versions a global constant must be defined which is the serial bit rate to be used.
This is called BITTIME_OUT. For the pSerialIn routine two constants must be defined :
SERIALPORT_OUT and SERIALBIT_OUT, the port defined by these constants will always
be used by pSerialOut to transmit data.

Returns:

Void function - no return.

Examples:
//
// Example 1 - SerialOut()
//

//
// Transmit byte 0x55 at 9600bps on Port B, bit 1 with 4MHz clock
//
#include <pic.h>
#include <datalib.h>

const long SERIALRATE_OUT=9600;
const int BITTIME_OUT=(4000*1000)/SERIALRATE_OUT/4;

void main()
{
 SerialOut(0x55);
 while(1);
}

//
// Example 2 - pSerialOut()
//

//
// Transmit byte 0x55 at 9600bps on Port B, bit 2 with 4MHz clock

148

 Forest Electronic Developments June 1999

//
#include <pic.h>
#include <datalib.h>

const long SERIALRATE_OUT=9600;
const int BITTIME_OUT=(4000*1000)/SERIALRATE_OUT/4;
const BYTE SERIALPORT_OUT=6;
const BYTE SERIALBIT_OUT=2;

unsigned char x;

void main()
{
 pSerialOut(0x55);
 while(1);
}

stdio functions

char getc();

char getchar();

void gets(char *s);

char fgetc(FILEI fi);

char fgets(char *s,FILEI fi);

char fprintf(FILE fi,char *s,…);

void fputc(char c,FILE fo);

void fputs(char *s,FILE fo);

unsigned char kbhit();

char printf(FILE fi,char *s,…); // See printf functions

void putc(char c);

void putchar(char c);

void puts(char *s);

Header file : <stdio.h>

Library file : <stdio.c>

These functions are provided in the stdio.c library. This library is not included in the
compilation by default, but must be added using the File | Libraries menu option. For full
details please see the separate manual LibraryExtensions.pdf included in the Libraries sub-
directory of the installation CD.

 149
stdlib functions

char cabs(char v);

char abs(int v);

char labs(long v);

char atoc(char *s);

unsigned char atouc(char *s);

float atof(char *s);

int atoi(char *s);

unsigned int atoui(char *s);

long atol(char *s);

unsigned long atoul(char *s);

int rand();

void srand(int seed);

Header file : <stdlib.h>

Library file : <stdlib.c>

See also Random Numbers.

These functions are provided in the stdlib.c library. This library is not included in the
compilation by default, but must be added using the File | Libraries menu option. For full
details please see the separate manual LibraryExtensions.pdf.

String Functions

String Functions

Header file : <Strings.h>

Library file : <Strings.c>

See also String Print Functions

These functions operate on strings, they are listed below, please note strings may be in ROM
or RAM, but may only be copied to pointers to space in RAM, failure to observe this will
result in unpredictable results or a crash. Note that although pointers to unsigned chars are
expected, in practice char or unsigned char strings may be used. The functions which start
with a lower case r are the same as the normal functions, but the first parameter is always a
ram pointer

150

 Forest Electronic Developments June 1999

Function Return Notes
unsigned char
 CheckSum(unsigned char *s); Unsigned

char
Totals all the
characters in the
supplied string and
returns the value.

void *
 memcpy(void *s,void *d,unsigned
char c); s Copy c bytes from

memory location d to
memory location s

unsigned char *
 strcat(unsigned char
*d,unsigned char *s); d Add string s to the end

of string d and return
string d

unsigned char *
 strchr(unsigned char
*d,unsigned char c); Result Find character c in

string d and return a
pointer to it if found.
Return 0 if not found

char
 strcmp(unsigned char
*d,unsigned char *s); -1, 0 or +1 Compares strings d

and s and returns 0 if
equal, -1 if d is less
than s, and +1 if d is
greater than s

unsigned char *
 strcpy(unsigned char
*d,unsigned char *s); d Copy string s to string

d
unsigned char *
 strncpy(unsigned char *d,
unsigned char *s,
 unsigned char n);

d Copy at most n
characters from string
s to string d

void
 vstrcpy(unsigned char
*d,unsigned char *s); Void Copy string s to string

d, no return
unsigned char
 strlen(unsigned char *d); Result Return length of string

d
unsigned char
 *strlwr(unsigned char *d); d Convert characters in

string d to lower case
unsigned char
 *strupr(unsigned char *d); d Convert characters in

string d to upper case
unsigned char
 rCheckSum(unsigned char *s); unsigned

char
Totals all the
characters in the
supplied string in ram
and returns the value.

void ram *
 rmemcpy(void ram *s,void
*d,unsigned char c); s Copy c bytes from

 151
memory location d to
memory location s in
ram

unsigned ram char *
 rstrcat(unsigned ram char
*d,unsigned char *s); d Add string s to the end

of string d in ram and
return string d

unsigned ram char *
 rstrchr(unsigned ram char
*d,unsigned char c); Result Find character c in

string d in ram and
return a pointer to it if
found. Return 0 if not
found

char
 rstrcmp(unsigned ram char
*d,unsigned char *s); -1, 0 or +1 Compares strings d in

ram and s and returns
0 if equal, -1 if d is less
than s, and +1 if d is
greater than s

Unsigned ram char *
 rstrcpy(unsigned ram char
*d,unsigned char *s); d Copy string s to string

d in ram
void
 rvstrcpy(unsigned ram char
*d,unsigned char *s); Void Copy string s to string

d in ram, no return
Unsigned char
 rstrlen(unsigned ram char *d); Result Return length of string

d in ram
Unsigned ram char
 *rstrlwr(unsigned ram char *d); d Convert characters in

string d in ram to
lower case

Unsigned ram char
 *rstrupr(unsigned ram char *d); d Convert characters in

string d in ram to
upper case

String Print Functions

char *cPrtString(char *String,char n);
char *fPrtString(char *String,float n);
char *iPrtString(char *String,int n);
cha *lPrtString(char *String,long n);

char ram *rcPrtString(char ram *String,char n);
char ram *riPrtString(char ram *String,int n);
char ram *rlPrtString(char ram *String,long n);

Header file : <Strings.h>

Library file : <Strings.c>

fPrtString is described in Maths Routines.

152

 Forest Electronic Developments June 1999

These routines are used to print a decimal representation of a signed number to a string.
There are 3 forms, one for characters, one for integers, and one for long types. Use the
correct style for the largest type which needs printing as the amount of program space
required is smaller for the smaller types.

The functions which start with a lower case r are the same as the normal functions, but the
string parameter is always a ram pointer

The number supplied is n. The string must be large enough to hold the complete number
when printed. The number is prefixed by a – sign if the number (n) is negative. The string is
terminated with a 0 character.

Returns:

A pointer to the string.

Examples:

unsigned char Secs;
char s[16];

cPrtString(s,Secs);

Wait

void Wait(int Delay);

Header file : <Delays.h>

Library file : <Delays.c>

This function enters a loop for a supplied number of milli-seconds. Delay is the number of
milliseconds. The processor undertakes no processing during the delay except for interrupts.
Any interrupt occurring during the delay will extend it by the period of the interrupt.

This function is not suitable for timing as delays calling the function are not accounted for. It
is mainly of use when the processor is to be delayed for a minimum period of time whilst
some other function occurs such as a write to EEPROM.

Returns:

Void function, no return.

Examples:

Wait(5); Delay 5mS

 153

12 C Reference
Language
Types

12.1. Language
Omissions and changes
Extensions

The FED PIC C compiler C language is designed to ANSI standards, the reference source
which readers may find most useful is "The C Programming language" by Brian K. Kernighan,
and Dennis M. Ritchie, Second Edition, ISBN 0-13-110362-8. This edition of the famous C
reference is written to ANSI standards.

The FED PIC C compiler C language has the following omissions and extensions:

Omissions and changes

Functions

The ... form for continuation of function parameters is supported, but only in assembler
functions.

Floating Point

The standard version does not include floating point support, this is included in the
professional edition. The float and double types create an error in the standard edition.

Include search path

The search path for includes is in the following order :

MainDir\LibsUser
MainDir\Libs
MainDir\Libs\ProcIncs

Where MainDir is the main application directory. The LibsUser directory is empty and
provided to allow users to put in place their own headers, or even to override the FED
provided headers.

Library functions

Few of the ANSI library functions are included as not many have relevance to a micro-
controller environment. The full list of supported library functions is shown in the Library
Reference section.

Comparisons

If the strict ANSI option is turned off then the result of comparisons will be cast to a signed
character (value 0 or 1). If turned on then the result is a signed integer. When turned off
compiled files are smaller.

154

 Forest Electronic Developments June 1999

enums

The type of an enumeration is the smallest signed type which can fit the range of results. For
example an enumeration of the form:

enum Codes {OPEN=0,CLOSED,AJAR};

results in a type called Codes which is equivalent to a signed character. However

enum BigCodes {OPEN=1000,CLOSED,AJAR};

results in a type called BigCodes which is equivalent to a signed integer.

Extensions
Defines
#__config
#asm
#asmdefine
#asmline
#asmend
#asmfunc
#callfunction
#eeprom
#forcequick
#heap
#locate
#locopt
#noheap
#optdup
#optspace
#optspeed
#optquickcall
#preprocdefine
#procfreq
#projectfile
#stack
#usemacro
pointed

All C extensions are incorporated in the pre-processor, and so are preceded with a '#'
character, or are implemented as standard definitions which can be tested with #ifdef. To
ensure absolute ANSI compliance all extensions can be preceded with #pragma which will
ensure that other compilers ignore the directive. The extensions are listed below:

Defines

Symbols

The following symbols or constant intgers are defined:

 155
_APPWIZ_AUTO

This value is included and set to the name of the header file which defines the values and
elements in a WIZ-C project. To include the header file then simply use # include :

#include _APPWIZ_AUTO // Include App Designer header

APROCFREQ

This value is included in all compilations by the FED PIC C compiler and is set to the value of
the Processor Frequency in the Compile Options Dialog Box. It is also defined in the
assembler file (and hence may be tested or used by assembler code) as _APROCFREQ.

BANKBITS

This value is included and set to 0, 1 or 2 depending on the number of banks of RAM (1,2, or
4).

_BITTYPES_OPT

This value is defined only when the option to define register bit names without the
preceding lower case ‘b’ is desired. It is defined by the compatibility option “No ‘b’ in front
of bit names”. See Support for 3rd party compilers

COMMON

This value is included and only set to 1 if a common bank of RAM is present (usually from
address 70 hex to 7F hex)..

_CORE

This value is included in all compilations by the FED PIC C compiler and is set to 16 for 16 bit
core processors (18 series) and to 14 for the 14 bit core processors (12 and 16 series). For
compatibility with 3rd party compilers it is better to use _PIC14 and _PIC16 (see below).

_FEDPICC

This value is included in all compilations by the FED PIC C compiler and is set to 1.

GPRBITS

This value is included and set to 0, 1 or 2 depending on the number of banks of general
purpose RAM (1,2, or 4).

MPC

This value is included in all compilations by the FED PIC C compiler and is set to 1 to indicate
that the target is the Microchip PIC family.

__PIC_C__

This value is included in all compilations by the FED PIC C compiler and is set to 1.

156

 Forest Electronic Developments June 1999

_PIC14

This value is set to 1 for a PIC 14 bit core device and is included for compatibility with 3rd
party compilers.

_PIC16

This value is set to 1 for a PIC 16 bit core device and is included for compatibility with 3rd
party compilers.

__ProcessorName

This value is included in all compilations by the FED PIC C compiler and is set to 1. The name
of the define is the name of the processor. E.g. if the 16C84 is selected then the symbol
__16C84 will be defined and set to value 1.

PROCFREQ

This value is included in all compilations by the FED PIC C compiler and is set to the value of
the Processor Frequency in the Compile Options Dialog Box divided by 1000. It is also
defined in the assembler file (and hence may be tested or used by assembler code) as
_PROCFREQ.

__PROCTYPE_H

This is defined as a C Macro and is set to the header file name for the current processor. For
example if a 16F84 is selected then __PROCTYPE_H will be set to the string “P16F84.h”
including the inverted commas.

QUICKCALL

This value is included in all compilations by the FED PIC C compiler where the Optimisation
Use PIC Call Stack is set and is set to 1. It is also defined in the assembler file (and hence may
be tested or used by assembler code) as _QUICKCALL and set to 0 or 1 according to whether
the option is set to be used.

_ROMSIZE

This value is included in all compilations by the FED PIC C compiler and is set to the size of
the ROM area in words for 14 bit core (12/16 series devices), and bytes for 16 bit core (18
series).

_SERIES

This value is included in all compilations by the FED PIC C compiler and is set to 18 for 18
series processors and to 16 for the 12 and 16 series.

_EESIZE

This value is included in all compilations by the FED PIC C compiler and is set to the size of
EEPROM data area on the processor. It will be set to 0 for devices with no EEPROM.

 157
false

This value is included in all compilations by the FED PIC C compiler and is set to 0. It is
defined as a constant integer.

true

This value is included in all compilations by the FED PIC C compiler and is set to 1. It is
defined as a constant integer.

MAXLOCOPTSIZE

This value is included at an assembler level – it cannot be read from C. It is the maximum
number of bytes used for local optimisation if all functions are in use.

OVERHEADPAGE0

This value is included at an assembler level – it cannot be read from C. It is the number of
bytes used for variables in Page 0 of the device and includes temporary files and bytes used
for Local Optimisation. For a 16F, 12F, 12C, or 16C device this will be the number of bytes at
address 0x20 used by the compiler (if the device has a duplicate RAM area at 0x70 this is
completely used by the compiler and IS NOT included in the count). For a 18C or 18F series
device this is the number of bytes used by the compiler for variables at address 0.

Function definitions

Every time that a function is called, a special type of define is created with the same name as
the function with a preceding underscore, this can only be tested using #ifdef in any files
within the project which follow that call. To reiterate, this special define lives beyond the
end of the currently compiling file.

For example if the function SerialIn() is called and if a subsequent C pre-processor directive
of the form:

#ifdef _SerialIn

is encountered, then it will return true. This is used for library definitions, see section
Creating Libraries, for full details of how this is used.

#__config

(or #pragma __config)

This command defines the configuration register in the hex file, it is supplied with a
single word which is the data to be saved for the configuration register, the simulator
and some programmers will read this information when they load the hex file. Please
note that if the Project | Set configuration options dialog box has been used to set the
configuration words then the value set will take precedence over ANY values set

This command works equally well with devices which store configuration fuses at the
top of ROM memory, however these devices tend not to have definitions for the
config registers.

158

 Forest Electronic Developments June 1999

Example

#__config 0x3F3F

Where the device has only one configuration register the value is loaded to that
register, for example for the 14 bit core, 16Cxx series the address is 0x2007. For the
devices in the 18 series with several registers (or 16F devices such as the 16F88) a
byte address must be supplied followed by a comma and then the byte value, the
example below shows a typical 18 series config set:
 #__config _CONFIG0, _CP_OFF_0
 #__config _CONFIG1, _OSCS_OFF_1 & _HS_OSC_1
 #__config _CONFIG2, _BOR_OFF_2 & _BORV_25_2 & _PWRT_OFF_2
 #__config _CONFIG3, _WDT_OFF_3 & _WDTPS_128_3
 #__config _CONFIG5, _CCP2MX_OFF_5
 #__config _CONFIG6, _STVR_ON_6

Here is an example for the 16F88

#__config 0x2007,0x3F61
#__config 0x2008,0x3FFD

Here is an example for a newer 18F series device which stores config values at the
top of memory and does not have the values defined in he fuse file. Again note the
use of byte addresses and that byte values are provided not word values.

#__config 0x300000,0x61
#__config 0x300001,0xFD

#asm

(or #pragma asm)

The #asm directive starts a block of assembler code. All lines between #asm and #asmend
are taken to be assembler code, or assembler directives, and are written literally to the
output file. Please note that the C compiler completely ignores these lines, however any
normal pre-processor directives are obeyed, for example code can be included or ignored by
using #ifdef directives.

Example

The example below shows how to implement a C function in assembler which will clear out
the bottom page of RAM on a 14 bit core processor such as the 16C74.

 159

void ClearPage0(void); // Declare function

#asm
#usemacro MRET

Clearpage0:
 movlw 0x20
 movwf FSR
 movlw 0x60
 movwf Temp
cloop: clrf 0
 decfsz Temp
 goto cloop
 MRET
#asmend

#asmdefine

(or #pragma asmdefine)

The #asmdefine directive forces the compiler to define the supplied label at the top of the
assembler file before any other assembler code. It is mainly used to force the assembler to
include subroutines intended for use by the compiler, but which are being called by
assembler. See Using Assembler

Example

#asmdefine _LoadSPD

#asmline

(or #pragma asmline)

The #asmline directive forces the compiler to pass the rest of the line to the assembler. See
Using Assembler

Example

#asmline clrwdt ; Clear the Watchdog timer

#asmend

(or #pragma asmend)

See #asm

#asmfunc

(or #pragma asmfunc)

The #asmfunc directive is followed by a function name which must have already been
defined. It tells the compiler not to attempt to optimise that function.

Example

void WriteEEData(unsigned char Addr,unsigned char Data);

160

 Forest Electronic Developments June 1999

#pragma asmfunc WriteEEData

#callfunction

(or #pragma callfunction)

The #callfunction directive is an internal link to the compiler which ensures that the
compiler acts as though the supplied function has been called (this operates to ensure that
the correct functions are linked in by the assembler). It is only used in conjunction with
assembler routines where the assembler calls a library function. Syntax is :

#callfunction Function_Name

Example

The example below shows how to direct the compiler to link the code for the function Wait

#callfunction Wait

#eeprom

(or #pragma eeprom)

This command defines data for the eeprom data area. The #eeprom directive is
followed by data items. A numeric item is written to the next eeprom data location in
turn. If an item is of the form :

Address=data

Then the data value is written to eeprom address defined.

Example

#eeprom 0x3f,8=7
#eeprom 0x9

In the example above the values of the first 10 data bytes in eeprom will be :

0x3f,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0x07,0x9

Note that the eeprom data is embedded in the hex file and will be written to the
eeprom data area of devices which have eeprom data by most programmers.

#forcequick

(or #pragma forcequick)

This directive is used in the PIC specific header files to force the compiler to call the specified
function using the PIC Call instruction rather than using the software stack – even if quick
calling is turned off. It is useful for assembler functions which use return rather than MRET –
in particular functions designed to be called from interrupts.

#forcequick FunctionName

FunctionName is the name of a function which must have been previously declared.

 161
Example

This code defines the serial interrupt handler in the datalib.h file :

#forcequick SerIntHandler

#heap

(or #pragma heap)

This directive is used in the PIC specific header files to define the value of the heap pointer
which is normally defaulted to the first free memory location above variables, or the first
byte in the top memory page. Please note this directive should only be used at the top of
the first file in the compilation, failure to observe this may result in a PIC program crash.
Note that this takes preference over the value defined in the Compile Options Dialog Box.
See also Interrupts & Memory

#heap Location

Location is a constant number which must be either in decimal or 0xnnn hexadecimal
format.

Example

This code defines the heap pointer to be at 0x1a0.

#heap 0x1a0

#locate

(or #pragma locate)

This directive is used in the PIC specific header files to define the internal file registers of the
processor as C variables. The syntax is:

#locate Variable Location

Variable is name of any variable which must have been previously defined, and which must
have been defined as type external. Location is a constant number which must be either in
decimal or 0xnnn hexadecimal format.

Example

Here is the code which defines the TIMER1 file register for the 16C74 as an unsigned integer
located in memory at address 14 decimal, 0E hex, and also as two unsigned characters - one
for the lower byte, and one for the upper byte.

162

 Forest Electronic Developments June 1999

extern unsigned int TMR1;
extern unsigned char TMR1L
extern unsigned char TMR1H;
#locate TMR1 0xe
#locate TMR1L 0xe
#locate TMR1H 0xf

#locopt

 (or #pragma locopt)

This directive is used in the PIC specific header files to set the number of local optimisation
bytes used by the compiler. Note that this takes preference over the value defined in the
Compile Options Dialog Box. Please note this directive should only be used at the top of
the first file in the compilation, failure to observe this may result in a PIC program crash.
See also Optimising Your Output

#locopt value

value is the number of bytes to use for local optimisation. value is a constant number which
must be either in decimal or 0xnnn hexadecimal format.

Example

This code instructs the compiler to use 8 bytes for local optimisation.

#locopt 8

#noheap

 (or #pragma noheap)

This directive is used with application programs (such as Real Time Operating Systems)
which do not allow for the use of the heap. The directive does nothing other than force an
error if the heap is used when the #pragma noheap directive has been encountered. The
heap is only used for storing interim results which are too large for the internal accumulators
such as when a structure is returned by a function.

Example

#noheap

#optdup

(or #pragma optdup)

This directive is used to turn on, or off the duplicate block optimiser. The selected state is
used for the rest of the file until the next optdup directive. Note that if the duplicate
optimiser is turned off for the project (in the options dialog), then it will not be turned back
on by “optdup 1”. See also Compiler Options Dialog Box

#optspace value

value is either 0 or 1 depending on whether the option should be turned on or off.

 163
Example

This code instructs the compiler to optimise for space.

#optspace 1

#optspace

(or #pragma optspace)

This directive is used in the PIC specific header files to set the compiler to optimise the
output for space saving. Note that this takes preference over the value defined in the
Compile Options Dialog Box. Please note this directive should only be used at the top of
the first file in the compilation, failure to observe this may result in a PIC program crash.
See also Optimising Your Output

#optspace value

value is either 0 or 1 depending on whether the option should be turned on or off.

Example

This code instructs the compiler to optimise for space.

#optspace 1

#optspeed

 (or #pragma optspeed)

This directive is used in the PIC specific header files to set the compiler to optimise the
output for speed. Please note this directive should only be used at the top of the first file in
the compilation, failure to observe this may result in a PIC program crash. Note that this
takes preference over the value defined in the Compile Options Dialog Box. See also
Optimising Your Output

#optspeed value

value is either 0 or 1 depending on whether the option should be turned on or off.

Example

This code instructs the compiler to turn off optimisation for speed.

#optspeed 0

#optquickcall

 (or #pragma optquickcall)

This directive is used in the PIC specific header files to set the compiler to generate output to
use the PIC call stack when calling functions. Please note this directive should only be used
at the top of the first file in the compilation, failure to observe this may result in a PIC
program crash. Note that this takes preference over the value defined in the Compile
Options Dialog Box. See also Optimising Your Output

164

 Forest Electronic Developments June 1999

#optquickcall value

value is either 0 or 1 depending on whether the option should be turned on or off.

Example

This code instructs the compiler to use the PIC call stack for function calling.

#optquickall 1

#preprocdefine

(or #pragma preprocdefine)

This directive is used to define a value which will be included as a C macro definition in all
files following this one which are compiled. As library files are always compiled last the
directive is a way of communicating to a library in C.

#preprocdefine MacroName=Substitution

This will have the same effect for all following files as if the following C definition were
included at before the compilation of each file :

#define MacroName Substitution

Example

This code defines the Vendor ID for the USB library :

#pragma preprocdefine _VendorID=0x04d8

Now within the USB code the following can be written to test and use the earlier definition:

#ifdef _VendorID
 const int vid=_VendorID;
#else
 const int vid=0x000;
#endif

#projectfile

(or #pragma projecfile)

This directive is used to include files in the project file window and is useful for libraries to
ensure that correct files are included in the build. A file with a .txt extension will be included
as a comment file, a file with a .sti extension will be included as a simulation file, all other
files will be included as C source files.

Any file defined will be added to the project window if it is not already present. The file
name should be enclosed in inverted commas (") and unlike any other C string back slashes
should not be shown as \\ but should be shown as a single \. If a full path is not given then
the current project directory is assumed. Finally $(FEDPATH) at the start of the string will be
replaced by the directory of the main program executable.

For example :

#pragma projectfile "$(FEDPATH)\libs\usb\cdc\sti\configure.sti"

 165
This example ensures that configure.sti is included in the project, assuming the standard
install location then this will be expanded to :

c:\program files\fed\pixie\libs\usb\cdc\sti\configure.sti.

#procfreq

(or #pragma procfreq)

This directive is used in the PIC specific header files to define the value of the processor
frequency. Please note this directive should only be used at the top of the first file in the
compilation, failure to observe this may result in a PIC program crash. Note that this takes
preference over the value defined in the Compile Options Dialog Box.

#procfreq value

value is a constant number which must be either in decimal or 0xnnn hexadecimal format.

Example

This code defines the processor frequency to be at 2.5MHz.

#procfreq 2500

#stack

(or #pragma stack)

This directive is used in the PIC specific header files to define the value of the stack pointer
which is normally defaulted to the top location in memory. Please note this directive should
only be used at the top of the first file in the compilation, failure to observe this may
result in a PIC program crash. Note that this takes preference over the value defined in the
Compile Options Dialog Box. See also Interrupts & Memory

#stack Location

Location is a constant number which must be either in decimal or 0xnnn hexadecimal
format.

Example

This code defines the stack pointer to be at 0x7F.

#stack 0x7f

#usemacro

(or #pragma usemacro)

Still operates for backward compatibility. Defunct do not use in new projects.

166

 Forest Electronic Developments June 1999

#usemacro macro text

pointed

Note that for processors with more than 32K words of program the standard 2 byte pointer
can only point to the bottom 32K of ROM memory. To allow pointers to address functions in
this situation any function which may be called through a pointer should be defined as
pointed :

void pointed MyCallableFunction(int param);

Therefore there is a limit imposed on the program that no more than 32K of functions may
be called through a pointer. In practice this limit is far greater than required - if more then
this size of program is required then small functions can be defined which call bigger
functions.

There is no need to use the pointed keyword for processors or programs which utilise less
than 32K words of program memory.

pointed is not standard ANSI, to allow programs to be portable the following can be defined
at the top of the source file :

#ifndef _FEDPICC
 #define pointed
#endif

12.2. Types
Built in types
Types defined in PIC header files

Built in types

bit

The bit type is a single bit and consequently has some limitations. It is very efficient for
holding flags in global memory as it can be set, reset, and tested with a single instruction and
only occupies one bit of memory so that 8 bits only take one byte. Note this is a non-ANSI
type. bit behaves like an unsigned char of length 1 bit so it takes the values 0 or 1.

The limitations of the bit type are that it cannot be used as a function parameter – the
following example is illegal:

void func(bit x);

It’s address cannot be taken and therefore arrays of bits cannot be created either. As a local
variable in a function it is automatically defined as unsigned char, and therefore its use as a
local variable is also not recommended as its behaviour may not be as expected.

char

The char type is the fundamental type supported by the PIC, 8 bits. Signed values can
represent results from -128 to +127, Unsigned from 0 to 255.

 167
HINT

Use the unsigned char type wherever possible as it is the most efficient
form for both program space and execution speed. The unsigned char
type is also defined as a type in all the PIC headers which is called BYTE.

int

The int type is 16 bit type which is slower and uses more code space than the char type.
Signed values can represent results from -32768 to +32767, Unsigned from 0 to 65535.

long

The long type is a 32 bit type which is slower and uses more code space than the char or int
types. Signed values can represent results from -2,147,483,648 to +2,147,483,647, Unsigned
from 0 to +4,294,967,295.

float and double

The float type is a 32 bit type which can hold floating point numbers. The float form consists
of a sign bit, 8 bit exponent and 24 bit mantissa. The top bit of the mantissa is always 1, and
is not saved in the number. Float values can represent results positive or negative numbers
within the approximate range 1e-38 to 1e+38.

The double type is the same as float at preset.

Pointers

Pointers declared as ram (e.g. char ram *xp;) are one byte in length and may only point
to items in the bottom 256 bytes of address space for 12 and 16 series devices. For 18 series
devices these pointers are 2 bytes long, but use the FSR accumulator and are considerably
more efficient, they may only point to items in RAM space.

All other pointers are 2 bytes in length allowing any location in File Register or Program
memory to be addressed. To differentiate between File Register (RAM) and program
memory the top bit is set. Thus the pointer 0x0006 points in File Register memory to address
6 which is PORT B on most processors, the address 0x8006 points to address 6 within
program memory. Please note that if any pointer to Program Memory is de-referenced then
the program will expect that location to contain a RETLW instruction, any other instruction
may cause a program crash.

Note that for processors with more than 32K words of program the 2 byte pointer can only
point to the bottom 32K of ROM memory. To allow pointers to address functions in this
situation any function which may be called through a pointer should be defined as pointed :

void pointed MyCallableFunction(int param);

Therefore there is a limit imposed on the program that no more than 32K of functions may
be called through a pointer. In practice this limit is far greater than required - if more then
this size of program is required then small functions can be defined which call bigger
functions.

168

 Forest Electronic Developments June 1999

HINT

For 12 or 16 series processors define all pointers to items in the bottom
256 bytes of memory to be of type ram.

For 18 series devices define pointers which will only ever be to RAM to be
of type ram.

Types defined in PIC header files

BYTE

This type is defined in all the PIC headers and is equivalent to unsigned char.

FileReg

This type is defined in all the PIC headers and is equivalent to unsigned char.

ulong

This type is defined in all the PIC headers and is equivalent to unsigned long.

WORD

This type is defined in all the PIC headers and is equivalent to unsigned int.

 169

13 Pre Processor
Many thanks to Marcel Van Lieshout for his excellent work during 2004 on the pre-
processor.

The pre-processor is encapsulated in a DLL, it is called WIZCPP, this section of the manual
describes the pre-processor. The pre-processor runs before the main compiler and produces
an intermediate file which includes only compiler specific options (using #pragma).

Specifications

WIZCPP pragma Options

13.1. Specifications

WIZCPP and the ANSI99 standard

Pragma

WIZ-CPP options

Linelength

Assembler and the pre-processor

sizeof() operator

#include

Magic defines

WIZCPP and the ANSI99 standard

WIZCPP is aimed to be fully compliant to the ANSI99 standards specification. There are some
deviations from this standard implemented. These deviations were necessary to optimize
the preprocessor to the wiz-C integrated development environment.

Pragma

Compliant with the standard, pragma’s are copied onto the output. Their output always
starts in column 1 of a new line. Only the pragma will be on this line. Before writing the
output, a macro-expansion is performed. It is therefore perfectly legal to write a pragma
like:

#define _PROCFREQ 20000
#pragma procfreq _PROCFREQ

A special pragma is defined to set options for WIZCPP itself. The pragma-identifier is
WIZCPP-compile-time defined. The default value is “WIZCPP”. WIZCPP-pragma’s will never
be written onto the output. An example of a WIZCPP-pragma:

#pragma WIZCPP writecomments off

170

 Forest Electronic Developments June 1999

For further explanation of the WIZCPP-pragma’s: see “WIZCPP options”.

WIZ-CPP options

Next to pragma’s WIZCPP also accepts other #-directives. An example:

#pragma asmfunc myfunc

 can also be written as:

#asmfunc myfunc

Of course WIZCPP has to handle these, too. This is an addition to the ANSI99 standard. The
options are converted by WIZCPP into real pragma’s and handled as such (see above). The
compiler will therefore only see real pragma’s which will always start in column 1.

Linelength

WIZCPP can be configured (WIZCPP-compile-time) to limit the output linelength. This is
introduced to safeguard the compiler from running out of bufferspace. Normally an error is
raised when the outputlinelength is exceeded and the remainder of the line will not be
written. It is possible to configure WIZCPP (WIZCPP-compile-time) in such a way that all
macro-expansions will write a newline character when encountering a backslash/newline
combination. This will greatly reduce the risk of exceeding the maximum linelength, but is
definitely not ANSI99-compliant as it will break lines where it normally should not. The
default-setting for linelength is 1024. Linebreaks are disabled by default to maintain ANSI99
compliance.

Assembler and the pre-processor

Using pragma’s or wiz-C options, it is possible to enter assembler directly into C-source.
WIZCPP is aware of these pragma’s as macro-expansion needs to be suspended, each
assemblerline needs to start on a new line and comments are structured differently from C-
comments. This awareness of compiler pragma’s by the preprocessor is an addition to the
ANSI99 standard.

Because ANSI99 states that pragma’s (or any other #directive) are not allowed within macro-
definitions, “#pragma asm” cannot be used to include assembler in a macro definition. To
embed pragma’s into macro-definitons, use the ANSI99 _Pragma() operator instead. An
example:

This is correct:

 #define nop() \
 _Pragma(“asm”) \
 nop \
 _Pragma(“asmend”)

or:

 #define nop() _Pragma(“asmline nop”)

But this won’t work:

 #define nop() \
 #asm \
 nop \

 171
 #asmend

sizeof() operator

WIZCPP recognizes the sizeof() operator for basic types. This is not the sizeof() operator that
is handled by the compiler. The sizeof() operator can be used in expressions on #if and #elif
lines to conditionally compile code dependant on basic typesizes:

#if sizeof(int) == 2
 #define INT_MAX 32767
#elif sizeof(int) == 4
 #define INT_MAX 2147483647
#else
 #error “Unable to determine integersize”
#endif

The following basic types are supported: char, short, integer, long, float and double. Pointers
to these types are supported as well as pointers to functions.

#include

The ANSI definition of the #include directive is fully supported. One addition has been made:
When using the #include directive with a token as argument (as opposed to “” or <>), the
token does not need to have delimiters. A WIZCPP-compile-time option is available to
activate or de-activate this addition. Another WIZCPP-compile-time option defines the
delimiter that is to be used. The wiz-C extension is enabled by default, the default delimiter
is ‘”’.

// These are ANSI compliant:

#include “myheader.h”
#include <sysheader.h>
#define headerfile <anotherheader.h>
#include headerfile

// The wiz-C addition also allows:

#define headerfile anotherheader.h
#include headerfile

Magic defines

The following magic defines (also known as dynamic defines) are supported:

__LINE__ The linenumber, currently being processed (eg. 146)

__FILE__ Full name of the current sourcefile (eg. “C:\dir\main.c”)

__FILENAME__ Filename of the current sourcefile (eg. “main.c”)

__PATHNAME__ Pathname of the current sourcefile (eg. “C:\dir\”)

__CURRPATH__ The setting of the currentpath pragma

__DATE__ The current date (eg. "Feb 22 2004")

__TIME__ The current time (eg. "11:04:19")

172

 Forest Electronic Developments June 1999

__TIMESTAMP__ Full date/time (eg. "Sun Feb 22 11:04:19 2004")

__STDC__ “Are we standard C”-flag (always 1 for wizC)

__STDC_VERSION__ ANSI standard to which we comply (always 199901L for wizC)

The dynamic defines can eg. be used to create more descriptive errormessages:

if(error) {
 fprintf(stderr, “Weirdness on line %d in file %s\n”,
 __LINE__, __FILE__);
 exit(1);
}

or include the date and time of compilation into the object:

const char *timestamp = __TIMESTAMP__;

 173

13.2. WIZCPP pragma Options

All WIZCPP-options are implemented as #pragma’s. They can appear anywhere in the
inputstream. They only affect WIZCPP’s behaviour from the inclusion point on. By using
pragma’s, ANSI99 conformance is maintained while still being able to finetune WIZCPP to a
specific task without the use of (sometimes rather cryptic) commandlineparameters.

The available options are described in alphabetical order.

Currentpath

Debug

Exitnormal

Expandasm

Expandnl

Includeoptional

Keepfiles

Linelength

Magicdefines

Psizes

Searchpath

Sizes

Trigraphs

Uselib

Writecomments

Writesyncs

Currentpath

#pragma wizcpp currentpath path

With this option, a directory can be set to be searched for #include-files (mostly headerfiles
.h). It only affects #include-directives where the filename is enclosed within “”. Only one
directory can be set: A new currentpath-directive will overwrite the current path. The path
must be enclosed within “” and should end with a \ (backslash).

Debug

174

 Forest Electronic Developments June 1999

#pragma wizcpp debug debuglevel

This option activates or deactivates the generation of debuginformation to the outputfile.
The outputfile will therefore no longer be a correct C-file as all kinds of additional
information are written into it. As the option is only used during WIZCPP debugging, this
should not cause a problem. The debuglevel can be set to a value of 0 thru 9, where 0
disables debugging (default) and 9 is the highest level. Every level includes the output of all
lower levels. At every use of this directive the internal symboltable is dumped. When
WIZCPP is compiled without debug-support, this #pragma is ignored.

Exitnormal

#pragma wizcpp exitnormal

When WIZCPP encounters any warning, error or fatal (= cannot continue) condition, it will
exit with an exitcode of nonzero to indicate to it’s parent process that errors were found.
When the state of this option is set to ‘on’, WIZCPP will always exit with a zero (= no errors
found) exitcode. Possible values for state are ‘on’ and ‘off’. The default state is ‘off’.

Expandasm

#pragma wizcpp expandasm state

Normally, wizcpp expands assemblerlines in the same way as normal C-code, When the state
of this option is set to ‘off’, wizcpp suspends the expansion of assembler. Possible values for
state are ‘on’ and ‘off’. The default state is ‘on’.

Expandnl

#pragma wizcpp expandnl state

The ANSI specifications define that a combination of a backslash and a newline is to be
treated as line-concatenation: It glues two lines (or more if several consecutive lines are
each terminated by a backslash-newline pair) together into one long line. By default, wizcpp
adheres to this specification.

It is possible, however, to configure wizcpp in such a way that all backslash-newline pairs
will write a newline character when encountered. This will greatly reduce the risk of
exceeding the maximum linelength of the wizC compiler, but is definitely not ANSI99-
compliant as it will break lines where it normally should not.

The most common use of this pragma is when large macro’s need to be handled. The
standard way of expansion can lead to very long lines being generated by the preprocessor.
These long lines may overrun the maximum allowed linelength for the compiler. By using the
expandnl pragma, one can selectively choose to wrap these long lines into multiple shorter
lines.

To be able to nest multiple occurrences of this pragma, an internal stack of 100 levels keeps
track of the history of this pragma. To enable expansion while retaining the previous
setting(s), use:

 175
#pragma wizcpp expandnl save,on // save current setting, then
enable
// linebreaks

Restore the setting to the state before this pragma invocation, use:

#pragma wizcpp expandnl restore // restore previous setting

Includeoptional

#pragma wizcpp includeoptional filetoinclude

This directive allows the optional inclusion of a (eg header-) file. Normal ‘ #include “” ’ or ‘
#include <> ’ syntax and processing is used except that no warning/error is raised when the
file cannot be found. A possible use is the inclusion of additional settings (eg. searchpaths)
on a per-project basis.

Keepfiles

#pragma wizcpp keepfile state

Setting state to ‘on’ prevents WIZCPP from deleting the inputfile and errorfile after a
succesfull (= no fatals, errors and/or warnings) run. . The default state is ‘off’. When WIZCPP
is compiled with debug-support, the files are always kept.

Linelength

#pragma wizcpp linelength length

Wizcpp can be configured to limit the output linelength. This is introduced to safeguard the
compiler from running out of linebufferspace. An error is raised when the outputlinelength is
exceeded and the remainder of the line will not be written. Setting length to 0 (zero)
disables the check. The default length is 250 characters.

Magicdefines

#pragma wizcpp magicdefines state

The magicdefines option allows turning ‘on’ and ‘off’ the recognition of the dynamic defines
(eg. __LINE__ and __FILE__). Possible values for state are ‘on’ and ‘off’. The default state is
‘on’.

Psizes

#pragma wizcpp psizes list

With this option the sizes are defined that are used by the sizeof()-operator when it
evaluates the size of a pointer. List is a comma-separated enumeration of the sizes (in bytes)
of the various basic pointertypes. The order of the sizes is fixed and cannot be changed. The
list must have exactly seven elements. The order is: (char *), (short *), (integer *), (long *),

176

 Forest Electronic Developments June 1999

(float *), (double *) and (*)(). The last entry defines the size of a pointer to a function. The
default sets all pointersizes to 2 bytes (2,2,2,2,2,2,2).

Searchpath

#pragma WIZCPP searchpath path

With this option, a directory can be added to the list of directories to be searched for
#include-files (mostly headerfiles .h). One directory can be added per searchpath-directive.
The maximum number of directories allowed is defined during WIZCPP-compilation. The
path must be enclosed within delimiters, either “” or <>. Although the chosen delimiter does
not affect the searchorder, it might be helpful for documentary purposes. The order all
directories are searched is the order that the directives appear in the inputstream. When a
relative path is used, the current path (see #pragma WIZCPP currentpath) is prepended.

Note that the searchpath is cleared at the start of each C file.

Sizes

#pragma wizcpp sizes list

The sizeof()-operator allows a programmer to write conditional code based on the size of the
basic C-types. Because of that, the preprocessor has to be aware of the sizes of these basic
types. List is an enumeration of the sizes in specific order. Because six basic types are
supported and recognized, list must contain exactly six entries (seperated by comma). The
order of definition is : char, short, integer, long, float and double. The default sets the list to
1, 2, 2, 4, 4, 4.

Trigraphs

#pragma wizcpp trigraphs state

ANSI99 defines a way to use frequently used characters in C-source when these characters
do not appear on the keyboard. This method is called “trigraphing”. Currently there are nine
trigraphs defined in the standard. The nine trigraphs and their replacements are:

Trigraph: ??(??) ??< ??> ??= ??/ ??' ??! ??-

Replacement: [] { } # \ ^ | ~

Possible values for state are ‘on’ and ‘off’. The default state is ‘off’.

Uselib

#pragma wizcpp uselib library-to-include

Through the use of this option, an application can instruct WIZ-C to add a library to it’s list of
libraries. The library-to-include must be enclosed within “”.When a relative path is used, the
current path (see #pragma wizcpp currentpath) is prepended. It is possible to use macro’s

 177
within library-to-include. To differentiate between path-elements and macro’s, the macro’s
should be preceded by a $. This pragma is especially usefull for writing easy-to-use libraries:
The pragma will then be present in the headerfile accompanying the library.

Writecomments

#pragma wizcpp writecomments state

Normally all comments are stripped from the output of the preprocessor. Sometimes,
mostly during debugging, it comes in handy to pass all comments on to the output. Setting
state to ‘on’ will do just this. The default setting is ‘off’.

Writesyncs

#pragma wizcpp writesyncs state

To allow a simulator or ICD-device (in-circuit-debugging) to synchronize to the original
sourcelines, WIZCPP is capable of writing synchronization-lines to it’s output. These lines
contain the sourcelinenumber and the filename the line originally came from. The writing of
these lines can be enabled or disabled by using this option. Possible values for state are ‘on’
and ‘off’. The default state is ‘on’. The structure of the synchronization-lines is defined
during WIZCPP-compilation.

178

 Forest Electronic Developments June 1999

14 Use with MPLAB
FED recognise that MPLAB is the tool of choice for debugging PIC applications for many
users, although we believe that the in-built debugger is faster, easier to use and more
flexible for software debugging, MPLAB has In-Circuit Emulation and Debugging facilitates
not yet available in PICDE.

14.1. MPLAB

Integrating with MPLAB poses a number of problems when considering the FED PIC C/PICDE
model. MPLAB does not support long filenames. MPLAB only supports a single file for
Assembler projects and only integrates command line tools, not complete development
environments such as those from FED. MPLAB does not support DDE or any other forms of
automation. Finally MPLAB will only single step in the assembler file - the original source is
shown as comments in the assembler file.

FED have overcome most of these problems. PIC C has a menu option under the tools menu
called "Run MPLAB (C)". When the project is compiled and assembled PIC C also produces a
special ASM file for MPLAB which has all the macros stripped out and replaced by the code
within the macros - this file has the same name as the project name, but with _MPL.ASM
appended. The code in this file is identical to the code assembled by PIC C, but is in a single
file. PIC C also produces a project for MPLAB called with the same name, but with a .PJT
extension.

When the Run MPLAB (C) option is clicked PIC C runs MPLAB with this project. If it is already
open the project will need to be re-opened.

14.2. Procedure for using MPLAB

For reasons connected with the conversion of long filenames to short file names, FED
recommend that projects intended for intensive use with MPLAB should have a file name
which is 4 characters or less in length, and should not be buried too deeply in sub-
directories. If MPLAB reports that a file cannot be opened then resave the project in a higher
level directory. As usual FED recommend that each project should have its own directory.

First use of MPLAB with a project

Use the PIC C compiler and compile and assemble your project. Click the Tools | Run MLAB
(C) menu option. MPLAB will be opened with this project. When the project is opened in
MPLAB it will create a warning that the hex file cannot be found. Ignore the warning and
press F10 to assemble the project. Now reload the project from the MPLAB project menu (by
using the Project menu, and then pressing key 1). Do not save ihe project - this will allow the
watch variables to be loaded properly.

Subsequent use of MPLAB with a project

Use the PIC C compiler. Click the Tools | Run MLAB (C) menu option. PICDE will start,
assemble the files, and then open MPLAB. If MPLAB is already running with the project open
then PICDE will request the user to close the project, and then re-open the project manually.

 179
When the project is opened in MPLAB press F10 to assemble it.

Debugging

MPLAB will have only one file as assembler source - this will contain the complete source
code without any macros or conditional assembly, but with the original C Code as
comments. When the project is opened from within FED PIC C, a breakpoint is automatically
generated at the label "main", - the first statement of the C program. This means that the
Debug Run (F9) option can be used to run to the first statement used. Following this it is
recommended that the right mouse key is used on the main source file to bring up the
MPLAB menu - the option "Run To Here" can be used to skip through C statements.

PIC C will automatically include a watch window called "PICDE" within the MPLAB
environment, this will contain all the debug variables defined in PIC C. This window is re-
defined every time that the Run MPLAB (C) menu option is used so it is recommended that a
different Watch window is used for user defined variables.

PIC C also transfers all of its unconditional addressed breakpoints into MPLAB.

MPLAB hex file

Please note that the hex file produced by MPLAB will have the filename XXX_MPL.HEX
where XXX is the project name. If XXX is more than 4 characters then MPASM will produce a
short file name which will be in the form XXX_M~1.HEX.

For this reason FED recommend that project files for intensive use with MPLAB should be of
4 character length or less.

MPLAB crashes ?

Occasionally MPLAB appears to crash.when transferring from PIC C. In this case create the
project manually - create a new project from MPLAB with a new file name. Include one
Assembler node for this project - the file will have the same name as the PIC C project with
an _MPL added. For example if the PIC C file is called Test then the assembler file which
MPLAB can open is called Test_MPL.asm.

180

 Forest Electronic Developments June 1999

15 The Professional Version
Introduction to the professional version
Familiarity
Installation
MultiProject Management
Assembler Projects
Viewing and inspecting variables
History
Waveform Generator

15.1. Introduction to the professional version

Welcome to the professional version of WIZ-C and the FED PIC C Compiler.

The enhancements which are available in the professional version allow the user to:

• Manage and simulate multiple projects together

• Connect PIC pins across projects to allow simulated devices to communicate

• Handle assembler and C projects

• View variables in native C format

• View a list of all local variables and their values

• Maintain a history within simulation to back track and determine the past leading up to
an event

15.2. Familiarity

It is expected that users of the professional versions of our Integrated Development
Environments are already familiar with the use of the program and have run through the
introductory tutorial.

15.3. Installation

The program is installed from CD-ROM. For the CD-ROM insert into the CD drive and an
opening menu should come up. Alternatively run the program "SETUP.EXE" from the CD.

PLEASE NOTE – if upgrading an existing copy then all project files stored within the directory
structure should be backed up – either to an external storage device, or elsewhere on the
hard disk.

It is strongly suggested that (at least initially) the program is installed in the default directory
which will allow the example projects to operate correctly.

 181
The manual is supplied as an Adobe Acrobat (PDF) Format file, a copy of Acrobat is supplied
on CD-ROM and can be installed from the opening menu. The manual is duplicated in the
help files which are accessible under the Help menu.

182

 Forest Electronic Developments June 1999

15.4. MultiProject Management

The most powerful upgrade within the professional version is the ability to manage and
simulate two or more projects together using PIC’s which may be communicating. These
projects may use the application designer or switch it off, and can be C or assembler based
in a free mix.

It is quite possible to simulate the same code running in two or more communicating
devices, the example shows a good use of this capability.

Within the professional version it is possible to open and manage a project in the same way
as for the normal version. When a single project is opened it behaves in the same way as the
normal version. Note that projects are referred to as “Project Groups” in the professional
version – this is to allow for additional projects to be added and managed.

If a an additional project is opened (using the Project | Add Project to Group menu option)
then instead of closing the current project, then a new or existing project is added to the
project window. The project window will now contain two or more tabs – one for each
project. Clicking on a project makes that project the Current Project. Each tab contains a list
of the files used for that project.

The project group is saved together under the project file name of the first project in the
group. For example if the first project is called “BusMaster” and there is one additional
project called “Bus Slave” then if the BusMaster project is opened the group will be opened
and both BusMaster and BusSlave projects will appear in the project window. If the BusSlave
project is opened then it will be opened on its own.

Each project has its own debugging window although the editor and information windows
are shared between all the projects. The tool bar also contains a list of projects, each with its
own button. Clicking a project tab in the project window, or clicking the button in the
toolbar will make that project active, it will also bring the debugging window for the project
to the top of the stack of windows. This is a quick way to look at the activity of a particular
project.

Actions which normally act on a project will now either act on every project, or on the
current project.

Project Options. Project options for the active project are set using the Project | Current
Project Options menu command. Options are set only for the one, current project.

Compiling using Control and F9 will now compile all the projects, one after another. If any
project contains an error then the compilation of all projects will stop at the project with
errors.

Simulation. By default all projects are simulated together, when the run command is used all
projects will run together at the correct speed, this means that some projects may execute
more instructions than others in the same time if they have a higher clock rate.

It is possible to simulate only the Current Project during development. This is a switch on the
Simulate menu option – Simulate All Projects Together. By default this is checked. When it
is cleared then only the current project is simulated which is faster.

 183
When a breakpoint is hit in any projects then all projects cease to run in the simulator.

When the processor is reset then a breakpoint is set at the main function of all C projects
and each is run together. The first project to hit the main function will stop all projects from
running, therefore some projects may halt in the initialisation code. If the simulation is run
again then each project will halt the simulation in turn as they hit the main function. This can
be avoided by using the Simulate | Absolute Reset menu option which starts all projects at
address zero.

The single step and step over commands apply to the current project. All other projects will
also run and all will halt when the single step or step over command is complete on the
current project. With differing processor speeds this implies that when one project is single
stepped other projects may run no instructions, or may run two or more instructions in the
same time.

15.5. Example Project #1 – Multiple project
management and simulation.

For the professional version we will not look at development of a multi-project group from
scratch, but instead will look at an example project group and how it is managed. It is
assumed that users will be familiar with the use of the FED integrated environment and will
be able to create the multi project group using the familiar principles of the normal version.

In the example project we will look at the development and simulation of a complete
program using WIZ-C FED C users may still open and examine the program in the same way,
but will not be able to use the Application Designer front end. This is not a hindrance to
using and understanding the project.

The program we will look at is designed for a 16F877 processor as a bus master with three
16F84 devices as bus slaves. It is assumed that the 16F84 devices are performing processor
or I/O intensive tasks which communicate back to the master 16F877 device on request.

The circuit block diagram is shown below:

RB3 RB2

RB1

RB0

16F877

RB3 RB2

RB1

RB0

16F84

RB3 RB2

RB1

RB0

16F84
Address 0 Address 1 Address 2

RC6

RC7

16F84

Bus Tx

Bus Rx

Multi Bus
Project

BusSlave
Project

BusSlave1
Project

BusSlave2
Project

184

 Forest Electronic Developments June 1999

The 16F877 is operating as a bus master, it use asynchronous communication to send a
receive bytes from the three devices on the bus. Each of the 16F84 devices is running the
same program.

At power on the f877 waits for 100mS to allow all devices to power up. It then sends a 0 byte
on RC6.

The F84’s need to determine their addresses, this is done by a simple algorithm. At power on
they set the RB2 pin to output at level 0. They wait until the 0 byte is received from the bus
master. This serves to synchronise the devices. Once the 0 byte is received they enter an
enumeration routine. If the RB3 input is high then the device knows it is address 0. It wait
1mS and then raises RB2 high. If the RB3 input is low the device adds one to its address,
waits 10mS and then samples it again. It repeats this until the RB3 is high at the end of a
10mS period when it knows that its address is set, it then waits 1mS and raises its RB2
output. As each device sets its address it raises RB2 and the next device knows its address at
the end of the next 10mS period.

During normal operation the F84’s wait for commands from the F877. The F877 sends two
bytes, the first is a device address, the second is a command byte. If the command byte is ‘A’
then the addressed device simply sends back a ‘K’ character to verify its presence. If the
command byte is ‘B’ then the addressed byte sends back a message byte.

For the test program the F877 uses Timer 1. When Timer 1 overflows (about once every
250ms), then the F877 polls each of up to 16 devices to request them to return their
message byte. The Message bytes are stored in an array.

For the test program each F844 sets its message byte to its address as a test value. The
message byte is incremented every time that the F877 requests the message byte.

When simulating we will be looking for each F84 to set its address on reset and then the
Message Array in the F877 to hold the message received from each F84 which will be
incremented on each bus read.

The project is developed with WIZ-C using the asynchronous and timer elements.

Opening the project group

Use the Project | Open/New Project Group command. Look in the Projects folder within the
FED compiler folder. Within this folder is a sub folder called MultiProject. Within this folder
are four projects. The project group is stored under the master project called Multi-bus.
Open this project.

Note that this project group contains four projects, MultiBus which is the F877 project, and
three projects BusSlave, BusSlave1 and BusSlave2. These projects correspond to the 16F84
devices shown in the block diagram above. Each of these projects is in fact based on the
same core code

There are two ways of handling multiple projects based on the same core code. Firstly
develop a project which is needed for simulation in two or more devices. The best method
to create a new device is to create a new project with a new name using Add Project to
Group. Turn off the application designer for this project by clicking the project tab to make it
the current project, and then use the Project | Use Application Designer menu option to

 185
turn off the application designer. Now simply add all the files from the first project to the
second in the same order and the two projects will compile the same code. The method we
have used here is slightly different to illustrate the use of the application designer in more
than one project. We have created 3 projects each with their own Application Designer, set
up in the same way with the same elements and events. We have then included into each
project the same file “BusSlaveCommon.c” which contains the occurrence handling code.

Click on each button on the toolbar to bring each project to the front – look at the
application designer, the project window and the debugging window for each.

Setting options and compiling, resetting

Click on a toolbar button of one of the projects. Use the Project | Current Project Options
menu option to see how to set the project options for just one project.

Use Ctrl+F9 (or Compile | Generate Application) All four projects will be compiled one after
the other. All being well there are no errors.

After compiling the simulator will (as usual) reset all of the PIC’s. However it will run to the
main function on the 3 slave processors before it hits main on the F877. Click the project
buttons along the top to see the execution point (a blue bar) in each processor. Note that all
of the bus slaves are at the same address – main(), however th F877 (MultiBus) is still
initialising.

Run the program and this time the program will stop as the F877 hits main at which point
the slave processors will all be in the main loop.

Linking Device Pins

Being able to simulate projects together would be of little use if it were not possible to link
PIC pins. The simulator allows PIC pins to be linked. The simulator behaves as if PIC pins are
linked with a low value resistor so that if both PIC’s drive at the same time the value on the
pins of the PIC is the level driven by that PIC. It is also possible to assume High value Pull Up
or Pull Down resistors on each link so that when the pins are not driven the link takes a logic
level.

The pins are linked using the Simulate | Link PIC Pins menu option. The Connect PIC Pins
dialog box is created.

186

 Forest Electronic Developments June 1999

To connect two pins the first project is selected in the left hand Project box and the second
project in the right hand box. Select a pin from the first device and a pin on the second,
choose pull up or pull down resistors and click the Connect button.

The link will be shown in the connections box at the bottom. A link may be deleted by
selecting it and clicking the Delete button. Note that every connection is shown bi-
directionally and both ends of the link need to be deleted. It is possible just to delete one
direction from a two way link in which case the simulation behaves as though a diode were
in the link.

Experiment with creating new links, but do not delete any of the existing links at present.
Note that the F877 is connected to the same pins on each of the F84’s and each F84 is
connected to its neighbour – follow the links from the project block diagram shown above.

Simulating the main project

Run the simulation until about 1 second. Note that the simulator will be slower than normal
as it is running four devices in parallel, and handling inter-device communication.

Refer to the block diagram above.

Now click BusSlave and then the other two slave projects. Note how the address variable has
been correctly set. Note also the message variable which will be different for each project –
it is set to the address multiplied by two initially and incremented each time that the value is
read by the F877. Click BusSlave1 and examine the wave analyser for that project. Examine
PORTB as 8 line traces. You should see the following display:

 187

Recall that PORTB:0 is an input to the 16F84, and an output from the F877, and PORTB:1 is
the input to the F877 and an output from each F84.

The byte received at about 100mS from the F877 is the initial 0 byte to set off the address
determination function. We are looking at BusSlave1 so there will be a short delay of 1mS
before PORTb bit 3 (the input from BusSlave 0) goes high, 10mS later this device detects the
high signal, sets its address, and pushes its own output on bit 2 high to BusSlave2. This is the
delay seen between Port B:2 and B:3 going high.

Now at about 500mS the F877 starts the first of its regular polls of all the attached slaves to
receive the message from each. 16 devices are polled. The first 4 polls are shown below in an
expansion of the above waveform:

Note that the F877 sends two bytes at a time (using asynchronous protocols), the address
which is seen here as the bytes 0, 1, 2, and 3. Following this is the byte ‘B’ (hex 0x42) which
is sent to each device and which commands each device to return its message. The response

188

 Forest Electronic Developments June 1999

seen from the first 3 devices is the message which is the address multiplied by 2. (0, 2 and 4
in this case). No further devices are attached to the bus so the simulation shows no further
responses.

Now click the MultiBus button at the top of the screen. Look at the debugging window. It
shows the list of messages received in an array of 16 values. Dependant on when the
simulation was stopped, it should show 0, 2 and 4 as shown above followed by a number of
0xFF values which is the value written when a device is not detected. Run the program and
watch as the F877 reads the messages which increment on every reading.

You may like to look at the source files to see how the program is working – as for most WIZ-
C programs the actual amount of source code required is quite low.

 189

15.6. Assembler Projects

The professional version of WIZ – C now allows any project in the group, or any individual
project to be an assembler project which may then be assembled and debugged in the same
environment.

Assembler projects should follow these guidelines:

The application designer should be turned off.

The file type in the Project File box (selected when the files are added to the project) should
be C/H/ASM.

The compiler detects an assembler project by the absence of any files with a C extension, so
provided that no files have a C extension then the project will be assembled rather than
compiled and no C library code will be included.

The ICD cannot be used with WIZ-C assembler projects

As an example of a very simple assembler file which will operate correctly in WIZ-C, here is a
program to constantly increment PORTB:

#include <p16f84.inc>

 org 0

 clrf STATUS
 clrf PORTB
 bsf STATUS,RP0
 clrf TRISB
 bcf STATUS,RP0

CLoop incf PORTB
 goto CLoop

ASM files in C projects

It is also possible to include ASM files within a C compilation. These files act as though the
compiler directives #asm and #asmend have been used to bracket the code, and the files are
assembled in order with the C files in the order shown in the project window.

190

 Forest Electronic Developments June 1999

15.7. Viewing and inspecting variables

The professional version includes a considerably improved variable inspector. The compiler
now saves information for the simulator to enable it to determine the scope and type of
variables available within the program at all points within the source file.

When a variable is added to the watch window it is now possible to select it as being a C
source variable. The “Use C Definition” check box in the top left of the Debug Watch dialog
box will select a C variable. (Recall that adding a variable to the debug watch window is most
easily accomplished by pressing insert when the window is active, or using the Add Watch
option of the menu which appears when the window is right clicked).

C Variables are shown with a small C symbol besides them:

For integer values the display format may be chosen as hex or decimal. The simulator will
attempt to show the entire contents of the variable and dereference pointers. If the
program moves to a new function or block where the variable name has a new meaning,
then the C variable will always be shown as the value which is in scope.

Viewing Local Variables

The entire list of local variables active at any time during the program may be shown by
showing the Local Variable list. This is turned on or off by right clicking the watch window
and using the “Inspect Local Variables” menu option. Or by using the main Simulate |
Inspect Local Variables menu option. Or by using the button on the debug window:

Please note that users no longer need to be aware of where local variables are held (stack or
optimised memory), or how they are offset from the stack – the simulator determines all this
automatically.

The example below shows local variables for this function:

void ptrtest()
{
 char ram *xp;
 char ram *yp;

 char ram *pa[2];

 //
 // More code here
 //
}

 191

Note how the array and the pointers have all been de-referenced. Pointers may also be de-
referenced correctly even if they point to ROM based constant values.

Inspector Windows

Inspector windows allow the entire contents of a variable to be shown in detail. Consider the
following code:

struct pt
{
 int c,d;
};

struct Test
{
 int a;
 char b[5];
 pt c;
} tar;

Now to inspect the value of the tar variable in detail on a pop up window then the Simulate
| Open Inspector menu option may be used (alternatively position the cursor over a variable
and use Shift F2, or use the right pop menu on the debug window when a watch variable is
selected).

This is the result for the this example:

Note how the variables within the structure have been shown in type and detail.

Inspector windows float over the main window and so are always available for examining
values whatever the main program is doing.

192

 Forest Electronic Developments June 1999

Inspector windows are not saved with the project and so must be opened as required during
simulation.

 193

15.8. History

The history facility keeps a record of the state of the PIC over the past leading up to the
current point. It is very useful for tracking errors, or checking what led to a crash, or
reviewing the state of the PIC at specific points – particularly if a very long simulation is to be
running when post simulation review can be much faster than waiting for the next
breakpoint.

Setting history parameters

The history facility is set up by using the history tab on the debugging window :

The Save snapshot list gives the opportunity to select when to take a snapshot of the state of
the PIC for later review. The options are as follows:

• Never Default. No snapshots will be taken as the program simulates. Note that
snapshots do slow the simulation.

• Every n Instruction. A snapshot is taken every time that the nth instruction is executed.
The number n is set using the box to the right of the snapshot list.

• Every n uS A snapshot is taken once every n microseconds. The number n is set using
the box to the right of the snapshot list.

• Every n mS A snapshot is taken once every n milli-seconds. The number n is set using
the box to the right of the snapshot list.

• Every n S A snapshot is taken once every n seconds. The number n is set using the box
to the right of the snapshot list.

194

 Forest Electronic Developments June 1999

• On Animation Break If a breakpoint is hit which has the Animation box clicked
then the debugging window is updated. At the same time a snapshot may be taken. This
is very useful for keeping a record of the state of the PIC at specific points in the
program such as on completion of a function which is of interest.

• Every C Source Line A snapshot is taken every time a C source line is executed

Examining history

Once the program has stopped, either manually, at a breakpoint, or when an error occurs
then it is possible to look back in the simulation. The History tab contains a list of snapshot
times together with the source line at which the snapshot was taken. Double click a time to
take the simulation back to that time. The edit window will show the position of the program
counter at that time in the source file, the watch tab will show the values of memory at that
time, and any open inspector windows – including local variables – will show the value of
those variables at that time.

To move back and forward through history points use ALT plus F5 to backwards to the
previous snapshot time and ALT plus F6 to go forward. ALT F4 returns to the current time.
The simulation will also return to the current time if the program is stepped or run. Note
that the time box in the left of the toolbar will show the time of the snapshot – it will also
turn red when a snapshot is being examined, and returns blue when showing the current
normal time.

Controlling the number of snapshots

There is a limit to the total number of snapshots as each takes space in memory. The normal
limit is 100 – the file options dialog box (Menu File | Options) allows this to be changed..

Example of use of snapshots

To look at using snapshots we’ll use an example of a recursive function which causes an
error during simulation.

The function we’ll use is a simple recursive factorial:

float Factorial(float n)
{
 float x;
 if (n==1.0) return n;
 x=Factorial(n-1);
 return n*x;
}

This is certainly not the best or most efficient way of calculating factorials, but it does
illustrate the use of History points.

Open the project History\Factorial.PC in the Projects folder of the main program. The project
uses a 16F877 and simply determines the factorial of 5 followed by the factorial of 50. Click
the History tab of the debugging window. Check that it is set to save a snapshot on every C
source line. There should also be a breakpoint after the program has determined the
factorial of 5 (if not click the mouse in the left margin of the main function by the line
“Result=Factorial(50);” to set a breakpoint.

 195
Run the program – it should calculate factorial 5 and stop. Check the watch tab to see that
the value of Result is 120. Click the history tab and you should see that the program has
executed about 20 lines of C code - note how the program runs the line “return n*x” four
times in succession at the end. Double click a line to see the program state at that point.
Click the watch tab and use the Alt F5 and Alt F6 keys to move back and forward in time –
note how the value of the local variables change in the Local Variables window and also see
the values on the watch window.

Now run the program again. Factorial(50) would take 300 bytes of software stack space if it
were to be successful which is far too big for the F877 and so the program will fail.

This time it will stop with an error resulting from stack underflow of the PIC stack. Look at
the history window again. If you click the oldest value in the window – which should be
around 1mS, then watch the value of sp (the software stack pointer) on the watch tab as you
move forward in time using Alt F6 . sp will reduce as the recursive function is called and as it
does so watch the value of n. When sp reduces below 80 Hex then the software stack has
overflowed (it is now pointing to system variables) – n starts taking on corrupt values and
the program is now doomed to a final crash which happens a surprisingly long time later.

This example shows how it is possible to use history to look back in time to see the point
where a program fails and what causes a simulation error which as in this example may be
some considerable time before the simulation fails.

196

 Forest Electronic Developments June 1999

15.9. Waveform Generator

The Simulator Wizard is intended to allow users to design complex data and
analogue patterns for injection to the pins of the device under simulation.

Introduction

The waveform wizard is a front end for the FED PIC and AVR development tools. It is
available with the professional version of these tools.

The wizard allows complex data patterns to be input to the PIC, clocks to be generated, or
analogue waveforms to be generated for injection into the A/D converter inputs of the PIC.
The waveform wizard allows a number of stimulus’ to be stored together in one file. One of
more of these files may be added to the list of project files and will then be included as
simulation input when the program is simulated.

Starting a project

Within any of the FED development environments use the Tools | Run Wave Generator
menu option to start the program. A new wave generator project will be created with the
same name as the current project. The wave generator file will be added to the project
window which will automatically include the stimulus when the program is simulated.

Double click the wave generator file in the project window to start the wave generator and
load that file.

Alternatively start the Wave Generator using the start menu. A new project can be created
using the File | New menu option. Save the project using the File | Save As menu. Now the
project may be added to IDE project window by right clicking the project window and using
the “Add | Insert Item menu option. Select the wave generator project file name and ensure
that the Wave Generator type is selected

Waveform Generator help

The waveform generator has its own help file and manual which should be read separately.

Example

There is an example of the use of the Wave generator provided in the projects folder.

Open the project “WaveGenTest” in the folder of the same name in the Projects folder. This
project performs a number of simple functions. It uses a serial element connected to PORTB
bit 0 and bit 1 (using interrupts to receive bytes on that bit), it has an A/D converter input on
pin A1 (A/D converter channel 1). It converts the value on A1 to an 8 bit value which is
written as an 8 bit digital value to PORTD. Any byte read from the serial port is simply
retransmitted. Finally it uses a 10KHz clock on the Timer 1 input which is used together with
the capture/compare CCP1 to count the passing of seconds by resetting Timer 1 when it
reaches 10000.

 197
Double click the WaveGenTest.STM file in the project window to open the Waveform
Generator. Note that there are 3 stimulus inputs, Analogue, Clocks and sti_0. Select each
using the Edit Stimulus drop down box and explore the parameters of each.

The Clocks stimulus injects a 10KHz clock into pin RC0 which is the Timer 1 count input.

The Analogue stimulus generates a 100Hz Sin Wave injected into Port A bit 1.

The sti_0 stimulus generates two bytes – 0x55 and 0xaa which are injected into Port B bit 0.
Note these are separated by a byte period.

Return to the WIZ C window and run the project for a couple of seconds, note how the
variable SecCnt increments once a second. Open the waveform window (Tools | Open Wave
Window). Explore the waveform – here are the patterns seen on various ports of the PIC:

Note that there is a fairly smooth Sin wave on PORTD which is the digital value converted
from input RA0. However as the serial port uses a software algorithm the PORTD output is
corrupted as serial bytes are received on RB0 and retransmitted on RB1.This could be
avoided by using the interrupt driven serial port.

Note the 10KHz clock input to RC0 – this is set to have a Mark/Space ratio of 25%.

198

 Forest Electronic Developments June 1999

16 Command Line interface
It is possible to call WIZ-Professional from the command line from where a number of
switches may be used to control its operation including completely automatic operation. The
syntax is :

pixie.exe /c /e /m /s /w /x filename.pc

e.g. pixie.exe /c /e /m /s /x testprogram.pc

filename.pc shoule be a full path.

This example opens PIXIE to compile the project called testprogram. It opens PIXIE with a
minimal window. If compilation is successful the compiler will exit immediately. If it fails the
compiler will remain open so that the error can be investigated.

The switches are all optional, they must be separated by spaces or tabs and are described in
detail below:

/c This option autocompiles – as soon as the project has loaded
it will be compiled.

/e This option causes the compilation to stop if an error is
found and leave the compiler running so that the error may
be investigated. It overrides the /x option when errors occur.

/m This option causes the compiler to run in a minimal window
– the program loads and displays the information window
only. This is used to show progress.

/s Silent mode – dialog boxes automatically close. This mode
may be used to start the compiler, auto compile and exit
without any user intervention. If used with the /e or /w
option then errors will cause a dialog box to be displayed.

/w This option displays a warning if errors are found during
compilation.

/x This option forces the compiler to exit after completing an
auto compilation.

The return value from the program is the number of errors found, or 0 if none are found.
Successful compilation may be tested by checking the return value, or by checking if the .hex
file in the Output directory exists.

 199

17 List of library functions
AddTx Interrupt Driven Serial Port
CheckSum String Functions
cos Maths Routines
cPrintToString String Print Functions
e Maths Routines
exp Maths Routines
exponent Maths Routines
fabs Maths Routines
fnprintf printf Functions
fnprintfsm printf Functions
fPrtString Maths Routines
GetRxSize Interrupt Driven Serial Port
GetTxSize Interrupt Driven Serial Port
IIRead I2C Routines
IIWrite I2C Routines
iPrintToString String Print Functions
IRRx IRDA IR Routines
IRRxVal IRDA IR Routines
IRTx IRDA IR Routines
KeyScan Hex Keypad
LCDc LCD
LCD LCD
LCDString LCDString
LN2 Maths Routines
LN10 Maths Routines
log Maths Routines
log10 Maths Routines
LOG2_10 Maths Routines
lPrintToString String Print Functions
memcpy String Functions
pClockDataIn ClockDataIn
pClockDataOut ClockDataOut
PI Maths Routines
pow Maths Routines
pow10 Maths Routines
PowerSeries Maths Routines
printf printf Functions
pSerialIn SerialIn
pSerialOut SerialOut
QuickStop I2C Routines
rand Random Numbers
RC5Rx RC5 IR Routines
RC5Transmit RC5 IR Routines
rCheckSum String Functions
rcPrintToString String Print Functions
ReadEEData EEPROM Routines
riPrintToString String Print Functions
rlPrintToString String Print Functions

200

 Forest Electronic Developments June 1999

rmemcpy String Functions
rstrcat String Functions
rstrchr String Functions
rstrcmp String Functions
rstrcpy String Functions
rstrlen String Functions
rstrlwr String Functions
rstrupr String Functions
rvstrcpy String Functions
SerIntHandler Interrupt Driven Serial Port
SerIntInit Interrupt Driven Serial Port
sin Maths Routines
sprintf printf Functions
sprintfsm printf Functions
srand Random Numbers
sqrt Maths Routines
strcat String Functions
strchr String Functions
strcmp String Functions
strcpy String Functions
strlen String Functions
strlwr String Functions
tan Maths Routines
vstrcpy String Functions
Wait Wait
WaitRx Interrupt Driven Serial Port
WriteEEData EEPROM Routines

 201
18 List of keywords

... One or more parameter may be supplied to a function
auto Not applicable to FED PIC C
break Cuts out of innermost loop
case Case statement within a switch
catch Not applicable to FED PIC C
char 8 bit signed integer
const Defines a constant or non changeable parameter
continue Continue innermost loop
default Default case statement
do Loop
double As float
else Alternate to if statement
enum Starts list of enumerated variables
extern Defines but does not allocate variable space
float 32 bit floating point number
for Starts loop
goto Switch control
if Conditional statement
int 16 bit signed integer within FED PIC C
interrupt Keyword used for 3rd party compatibility.
long 32 bit signed integer within FED PIC C
mutable Not applicable to FED PIC C
pointed Specifies that a function may be called through a pointer
ram FED PIC C extension to define 8 bit pointer for 12 or 16 series devices, or to

use FSR accumulator for the 18 series devices.
register Directs the compiler to place items in the bottom page if possible
return return from function
rom FED PIC C extension to define 8 bit pointer (default pointer length)
short 16 bit signed integer within FED PIC C
signed Define value/variable as signed
static Forces local variable into global space
struct Starts a structure definition
switch Begins a switch statement
throw Not applicable to FED PIC C
try Not applicable to FED PIC C
typedef Defines a type
union Starts a union definition
unsigned Define value/variable as unsigned
void Type unknown, zero length or not applicable
volatile Define register as independently changing
while Begins loop

	Forest Electronic Developments WIZ-C MX
	PIC Microcontroller Compiler
	Contents
	Manuals provided with WIZ-C MX
	1 WIZ-C and FED PIC C Compiler Introduction
	1.1. Information
	1.2. Contacting Forest Electronic Developments
	1.3. Bug Reports

	2 WIZ-C MX Tutorial
	2.1. Tutorial Introduction
	2.2. Example Project #1 - Switches, LED's and a serial interface.
	2.3. Opening a new project
	2.4. Using elements within the application
	2.5. Generating the application for the first time
	2.6. Simulation
	2.7. Switching screen layouts
	2.8. Simulating with external devices
	2.9. Simulating with a simulation file - using the waveform analyser
	2.10. Example 2 Digital clock operating to an LCD Display (in 10 lines of code)
	2.11. Digital Clock Element
	2.12. LCD Displays
	Introduction
	Functions
	Digital Clock Application
	LCD
	Digital Clock
	Switches
	User Code
	Final application
	Including the day
	Taking it further

	3 Special support for the PIC
	3.1. Header files
	3.2. Port Bits
	3.3. Register Bits
	3.4. Port Structure
	3.5. Macros
	3.6. Memory allocation
	3.7. EEPROM Support
	3.8. Creating new devices
	3.9. Large Programs
	3.10. Configuration Fuses
	3.11. Extended Instruction Set

	4 Support for 3rd party compilers
	4.1. Introduction
	4.2. Compatibility Options
	4.3. Notes on incompatibilities

	5 Development Environment Reference Manual
	5.1. Project
	5.2. Compiling a project and reviewing errors
	Compiler Options Dialog Box
	Main
	ICD
	Defines
	Memory
	Optimisations

	5.3. On-line help
	5.4. Project Archiving
	Automatic Archiving Interval
	Manual Creation of Archives
	Restoring Archives
	File History

	5.5. Menu Commands
	File Menu
	Edit Menu
	Project Menu
	Compile Menu
	Simulate Menu
	ICD
	Tools Menu
	Tools Configuration Dialog

	Window Menu
	Help Menu

	5.6. Windows
	Edit Window
	Project Window
	Information and Error Window
	Debugging Window

	6 Example projects
	6.1. The FED development board
	Example program using the demo board

	6.2. Using an LCD display
	Introduction to LCD Displays
	Complete LCD Example

	6.3. EEPROM Programmer
	Programmer Introduction
	Driving the 24LC65
	Programmer
	C Program for the PIC
	PC Application Program
	Further notes on using I2C EEPROMs
	Programmer Introduction
	Driving the 24LC65
	Byte Write.
	Read current address - sequential reads.
	Random Read.
	Other modes.

	Programmer
	C Program for the PIC
	PC Application Program
	Further notes on using I2C EEPROMs

	7 Optimising your output
	7.1. Introduction to optimisation
	7.2. Optimising Variables
	7.3. Optimising Loops
	7.4. Optimisation options
	7.5. Optimising Variables and functions
	7.6. Optimising Pointers

	8 Using Assembler
	8.1. Introduction to assembler
	8.2. Simple use of Assembler
	8.3. The FED PIC C programmers model
	Memory Map
	Memory Organisation
	14 bit core
	14 bit core and Enhanced Mid-range Core
	14 bit core
	16 bit core

	Common Functions and program operation
	Introduction to common functions
	Using subroutines in assembler code
	Calling C functions from assembler
	Use of Enhanced Mid Range processors ()
	Notes for use of PCLATH and RP0,RP1 (& BSR) in the STATUS register
	ROM Paging - PCLATH
	RAM Paging

	Notes for use of paging in 16 bit core devices
	ROM Paging

	Complete C functions in assembler
	Defines in FED PIC C

	Use of … form for function parameters
	Notify the compiler of an assembler function
	The Stack and Function calling

	8.4. Example of use of assembler
	8.5. Example of use of assembler (2)
	8.6. Macro Reference
	8.7. Compiler sub-routine Reference

	9 Interrupts & Memory
	9.1. Interrupts
	Normal Interrupts
	Quick Interrupts
	High Priority Interrupts

	9.2. Allocation of memory

	10 Creating Libraries
	10.1. Introduction to Libraries
	10.2. Including libraries in the FED PIC C environment
	Set Libraries Dialog Box

	10.3. Library Examples

	11 Library Reference
	BootLoader
	ClockDataIn
	Returns:
	ClockDataOut

	Returns:
	Dallas 1 Wire Bus
	EEPROM Routines

	Returns:
	Graphic LCD Functions
	I2C Routines (hIIInit)

	Returns:
	IRDA IR Routines

	Returns:
	RC5 IR Routines

	Returns:
	Interrupt Driven Serial Port

	Returns:
	Hex Keypad
	Returns:
	Example:
	isFunctions
	LCD
	Returns:
	Examples:
	LCDString
	Returns:
	Examples:
	Maths Routines

	Operations:
	mem functions
	printf Functions

	Returns:
	Random Numbers

	Returns:
	SerialIn

	Returns:
	SerialOut
	Returns:
	Examples:
	stdio functions
	stdlib functions
	String Functions
	String Print Functions
	Returns:
	Examples:
	Wait
	Returns:
	Examples:

	12 C Reference
	12.1. Language
	Omissions and changes
	Functions
	Floating Point
	Include search path
	Library functions
	Comparisons
	enums

	Extensions
	Defines
	Symbols
	_APPWIZ_AUTO
	APROCFREQ
	BANKBITS
	_BITTYPES_OPT
	COMMON
	_CORE
	_FEDPICC
	GPRBITS
	MPC
	__PIC_C__
	_PIC14
	_PIC16
	__ProcessorName
	PROCFREQ
	__PROCTYPE_H
	QUICKCALL
	_ROMSIZE
	_SERIES
	_EESIZE
	false
	true
	MAXLOCOPTSIZE
	OVERHEADPAGE0
	Function definitions

	#__config
	(or #pragma __config)
	#asm
	(or #pragma asm)
	#asmdefine
	(or #pragma asmdefine)
	#asmline
	(or #pragma asmline)
	#asmend
	(or #pragma asmend)
	#asmfunc
	(or #pragma asmfunc)
	#callfunction
	(or #pragma callfunction)
	#eeprom
	(or #pragma eeprom)
	#forcequick
	(or #pragma forcequick)
	#heap
	(or #pragma heap)
	#locate
	(or #pragma locate)
	#locopt
	(or #pragma locopt)
	#noheap
	(or #pragma noheap)
	#optdup
	(or #pragma optdup)
	#optspace
	(or #pragma optspace)
	#optspeed
	(or #pragma optspeed)
	#optquickcall
	(or #pragma optquickcall)
	#preprocdefine
	(or #pragma preprocdefine)
	#projectfile
	(or #pragma projecfile)
	#procfreq
	(or #pragma procfreq)
	#stack
	(or #pragma stack)
	#usemacro
	(or #pragma usemacro)
	pointed

	12.2. Types
	Built in types
	bit
	char
	int
	long
	float and double
	Pointers

	Types defined in PIC header files
	BYTE
	FileReg
	ulong
	WORD

	13 Pre Processor
	13.1. Specifications
	WIZCPP and the ANSI99 standard
	Pragma
	WIZ-CPP options
	Linelength
	Assembler and the pre-processor
	sizeof() operator
	#include
	Magic defines

	13.2. WIZCPP pragma Options
	Currentpath
	Debug
	Exitnormal
	Expandasm
	Expandnl
	Includeoptional
	Keepfiles
	Linelength
	Magicdefines
	Psizes
	Searchpath
	Sizes
	Trigraphs
	Uselib
	Writecomments
	Writesyncs

	14 Use with MPLAB
	14.1. MPLAB
	14.2. Procedure for using MPLAB
	First use of MPLAB with a project
	Subsequent use of MPLAB with a project
	Debugging
	MPLAB hex file
	MPLAB crashes ?

	15 The Professional Version
	15.1. Introduction to the professional version
	15.2. Familiarity
	15.3. Installation
	15.4. MultiProject Management
	15.5. Example Project #1 – Multiple project management and simulation.
	Opening the project group
	Setting options and compiling, resetting
	Linking Device Pins
	Simulating the main project

	15.6. Assembler Projects
	ASM files in C projects

	15.7. Viewing and inspecting variables
	Viewing Local Variables
	Inspector Windows

	15.8. History
	Setting history parameters
	Examining history
	Controlling the number of snapshots
	Example of use of snapshots

	15.9. Waveform Generator
	Introduction
	Starting a project
	Waveform Generator help
	Example

	16 Command Line interface
	17 List of library functions
	18 List of keywords

