GCAN-202(CANET-II)

Ethernet-CAN converter

User Manual

Document version 3.01 (2017/12/01)

Revision History:

Version	Date	Reason
V1.00	2013/06/16	Create document
V2.01	2013/12/20	Fixed working parameters
V3.01	2015/04/22	Add some parameters

Contents

1 Introduction	4
1.1 Overview	4
1.2 Performance	4
1.2.1 Hardware Features	
2 Installation	6
2.1 Fix and installation	6
2.2 Software installation	6
2.3 Connect with computer	7
2.4 CAN-Bus connection	7
3 Usage	8
3.1 Connect with computer for configuration	8
3.2 Ethernet connection	8
3.3 CAN-Bus connection	10
3.4 System status indicator light	11
4 CANet Config software	12
4.1 Connection	12
4.2 Configure basic information	13
4.3 Finish the configuration	15
4.4 Save/load configured files	16
4.5 Update firmware kernel of GCAN-202	16
5 Usage of "CANet test" software	17
6 Usage of "Net Assist" software	
6.1 Preparatory work	
6.2 Test in TCP Sever mode	19
6.3 Test in TCP Client mode	20
6.4 Test in UDP mode	21
7 Baud rate modification online	23
8 Secondary development	25
9 Technical specifications	26
Appendix A: CAN2.0B protocol frame format	27
Appendix B: definition of data flow	29
Sales and service	31

1 Introduction

1.1 Overview

The GCAN-202 (CANET-II) is a high-performance CAN-Bus converter that integrates with two CAN-Bus channels & one Ethernet channel. CAN-Bus can connect to Ethernet via GCAN-202, which makes the interconnection easier and extends the application scope of CAN-Bus.

The GCAN-202 is a professional tool with CAN-Bus product development and data conversion. Computer can connect to the CAN-Bus network by the Ethernet interface quickly. The converter integrates with electrical isolation protection module to protect Ethernet and CAN interfaces, which can avoid the damage for converter due to instantaneous over current or over voltage.

Source code of sample program in VB supply for some basic secondary development, conform to Socket work mode.

1.2 Performance

1.2.1 Hardware Features

- High speed 32-bit industrial grade processor
- Embedded Watchdog timer
- FLASH storage, can store parameters
- External voltage (DC+9~30V), current (DC+24V 50mA)
- Electrostatic discharge (ESD) Immunity level: Contact Discharge: ±2KV, Air Discharge: ±15KV
- Fast transient Burst Impedance Level: ±1KV
- Surge immunity level: ±1KV
- Working temperature: -40.00°C ~ 85.00°C
- Working humidity: 5%~95%, no condensation
- Dimensions: 118mm (L) * 93mm (W) * 23mm (H)

1.2.2 CAN Features

- Integrate two CAN-Bus channels, with terminal connection
- Support CAN2.0A and CAN2.0B, conform to ISO/DIS11898
- Support communication baud rate: 5Kbps~1Mbps
- Electric isolation, insulation level: DC 3000V
- 32 FIFO receiving buffers, maximum flow: transmit 8000 FPS, receive14000 FPS

1.2.3 Ethernet Features

- Restore the network connection automatically after disconnecting, can establish a TCP connection.
- SOCKET working mode compatibility (TCP Server, TCP Client, UDP, etc), program communication software according to standard SOCKET rules

2 Installation

This chapter introduces the dimension of GCAN-202, the method connected to computer and some attentions first used.

2.1 Fix and installation

Figure 2.1 Dimensions of GCAN-202

2.2 Software installation

The software has no need for installation, just double-click to open and use.

2.3 Connect with computer

The LAN interface of GCAN-202 make communication with Ethernet interface of computer directly.

2.4 CAN-Bus connection

The GCAN-202 has two CAN-Bus channels, and it can connect one or two devices of CAN-Bus network or CAN-Bus interface.

Port	Name	Function
	CAN1-H	CAN_H signal line
CAN1	CAN1-G	CAN1-GND
	CAN1-L	CAN1_L signal line
	CAN2-H	CAN2_H signal line
CAN2	CAN2-G	CAN2_GND
	CAN2-L	CAN2_L signal line

Table 2.1 the definition of CAN-Bus interface

3 Usage

3.1 Connect with computer for configuration

After supply power, use "CANet Config" software to configure working mode and some basic operating parameters. (Recommend +12V/+24V standard power)

3.1.1 Restore Factory Settings

The default IP of GCAN-202: 192.168.1.10.

Press and hold "reset" button about five to six second until SYS & CAN 1 & CAN 2 blinking by turns. It has been restored factory setting successfully. As Figure 3.1 shows.

Note: All the parameters configured will lost after restoring factory settings.

Figure 3.1 Restore Factory Settings of GCAN-202

3.1.2 Change the computer's IP address

Please ensure the computer with an Ethernet card. And the computer and GCAN-202 must be in the same network segment. If not, users must change the computer's IP address.

3.2 Ethernet connection

GCAN-202 has three working modes: TCP Server, TCP Client, UDP.

3.2.1 TCP Server mode

In TCP Server mode, GCAN-202 won't take the initiative to establish connection with other equipments, and it always wait to connect with TCP Client. The process of

building the connection as Figure 3.2 shows.

TCP Server Mode

Figure 3.2 TCP Server mode

3.2.2 TCP Client mode

In TCP Client mode, GCAN-202 will take the initiative to establish connection with the pre-set TCP server. If failed, client will keep trying to connect TCP according to the setting condition. The process of building the connection as Figure 3.3 shows.

TCP Client Mode

Figure 3.3 TCP Client mode

3.2.3 UDP mode

In UDP mode, make the data communication through UDP protocol. UDP mode is a simple communication mode, it won't add too much traffic, which can supply a faster communication than TCP mode to ensure real-time data package. The process of building the connection as Figure 3.4 shows.

Figure 3.4 UDP mode

3.3 CAN-Bus connection

The GCAN-202 converter must be installed two 120 ohms terminal resistance at the farthest end of CAN-Bus network. If the node number is more than 2, intermediate nodes needn't to install 120 ohms terminal resistance. For branch connections, the length should not exceed 3 meters.

Figure 3.5 the CAN-Bus connect with other nodes

Note: CAN-Bus cable can be used with ordinary twisted-pair and shielded twisted-pair.

Baud rate	Distance
1 Mbit/s	40m
500 kbit/s	110m
250 kbit/s	240m
125 kbit/s	500m
50 kbit/s	1.3km
20 kbit/s	3.3km
10 kbit/s	6.6km

5 kbit/s	13km
----------	------

Table 3.1 the relationship between CAN-Bus length and baud rate

3.4 System status indicator light

GCAN-202 has five indicator lights as shown in Table 3.2.

Indicator	Colour	State
PWR	Green	Power indicator
SYS	Green	System indicator
LAN	Green	Ethernet signal
CAN1	Red/Green	CAN1signal
CAN2	Red/Green	CAN2signal

Table 3.2 converter status indicator light

The meaning and status of indicator light as shown in Table 3.3

Indicator	State	Meaning	
DW/D	ON	Power supply normal	
ΓWK	OFF	Power supply error	
	OFF	Initialization failed	
CVC	Blinking	Standby mode	
515	Stop blinking	Error	
	Pad	CAN-Bus communication	
	Keu	error	
CAN1、CAN2	Green Blinking	CAN-Bus data transmission	
	Blinking with SYS	Depot state	
	by turns	Reset state	

Table 3.3 the meaning & status of indicator light

4 CANet Config software

The GCAN-202 can configure parameters by "CANet Config" software, can set working mode, IP address, CAN working mode, CAN's baud rate and other basic parameters.

4.1 Connection

IP address must be filled when connecting to GCAN-202. If forget it, please restore factory settings and the default IP is 192.168.1.10. See chapter 3.1.1 for details.

选择设备:			
Device Type	CANet	•	
IP	192 . 168 . 1	.10	

Click "Connect", and it shows the following software interface.

连接设备 Connect	读参数 UpLoad	下载参数 DownLoad	打开参数文件 Open	另存参数文件 SaveAs	升级固件 UpDate App
92.168.1	. 10	Device	SN: GC217060918	1	
- IP Add CAN1 In	ress Info nfo				
CANO T.	nfo				
CANZ 11					
CANZ II					
CANZ II					
CANZ II					

The meaning of the button:

"Connect" - connect the converter (Do not need to click again).

"Upload" – read configuration information in converter.

"Download" - download the configuration information into the converter's Flash.

Product data sheet

"Open" – open and read the configuration information file in the computer.

"SaveAs" - save the configuration information file into computer.

"UpDate App" - upgrade the GCAN-202 firmware kernel. (Please use this function under guidance)

4.2 Configure basic information

After finished the connection, click "UpLoad" to download the parameters of the converter to the computer.

连接设备 Connect UpLoad	下载参数 DownLoad	打开参数文件 Open	另存参数文件 SaveAs	升级 UpDat	固件 e App	
192.168.1.10	IP Address Info					
-CAN1 Info	Items	Value	Value			
-CAN2 Info	IP Addre:	ss 192. :	192. 168. 1. 10			
	GateWay Subnet M	7 192. 168. 1. 1 Mask 255. 255. 255. 0				
	IP Add	ress 192. 18	58. 1. 10			

"IP Address Info" - Ethernet-side parameters setting.

"CAN1 / CAN2 Info" - CAN-Bus parameters setting.

4.2.1 Ethernet parameters setting

Click "IP Address Info" to enter into the interface of Ethernet parameter settings.

接设备 读 onnect U	参数 pLoad	下载参数 DownLoad	打开	参数文件 Open	另存参数文件 SaveAs	升级固件 UpDate App	
- 192. 168. 1 10	IP Add	IP Address Info					
-CAN1 Info	Into	Items	Items Value				
CAN2 Info		GateVay Subnet M	ask	192. 1 192. 1 255. 2	08. 1. 25 68. 1. 1 55. 255. 0		
		IP Add	ress	192. 16	8. 1. 86		

"IP Address" - set the GCAN-202 IP address.

"Gateway" - set the GCAN-202 gateway.

"Subnet Mask" - set the GCAN-202 subnet mask.

4.2.2 CAN-Bus parameter setting

Click "CAN1/CAN2 Info" to enter the interface of CAN-Bus parameters setting.

接设备 读参数 onnect UpLoad	下载参数 DownLoad Open SaveAs UpDate App
168.1.10	CAN1 Info
W1 Info	Itens Value
N2 Info	Tcp Port 4001
	Can Baud 5
	Can Node 0
	Can Filter 0
	Remote IP 192, 168, 1, 11
	Remote Port 8001
	Kenote IF 192, 160, 1, 11
	近期中在今期19月6日,清沉累口速至19月1日,1月月1日。1月月1日,1月月1日。1月日日
	设置目标主机IP地址,该设置只有在Icp Client模式和Vdp模式才有效

"TCP Port" - set the CAN-Bus communication port.

"Can Baud" - set the CAN-Bus communication baud rate; details in Table 4.1.

"Can Mode" - set the CAN-Bus working mode.

"Can Filter" - not open, the default is 0.

"TCP Mode" - set the TCP working mode.

"Remote IP" - set the IP address of the target server.

"Remote Port" - set the port number of the target server.

Note: "Remote IP", "Remote Port" is valid only in TCP Client mode and UDP mode.

Baud rate	No	Baud rate	No
1 Mbit/s	0	100 Mbit/s	8
800 kbit/s	1	80 kbit/s	9
666 kbit/s	2	50 kbit/s	10
500 kbit/s	3	40 kbit/s	11
400 kbit/s	4	20 kbit/s	12
250 kbit/s	5	13.3 kbit/s	1491123
200 kbit/s	6	10 kbit/s	13
125 kbit/s	7	5 kbit/s	14

Table 4.1 baud rate and corresponding number

Note: you want the custom baud rate, please contact us.

4.3 Finish the configuration

After a parameter has been modified, this part got red. When the configuration is completed, click "DownLoad" to download the configuration information into the "Flash" of GCAN-202.

连接设备 读参数 Connect UpLoad	下载参数 打开参数文件 另存参数文件 升级固件 DownLoad Open SaveAs UpDate App
192. 168. 1. 10	CAN1 Info
-CAN1 Info -CAN2 Info	Itens Value Tcp Port 4001 Can Baud 5 Can Mode 0 Can Filter 0 Tcp Mode 1 Renote IP 192. 168. 1. 11 Renote Fort 8001
	Bemote IP 192.16 设置目标主机IP地址,i 确定 才有效

Note: re-power after completed the download, and then the new configuration will take effect.

4.4 Save/load configured files

"SaveAs" - save the configured files in your computer for later using.

"Open" - open the earlier configured files from your computer.

4.5 Update firmware kernel of GCAN-202.

Please contact us.

5 Usage of "CANet test" software

This software can test some basic functions of GCAN-202 if are normal in TCP Server mode. User will be supplied some basic VB routine to develop testing system by themselves.

Input the IP address and Port Number of GCAN-202, and click "Connect" to connect the equipment.

Port: 4001 Connect		
Send Send Hex:		
08 00 00 00 01 11 22 33 44 55 66 77 88 len:08 Can ID:00 00 00 01 Can Data:11 22 33 44 55 66 77 88	Send Interval 10 *15 ms	

6 Usage of "Net Assist" software

In three modes (TCP Sever, TCP Client, UDP), "Net Assist" can provide to test receiving/transmitting data function.

6.1 Preparatory work

Before the testing, please make sure:

- GCAN-202's CAN_H & CAN_L have been connected to CAN interface of the target equipment
- GCAN-202 has finished the configuration
- Two 120 ohms terminal resistance must be installed at the both end of CAN-Bus network
- The default language of the software is Chinese, can switch to the language you want

		TCP/UDP	Net Ass	istant).	₩ - □ ×
Open	Data Recei	ve			SAV	AGE ¥4.2.1
	/English					
∧ Options(0) →	中文					
SX About	Auto					
🏛 Exit(X)						
8080						
Open						
Recv Options						
Receive to file						
🗌 Auto linefeed						
🔲 Show timestamp						
🔽 Receive as hex						
🗖 Pause receive						
<u>Save</u> <u>Clear</u>						
Send Options						
🗌 🗖 Data from file						
🗌 Auto checksum						
🔲 Auto clear input						
🗌 Send as hex						
Period 1000 ms						
Load Clear						Send
🍯 Ready!	· Ð			Send : O	Recv : O	Reset

Product data sheet

6.2 Test in TCP Sever mode

Make sure GCAN-202 is in TCP Sever mode.

Items	Value				
Tcp Port	4001				
Can Baud	5				
Can Mode	0				
Can Filter	0				
Tcp Mode	1				
Remote IP	192. 168. 1. 66				
Remote Port	8001				

Open "Net Assist"

Choose protocol of "TCP Client"

Fill in the "Local host addr"

Fill in the "Remote host address" (default: 192.168.1.10:4001)

If there isn't CAN-Bus data transmission, the message will show:

"AA 00 FF 00 00 00 00 00 00 00 00 55 ". It has 13 bytes, and transmits one message every two seconds. When CAN-Bus's data receive/transmit normally, this message stops transmitting.

	TCP/UDP Net Assistant	4 - 🗆 ×
Settings	Data Receive S/	AVAGE V4.2.1
(1) Protocol	08 00 00 00 01 11 22 33 44 55 66 77 88	*
TCP Client <	08 00 00 00 01 11 22 33 44 55 66 77 88	
(2) Least hast addr	08 00 00 00 01 11 22 33 44 55 66 77 88	
102 100 1 00 1 00 1 200	08 00 00 00 01 11 22 33 44 55 66 77 88	
132.100.1.00.12700	08 00 00 00 01 11 22 33 44 55 66 77 88	
(3) Remote host addr		
192.168.1.10 :4001		
💮 Disconnect		
Recv Options	08 00 00 00 01 11 22 33 44 55 66 77 88	
E Receive to file	08 00 00 00 01 11 22 33 44 55 66 77 88	
	08 00 00 00 01 11 22 33 44 55 66 77 88	
Auto linereed	08 00 00 00 01 11 22 33 44 55 66 77 88	
Show timestamp	08 00 00 00 01 11 22 33 44 55 66 77 88	
🔽 Receive as hex	08 00 00 00 01 11 22 33 44 55 66 77 88	
🔽 Pause receive	08 00 00 00 01 11 22 33 44 55 66 77 88	
Serre Claser	08 00 00 00 01 11 22 33 44 55 66 77 88	
Save Crear	08 00 00 00 01 11 22 33 44 55 66 77 88	
Send Options	08 00 00 00 01 11 22 33 44 55 66 77 88	
Data from file		
Auto checksum		=
🗌 Auto clear input		
🔽 Send as hex		*
▼ Period 10 ms	08 00 00 00 01 11 22 33 44 55 66 77 88	
Load Clear		Send
🎯 Ready!	Send : 3133 Recv : 3224	Reset

Note: re-power after completed configuration, need to check "hex display" and "send as hex".

6.3 Test in TCP Client mode

Make sure GCAN-202 is in TCP client mode.

Items	Value				
Tcp Port	4001				
Can Baud	5				
Can Mode	0				
Can Filter	0				
Tcp Mode	2				
Remote IP	192. 168. 1. 66				
Remote Port	8001				

Open "Net Assist"

Choose protocol of "TCP Sever"

Fill in the "Local host add"

Fill in the "Local host port" (default: 8001)

Product data sheet

	TCP/UDP Net Assistant	×
Settings	Data Receive	SAVAGE V4.2.1
(1) Protocol	08 00 00 00 01 11 22 33 44 55 66 77 88	*
TCP Server 👻	08 00 00 00 01 11 22 33 44 55 66 77 88	
(2) Local host addr	08 00 00 00 01 11 22 33 44 55 66 77 88	
152.100.1.00		
(3) Local host port	08 00 00 00 01 11 22 33 44 55 66 11 88	
8001	00 00 00 00 01 11 22 33 44 55 66 11 66	
🕘 Close		
Recy Options		
Accelve to file	08 00 00 00 01 11 22 33 44 55 66 77 88	
✔ Auto linefeed	08 00 00 00 01 11 22 33 44 55 66 77 88	
📃 🔲 Show timestamp	08 00 00 00 01 11 22 33 44 55 66 77 88	
🔽 Receive as hex	08 00 00 00 01 11 22 33 44 55 66 77 88	
Pause receive	08 00 00 00 01 11 22 33 44 55 66 77 88	
	08 00 00 00 01 11 22 33 44 55 66 77 88	
<u>Save</u> <u>Clear</u>	08 00 00 00 01 11 22 33 44 55 66 77 88	
-Sund Onthings	08 00 00 00 01 11 22 33 44 55 66 77 88	
Send Options	08 00 00 00 01 11 22 33 44 55 66 77 88	
🗌 🗖 Data from file	08 00 00 00 01 11 22 33 44 55 66 77 88	=
🗌 Auto checksum		-
🗌 🗌 Auto clear input		
🔽 Send as hex	Clients: 192.168.1.10 :1029	▼ Disconnect
✓ Period 10 ms	08 00 00 00 01 11 22 33 44 55 66 77 88	
Load Clear		Send
💣 Sending finished!	* 🐑 Send : 4550 Recv :	4849 Reset //

Note: re-power after complete configuration. "Receive as hex" and "send as hex" must be ticked.

6.4 Test in UDP mode

Make sure GCAN-202 is in UDP mode.

Items	Value				
Tcp Port	4001				
Can Baud	5				
Can Mode	0				
Can Filter	0				
Tcp Mode	3				
Remote IP	192. 168. 1. 66				
Remote Port	8001				

Open "Net Assist"

Choose protocol of "UDP"

Product data sheet

Fill in the "Local host addr"

Fill in the "Local host port" (default: 8001)

	TCP/UDP Net Assistant	4 - 🗆 ×
Settings	Data Receive	SAVAGE V4.2.1
(1) Protocol		
UDP		
(2) Local host addr		
192.168.0.13 💌		
(3) Local host port		
8080		
Open		
Recv Options		
🔲 Receive to file		
🔲 Auto linefeed		
🔲 Show timestamp		
🔽 Receive as hex		
🔽 Pause receive		
<u>Save</u> <u>Clear</u>		
Send Ontions		
Data from file		
Auto checksum		
🔽 Auto clear input		
🔽 Send as hex		
Period 1000 ms		
Load Clear		Send
🍯 Ready!	* = Send : 0	Recv: 0 Reset

Please note: re-power after complete configuration. "Receive as hex" and "send as hex" must be ticked.

7 Baud rate modification online

7.1 Function Description

In TCP Sever mode, GCAN-202 supports CAN-Bus baud rate modification online via Ethernet. Write the instructions into the upper computer to achieve modification of baud rate. It's more concise and faster.

7.2 Format Description

The instructions should be sent via Ethernet, as shown in table. Only Byte6, 7, 8, 10 can be modified.

Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8	Byte9	Byte1(Byte11	Byte12	Byte13
10	00	00	08	01	baud set/take	rate e effect	CAN1/ CAN2	00	baud rate	00	00	00

Byte6, Byte7: 02 01 means baud rate set; 0B 03 takes effect immediately.

Byte8: 01 means CAN 1; 02 means CAN 2

Byte10: 00=1000K, 01=800K, 02=666K, 03=500K, 04=400K, 05=250K, 06=200K, 07=125K, 08=100K, 09=80K, 10=50K, 11=40K, 12=20K, 13=10K, 14=5K.

7.3 Example

Transmit to GCAN-202:

<mark>10</mark>	<mark>00 00 08 01</mark>	02 01 01 00 05 00 00 00	set CAN 1's baud rate, 250K.					
GCAN-202 will transmit:								
10	00 00 08 01	02 01 01 00 05 00 00 00	modified, take effect after re-power.					
Tra	nsmit to GCAN	N-202:						
10	<mark>00 00 08 01</mark>	02 01 02 00 00 00 00 00	set CAN 1's baud rate to 1000K.					
GCAN-202 will transmit:								
10	00 00 08 01	02 01 02 00 05 00 00 00	modified, take effect after re-power.					
Transmit to GCAN-202:								
10	<mark>00 00 08 01</mark>	0B 03 01 00 05 00 00 00	CAN 1 & CAN 2 baud rate setting					
Proc	luct data sheet							

take effect immediately.

GCAN-202 will transmit:

10 00 00 08 01 02 01 01 00 05 01 00 00 earlier modified take effect immediately.

Note: these three group data should be sent in order. If the message of "take effect immediately" not be transmit, it will take effect after re-power.

8 Secondary development

Depend on needs, Ethernet can achieve the function configuration of integrating with GCAN-202 in the specific upper computer by configuration protocol. Meanwhile detail library and explanation can be offered to secondary development.

Also the source code of "CANet test" software provided can achieve secondary development.

"Net Assist" software can test Ethernet Socket communication. And all of these support Socket communication.

9 Technical specifications

Connection						
PC	Ethernet, RJ45					
CAN	OPEN3 terminal					
Interface						
Ethernet	10/100M auto-detect					
CAN	ISO 11898 standard, support CAN2.0A/B					
CAN baud rate	5Kbit/s~1Mbit/s					
Isolation	3000V, DC-DC					
CAN terminal resister	Integrated, code switch to enable					
Power						
Voltage	+9~30V DC					
Current	50mA (24V DC)					
Environment						
Temperature	-40°C ~+85°C					
Humidness	15%~90%RH, without condensation					
EMC tost	EN 55024:2011-09					
EMIC lesi	EN 55022:2011-12					
IP grade	IP 20					
Basic						
Dimension	118mm *93mm *23mm					
Weight	220g					

Appendix A: CAN2.0B protocol frame format

CAN2.0 standard frame

CAN standard frame information is 11 bytes, including two parts: information and data parts. The three bytes at the beginning are the information parts.

Bit Byte	7	6	5	4	3	2	1	0	
1	FF RTR × × DLC								
2	(Message identifier) ID.10—ID.3								
3]	D.2—ID.0)	×	×	×	×	×	
4	data 1								
5	data 2								
6	data 3								
7	data 4								
8	data 5								
9	data 6								
10	data 7								
11	data ⁸								

Figure A1

Byte 1: frame information

Bit7 (FF): frame format

FF=0: standard frame

FF=1: in the extend frame

Bit6 (RTR): type of frame

RTR=0: data frame

RTR=1: remote frame

Bit0~Bit3 (DLC): the actual data length in the data frame.

Byte 2~3: message ID, 11bits are valid.

Byte 4~11 are the actual data of the data frame, remote frame (RTR=1) is invalid.

CAN2.0 extend frame

CAN extend frame information is 13 bytes, including two parts, information and data

parts. The five bytes at the beginning are the information parts.

Bit Byte	7	6	5	4	3	2	1	0		
1	FF	RTR	×	×	DLC					
2	(Message identifier) ID.28—ID.21									
3	ID.20—ID.13									
2		ID.12—ID.5								
3	ID.4—ID.0 \times \times \times									
4	data 1									
5	data 2									
6	data 3									
7	data 4									
8	data 5									
9	data 6									
10	data 7									
11	data 8									

Figure A2

Byte 1: frame information

Bit 7(FF): frame format

FF=0: standard frame

FF=1: in the extend frame

Bit6 (RTR): type of frame

RTR=0: data frame

RTR=1: remote frame

Bit0~Bit3 (DLC): the actual data length in the data frame.

Byte 2~5: message ID, 29bits are valid.

Byte 6~13 are the actual data of the data frame, remote frame(RTR=1) is invalid.

Appendix B: definition of data flow

Multiple data of CAN-Bus is in one Ethernet data.

Definition of Ethernet & CAN-Bus data flow:

One frame data contains 13 bytes.

Frame information include length & type,1 byte in length.

FF: Standard frame & Extended frame identification bit, 1=Extended frame, 0=Standard frame.

RTR: Remote frame & data frame identification bit, 1=Remote frame, 0=data frame.

B3~B0: data length, the length of CAN frame.

Frame ID: 4 byte in length, standard frame has 11 bits, Extended frame has 29 bits.

High byte		-	Low byte		High by	yte		Low byte
12h	34h	56h	78h		00h	00h	01h	23h
Extended frame ID: 0X12345678 Frame data: 8 byte in length, the va information B3~B0				alid len	Extende 0 ngth decide	d frame ID: X123 by frame		
DATA1								DATA8
11h	22h	33h	44h	55h	1	66h	77h	88h
Acabore	in the we	lid data a	f Q bytes					

As above is the valid data of 8 bytes.

DATAI							DATAO	
11h	22h	33h	44h	55h	66h	77h	88h	
As above is the valid data of 5 bytes								

DATAO

As above is the valid data of 5 bytes.

For example:

A extend frame data: 8 byte in length, frame ID 0×12345678, valid data of 8 bytes(11h,22h,33h,44h,55h,66h,77h,88h).

88h 12h 34h 56h 78h 11h 22h 33h 44h 55h 66h 77h 88h

Note: Every frame must be 13 bytes, must complement 0 if don't have enough 13 bytes in both case: frame ID is less than 4 bytes or frame data is less than 8 bytes.

Sales and service

Shenyang Guangcheng Technology Co., Ltd.

Address: Industrial Design Center, No. 42 Chongshan

Middle Road, Huanggu District, Shenyang,

Liaoning Province.

QQ: 2881884588

E-mail: 2881884588@qq.com

Tel: +86-24-31230060

Website: www1.gcanbox.com

Sales and service Tel: +86-18309815706

After - sales service telephone Number: +86-13840170070

WeChat Number: 13840170070

