# HBS-Compatible Driver and Receiver Monolithic IC MM1192

#### **Outline**

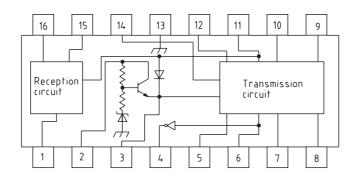
This IC conforms to the HBS (Home Bus) specification (Electronic Industries Association of Japan), and has functions for the reception and transmission of data. AMI is adopted for the waveforms of signals handled by the transmission and reception units, designed for connection to twisted-pair lines.

The IC can be driven by a single 5V power supply, and incorporates an output transistor to reduce the number of external components required.

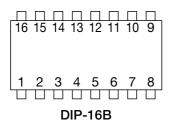
Telephone equipment, security devices, audio or video equipment, air-conditioning equipment, and a wide range of other devices can be connected to a bus line to enable mutual communications.

#### **Features**

- 1. Compact design
- 2. High reliability
- 3. Replaces pulse transformers
- 4. Can be driven by a single 5V power supply
- 5. Low cost
- 6. Easy circuit design
- 7. Few external components


# **Applications**

- 1. Telephony equipment
- 2. Security equipment
- 3. Audio and video devices
- 4. Air-conditioning equipment
- 5. Wide range of other equipment and devices


#### **Package**

DIP-16B (MM1192XD)

# **Block Diagram**



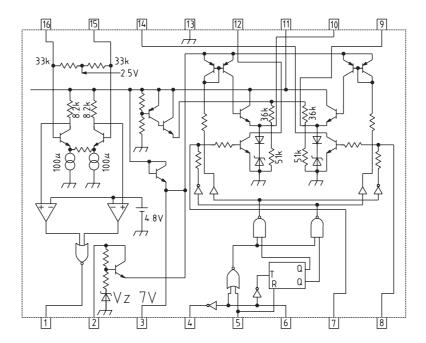
# Pin Assignment



| 1 | Reception DATA OUT  | 9  | OUT (A)       |
|---|---------------------|----|---------------|
| 2 | $ m V_{IN}$         | 10 | OUT (B)       |
| 3 | Boost capacitor pin | 11 | Vcc           |
| 4 | Boost capacitor pin | 12 | COLLECTOR (b) |
| 5 | RESET               | 13 | GND           |
| 6 | DATA IN             | 14 | COLLECTOR (a) |
| 7 | out (b)             | 15 | IN (2)        |
| 8 | out (a)             | 16 | IN (1)        |

# Absolute Maximum Ratings (Ta=25°C)

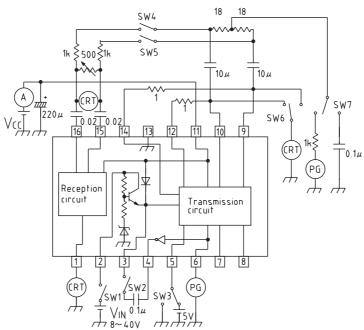
| Item                                   | Symbol   | Ratings   | Units        |  |
|----------------------------------------|----------|-----------|--------------|--|
| Storage tempereture                    | Tstg     | -40~+125  | $^{\circ}$ C |  |
| Operating tempereture                  | Topr     | -20~+70   | $^{\circ}$ C |  |
| Power supply voltage                   | Vcc max. | -0.3~+7   | V            |  |
| Operating power supply voltage         | Vccop    | 4.5~5.5   | V            |  |
| Allowable loss                         | Pd       | 450       | mW           |  |
| Recommended power supply voltage range | Vccop2   | 4.75~5.25 | V            |  |
| Bias voltage range (VIN)               | VINOP    | 8.0~40    | V            |  |


# Electrical Characteristics (Except where noted therwise, Ta=25°C, Vcc=5V, Ftransmit=10kHz (DUTY=50%) RL=36Ω)

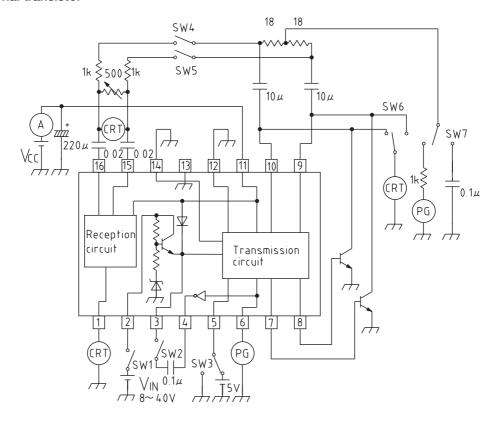
| Item         |                              | Symbol            | Measurement conditions                        | Min. | Тур. | Max. | Units            |
|--------------|------------------------------|-------------------|-----------------------------------------------|------|------|------|------------------|
|              | Power supply current 1       | ICCO              | No signal (5PIN="H")                          |      | 8    | 13   | mA               |
|              | Power supply current 2       | ICCON             | In transmission FL=10kHz, R <sub>L</sub> =36Ω |      | 75   | 90   | mA               |
|              | Transmission output voltage  | Vto               | Both pins 9 and 10                            | 3.8  | 4.2  | 4.6  | V <sub>P-P</sub> |
|              | Transmission waveform        | VTR               | VT01/VT02                                     | 0.75 | 1.0  | 1.25 |                  |
|              | symmetry                     | VIK               |                                               | 0.73 | 1.0  | 1.23 |                  |
|              | Reception sensitivity        | Vrs               |                                               |      | 0.75 | 0.85 | V <sub>P-P</sub> |
|              | Noise resistance             | $V_{RN}$          | Level at which no errors are output           |      |      |      | V <sub>P-P</sub> |
| Transmission | Input impedance              | Rin               | Both pins 15 and 16                           |      | 36   | 46   | kΩ               |
| Circuits     | Transmission delay time 1    | Td1               | cf. transmit/receive waveform diagrams        |      | 0.4  |      | μS               |
|              | Transmission delay time 2    | Td2               | cf. transmit/receive waveform diagrams        |      | 0.5  |      | μS               |
|              | Transmission delay time 3    | Td3               | cf. transmit/receive waveform diagrams        |      | 1.0  |      | μS               |
|              | Transmission delay time 4    | Td4               | cf. transmit/receive waveform diagrams        |      | 1.2  |      | μS               |
|              | Reception output H voltage   | $V_{ROH}$         |                                               | 4.5  |      |      | V                |
|              | Reception output L voltage   | Vrol              |                                               |      |      | 0.5  | V                |
|              | Transmission waveform LOSS 1 | VTLS1             | V <sub>T</sub> =5V applied, power on          | 4.5  |      |      | V                |
|              | Transmission waveform LOSS 2 | VTLS2             | V <sub>T</sub> =5V applied, power off         | 4.5  |      |      | V                |
|              | H level input voltage        | $V_{ m LIH}$      |                                               | 2.4  |      |      | V                |
|              | L level input voltage        | $V_{LIL}$         |                                               |      |      | 0.6  | V                |
|              | H level input current        | Ilih              | VDATA IN=2.4V                                 |      |      | 10   | μA               |
|              | L level input current        | ILIL              | VDATA IN=0.4V                                 |      |      | -300 | μA               |
|              | Bootstrap output H voltage   | $V_{\mathrm{BR}}$ |                                               | 7.5  | 8.0  |      | V                |

When a negative voltage is applied to pins 7, 8, 9 and 10, there should be no abnormal operation of internal circuits between 0 and 6V. However, if a negative voltage exceeding -6V is applied, thyristor operation may result, so it is recommended that an external clamping diode be added.

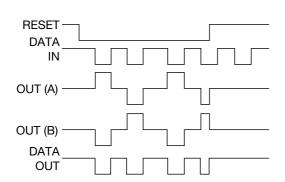
In addition, no measures have been taken for a negative voltage at pins 12 and 14. Hence if a negative voltage is applied to pins 12 and 14, the internal transistor should not be used.

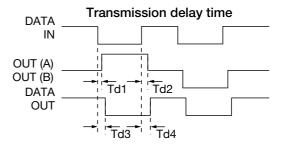

# Circuit Diagram




- Note 1: The peripheral components in the block diagram are the constants for Ftransmit=10kHz. If the frequency is low, larger values should be chosen for the coupling capacitors between the receive and transmit pins and the bus line and for the capacitor connecting pins 3 and 4.
- Note 2: A block diagram is shown for an example application in which an external transistor is used; but depending on system conditions the internal transistor may be used, and no external transistor is needed. In such cases pins 7 and 8 are left open, a  $1\Omega$  resistance is inserted between pins 10 and 12, and a  $1\Omega$  resistance is inserted between pins 9 and 14. When the load resistance ( $36\Omega$ ) is to be varied during use, these resistances ( $1\Omega$ ) should be changed according to the load resistance. If these resistances are omitted, oscillation may occur at low volume levels.

# **Measuring Circuit**


#### 1. No external transistor




#### 2. With external transistor



# **Timing Chart**



