

8-Bit Serial or Parallel-Input/Serial-Output Shift Register with 3-State Output

High-Performance Silicon-Gate CMOS

MC74HC589A

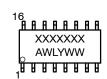
The MC74HC589A device consists of an 8-bit storage latch which feeds parallel data to an 8-bit shift register. Data can also be loaded serially (see the Function Table). The shift register output, $Q_{\rm H}$, is a 3-state output, allowing this device to be used in bus-oriented systems.

The HC589A directly interfaces with the SPI serial data port on CMOS MPUs and MCUs.

Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity: 526 FETs or 131.5 Equivalent Gates
- –Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant

TSSOP-16 DT SUFFIX CASE 948F



QFN16 MN SUFFIX CASE 485AW

PIN ASSIGNMENT

В[1 ●	16] V _{CC}
c [2	15	þΑ
D [3	14] S _A
E [4	13	SERIAL SHIFT/ PARALLEL LOAD
F [5	12	LATCH CLOCK
G [6	11	SHIFT CLOCK
Н [7	10	OUTPUT ENABLE
GND [8	9] Q _H
			•

MARKING DIAGRAMS

1

A = Assembly Location

WL, L = Wafer Lot YY. Y = Year

WW, W = Work Week
G or ■ = Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information on page 12 of this data sheet.

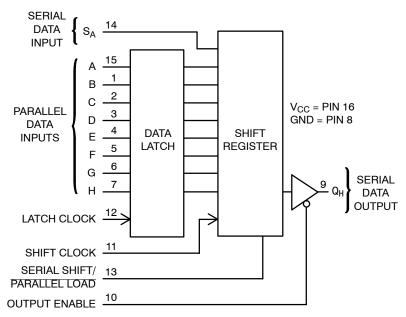


Figure 1. Logic Diagram

FUNCTION TABLE

			Input	s			F	Resulting Funct	ion
Operation	Output Enable	Serial Shift/ Parallel Load	Latch Clock	Shift Clock	Serial Input S _A	Parallel Inputs A-H	Data Latch Contents	Shift Register Contents	Output Q _H
Force Output into High Impedance State	Н	Х			Х	Х	Х	Х	X Z X
Load Parallel Data into Data Latch	L	Н		L, H, ∕	Х	a-h	a-h	U	U
Transfer Latch Contents to Shift Register	L	L	L, H, ` 	Х	Х	Х	U	LR _N →[\$R _N	LR _H
Contents of Input Latch and Shift Register are Unchanged	L	Н	L, H, \	L, H, ∼	Х	Х	U	U	U
Load Parallel Data into Data Latch and Shift Register	L	L			Х	a-h	a-h	a-h	h X
Shift Serial Data into Shift Register	L	Н			D	Х	*	$SR_A = D,$ $SR_N \rightarrow [SR_{N+1}]$	XSR _G →[\$R _H
Load Parallel Data in Data Latch and Shift Serial Data into Shift Register	L	Н		5	D	a-h	a-h	$SR_A = D,$ $SR_N \rightarrow [SR_{N+1}]$	SR _G →[\$R _H

LR = latch register contents U = remains unchanged

SR = shift register contents X = don't care a-h = data at parallel data inputs A-H = Z = high impedance

D = data (L, H) at serial data input S_A * = depends on Latch Clock input

MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
V _{CC}	DC Supply Voltage	-0.5 to +6.5	V	
V _{IN}	DC Input Voltage		–0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage		–0.5 to V _{CC} +0.5	V
I _{IN}	DC Input Diode Current, per Pin		±20	mA
I _{OUT}	DC Input Diode Current, Per Pin		±35	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins		±75	mA
l _{IK}	Input Clamp Current (V _{IN} < 0 or V _{IN} > V _{CC})		±20	mA
lok	Output Clamp Current (V _{OUT} < 0 or V _{OUT} > V _{CC})		±20	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 secs		260	°C
TJ	Junction Temperature Under Bias		+150	°C
$\theta_{\sf JA}$	Thermal Resistance (Note 1)	SOIC-16 QFN16 TSSOP-16	126 118 159	°C/W
P _D	Power Dissipation in Still Air at 25°C	SOIC-16 QFN16 TSSOP-16	995 1062 787	mW
MSL	Moisture Sensitivity		Level 1	_
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	_
V _{ESD}	ESD Withstand Voltage (Note 2)	Human Body Model Charged Device Model	> 4000 N/A	V
I _{LATCHUP}	Latchup Performance (Note 3)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Measured with minimum pad spacing on an FR4 board, using 76 mm-by-114 mm, 2-ounce copper trace no air flow per JESD51-7.
 HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.
 3. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit	
V _{CC}	DC Supply Voltage (Referenced to GND)		2.0	6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage	(Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types		-55	+ 125	°C
t _r , t _f	Input Rise and Fall Time (Figure 3)	$V_{CC} = 2.0 \text{ V}$ $V_{CC} = 3.0 \text{ V}$ $V_{CC} = 4.5 \text{ V}$ $V_{CC} = 6.0 \text{ V}$	0 0 0	1000 800 500 400	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

4. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

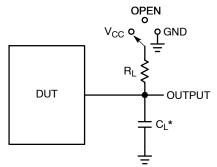
DC ELECTRICAL CHARACTERISTICS

				Guarar	nteed Limi	t	
Symbol	Parameter	Test Conditions	٧	-55°C to 25°C	≤85°C	≤125°C	Unit
V _{IH}	Minimum High-Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	1.5 2.1 3.15 4.2	V
V _{IL}	Maximum Low-Level Input Voltage	$V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{out} \le 20 \mu\text{A}$	2.0 3.0 4.5 6.0	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	0.5 0.9 1.35 1.8	V
V _{OH}	Minimum High-Level Output Voltage	$V_{in} = V_{IH} \text{ or } V_{IL}$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$V_{in} = V_{IH} \text{ or } V_{IL}$ $\begin{vmatrix} I_{out} \\ I_{out} \end{vmatrix} \le 2.4 \text{ mA}$ $\begin{vmatrix} I_{out} \\ I_{out} \end{vmatrix} \le 6.0 \text{ mA}$ $\begin{vmatrix} I_{out} \\ I_{out} \end{vmatrix} \le 7.8 \text{ mA}$	3.0 4.5 6.0	2.48 3.98 5.48	2.34 3.84 5.34	2.20 3.70 5.20	
V _{OL}	Maximum Low-Level Output Voltage	$V_{in} = V_{IH}$ $ I_{out} \le 20 \mu A$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$V_{in} = V_{IH} \text{ or } V_{IL}$ $\begin{vmatrix} I_{out} \\ I_{out} \end{vmatrix} \le 2.4 \text{ mA}$ $\begin{vmatrix} I_{out} \\ I_{out} \end{vmatrix} \le 6.0 \text{ mA}$ $\begin{vmatrix} I_{out} \\ I_{out} \end{vmatrix} \le 7.8 \text{ mA}$	3.0 4.5 6.0	0.26 0.26 0.26	0.33 0.33 0.33	0.40 0.40 0.40	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μΑ
l _{OZ}	Maximum Three-State Leakage Current	Output in High-Impedance State $V_{in} = V_{IL}$ or V_{IH} $V_{out} = V_{CC}$ or GND	6.0	±0.5	±5.0	±10	μΑ
I _{CC}	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$	6.0	4	40	160	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS

		V _{CC}	Guarar			
Symbol	Parameter	V	-55°C to 25°C	≤ 85°C	≤ 125°C	Unit
f _{max}	Maximum Clock Frequency (50% Duty Cycle) (Figures 2 and 4)	2.0 3.0 4.5 6.0	6.0 15 30 35	4.8 10 24 28	4.0 8.0 20 24	MHz
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Latch Clock to Q _H (Figures 2 and 3)	2.0 3.0 4.5 6.0	175 100 40 30	225 110 50 40	275 125 60 50	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Shift Clock to Q _H (Figures 2 and 4)	2.0 3.0 4.5 6.0	160 90 30 25	200 130 40 30	240 160 48 40	ns
t _{PLH} , t _{PHL}	Maximum Propagation Delay, Serial Shift/Parallel Load to Q _H (Figures 2 and 6)	2.0 3.0 4.5 6.0	160 90 30 25	200 130 40 30	240 160 48 40	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Output Enable to Q _H (Figures 2 and 5)	2.0 3.0 4.5 6.0	150 80 27 23	170 100 30 25	200 130 40 30	ns
t _{PZL} , t _{PZH}	Maximum Propagation Delay, Output Enable to Q _H (Figures 2 and 5)	2.0 3.0 4.5 6.0	150 80 27 23	170 100 30 25	200 130 40 30	ns
t _{TLH} , t _{THL}	Maximum Output Transition Time, Any Output Figures 2 and 3)	2.0 3.0 4.5 6.0	60 23 12 10	75 27 15 13	90 31 18 15	ns
C _{in}	Maximum Input Capacitance	-	10	10	10	pF
C _{out}	Maximum Three-State Output Capacitance (Output in High-Impedance State)	-	15	15	15	pF


		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (per Package)*	50	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. *Used to determine the no–load dynamic power consumption: $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$.

TIMING REQUIREMENTS

		v _{cc}	Guaranteed Limit			
Symbol	Parameter	v	-55°C to 25°C	≤ 85°C	≤125°C	Unit
t _{su}	Minimum Setup Time, A–H to Latch Clock (Figure 7)	2.0 3.0 4.5 6.0	100 40 20 17	125 50 25 21	150 60 30 26	ns
t _{su}	Minimum Setup Time, Serial Data Input S _A to Shift Clock (Figure 8)	2.0 3.0 4.5 6.0	100 40 20 17	125 50 25 21	150 60 30 26	ns
t _{su}	Minimum Setup Time, Serial Shift/Parallel Load to Shift Clock (Figure 9)	2.0 3.0 4.5 6.0	100 40 20 17	125 50 25 21	150 60 30 26	ns
t _h	Minimum Hold Time, Latch Clock to A–H (Figure 7)	2.0 3.0 4.5 6.0	25 10 5 5	30 12 6 6	40 15 8 7	ns
t _h	Minimum Hold Time, Shift Clock to Serial Data Input S _A (Figure 8)	2.0 3.0 4.5 6.0	5 5 5 5	5 5 5 5	5 5 5 5	ns
t _w	Minimum Pulse Width, Shift Clock (Figure 4)	2.0 3.0 4.5 6.0	75 40 15 13	95 50 19 16	110 60 23 19	ns
t _w	Minimum Pulse Width, Latch Clock (Figure 3)	2.0 3.0 4.5 6.0	80 40 16 14	100 50 20 17	120 60 24 20	ns
t _W	Minimum Pulse Width, Serial Shift/Parallel Load (Figure 6)	2.0 3.0 4.5 6.0	80 40 16 14	100 50 20 17	120 60 24 20	ns
t _r , t _f	Maximum Input Rise and Fall Times (Figure 3)	2.0 3.0 4.5 6.0	1000 800 500 400	1000 800 500 400	1000 800 500 400	ns

SWITCHING WAVEFORMS

Test	Switch Position	C _L	R _L
t _{PLH} / t _{PHL}	Open	50 pF	1 kΩ
t _{PLZ} / t _{PZL}	V _{CC}		
t _{PHZ} / t _{PZH}	GND		

*C_L Includes probe and jig capacitance

Figure 2. Test Circuit

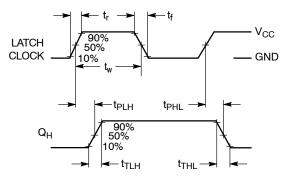


Figure 3. (Serial Shift/Parallel Load = L)

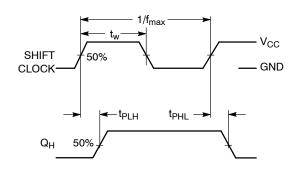


Figure 4. (Serial Shift/Parallel Load = H)



Figure 5.

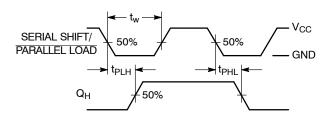
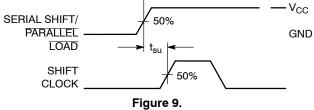



Figure 6.

SWITCHING WAVEFORMS

PIN DESCRIPTIONS

DATA INPUTS

A, B, C, D, E, F, G, H (Pins 15, 1, 2, 3, 4, 5, 6, 7)

Parallel data inputs. Data on these inputs are stored in the data latch on the rising edge of the Latch Clock input.

S_A (Pin 14)

Serial data input. Data on this input is shifted into the shift register on the rising edge of the Shift Clock input if Serial Shift/Parallel Load is high. Data on this input is ignored when Serial Shift/Parallel Load is low.

CONTROL INPUTS

Serial Shift/Parallel Load (Pin 13)

Shift register mode control. When a high level is applied to this pin, the shift register is allowed to serially shift data. When a low level is applied to this pin, the shift register accepts parallel data from the data latch.

Shift Clock (Pin 11)

Serial shift clock. A low-to-high transition on this input shifts data on the serial data input into the shift register and

data in stage H is shifted out Q_H, being replaced by the data previously stored in stage G.

Latch Clock (Pin 12)

Data latch clock. A low-to-high transition on this input loads the parallel data on inputs A-H into the data latch.

Output Enable (Pin 10)

Active—low output enable A high level applied to this pin forces the Q_H output into the high impedance state. A low level enables the output. This control does not affect the state of the input latch or the shift register.

OUTPUT

Q_H (Pin 9)

Serial data output. This pin is the output from the last stage of the shift register. This is a 3–state output.

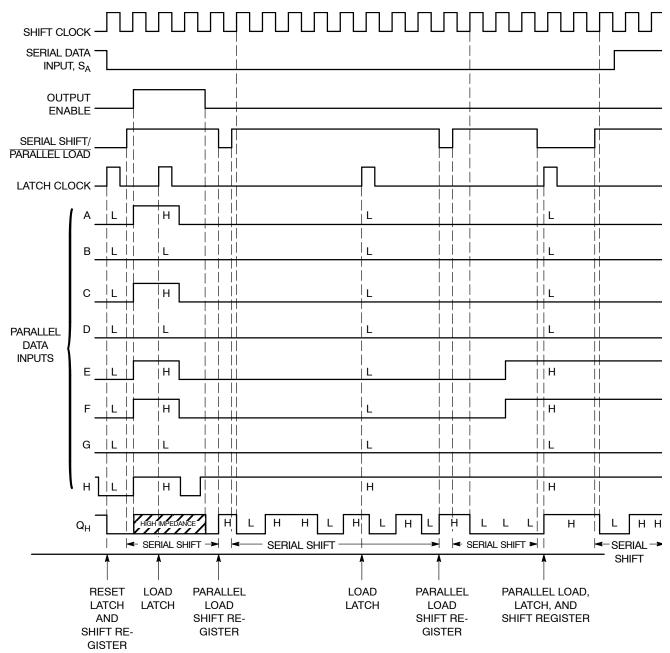


Figure 10. Timing Diagram

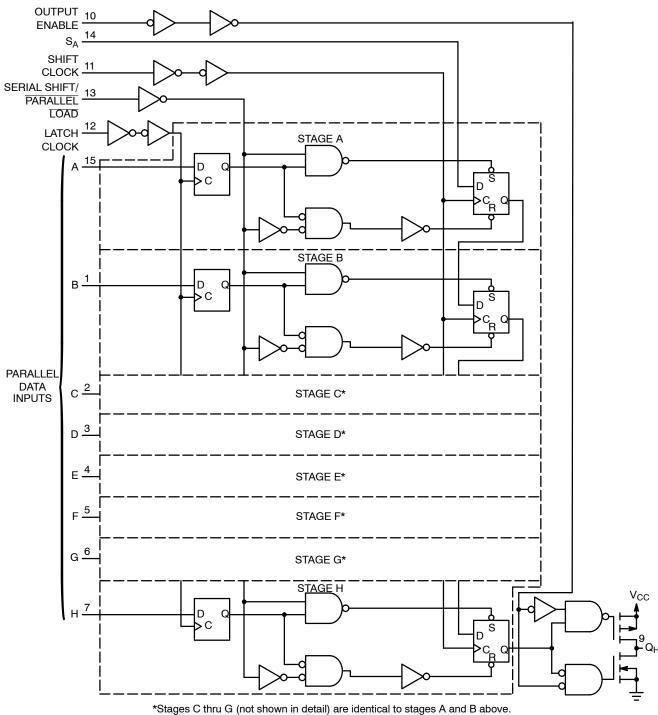
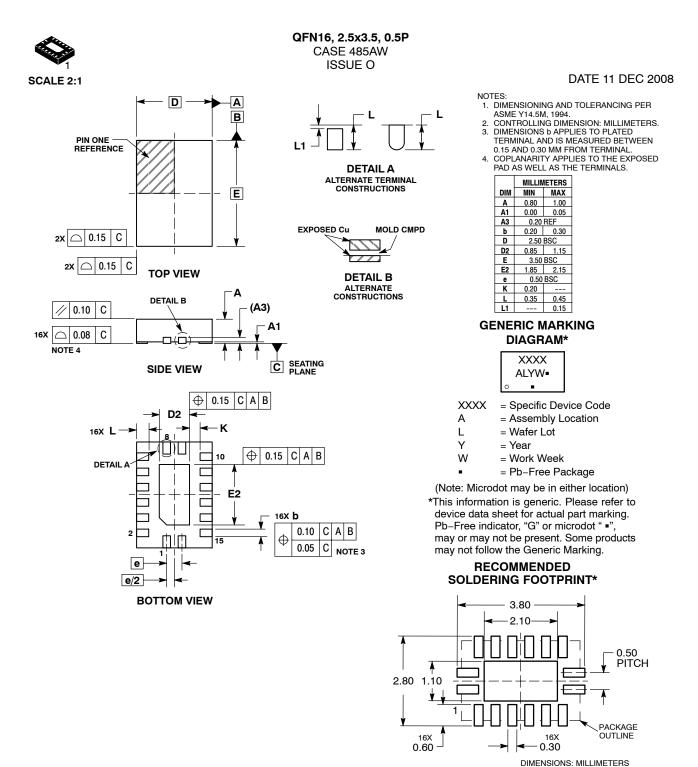


Figure 11. Logic Detail

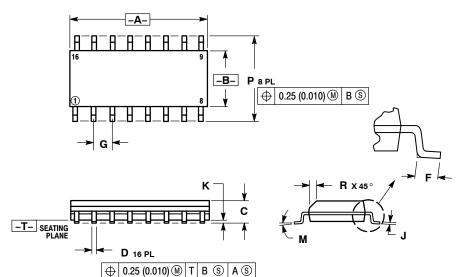

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
MC74HC589ADG	HC589AG	SOIC-16	48 Units / Rail
MC74HC589ADR2G	HC589AG	SOIC-16	2500 / Tape & Reel
MC74HC589ADR2G-Q*	HC589AG	SOIC-16	2500 / Tape & Reel
MC74HC589ADTR2G	HC 589A	TSSOP-16	2500 / Tape & Reel
MC74HC589ADTR2G-Q*	HC 589A	TSSOP-16	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*-Q Suffix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

PACKAGE DIMENSIONS


*For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

SOIC-16 CASE 751B-05 **ISSUE K**

DATE 29 DEC 2006

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD ENGREPHING.
- PROTRUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION.
 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D
 DIMENSION AT MAXIMUM MATERIAL CONDITION.

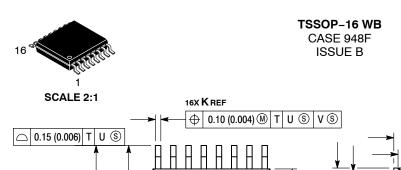
	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:		
PIN 1.	COLLECTOR		CATHODE		COLLECTOR, DYE #1		COLLECTOR, DYE #1	
2.	BASE	2.	ANODE	2.	BASE, #1	2.	COLLECTOR, #1	
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2	
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2	
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3	
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3	
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4	
8.	COLLECTOR	8.	CATHODE	8.	COLLECTOR, #2	8.	COLLECTOR, #4	
9.	BASE	9.	CATHODE	9.	COLLECTOR, #3	9.	BASE, #4	
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4	
11.	NO CONNECTION	11.	NO CONNECTION	11.	EMITTER, #3	11.	BASE, #3	
12.	EMITTER	12.	CATHODE	12.	COLLECTOR, #3	12.	EMITTER, #3	D=0014454D=D
13.	BASE	13.		13.	COLLECTOR, #4	13.	BASE, #2	RECOMMENDED
14.	COLLECTOR			14.	BASE, #4	14.		SOLDERING FOOTPRINT*
15.	EMITTER		ANODE	15.	EMITTER, #4	15.	BASE, #1	00101111111
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1	8X
								← 6.40 →
STYLE 5:		STYLE 6:		STYLE 7:				
PIN 1.	DRAIN, DYE #1		CATHODE	PIN 1.	SOURCE N-CH			16X 1.12 < ➤
2.	DRAIN, #1		CATHODE	2.	COMMON DRAIN (OUTPUT	П		<u> </u>
3.	DRAIN, #2		CATHODE	3.	COMMON DRAIN (OUTPUT		1	1 16
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH	,	*	
5.	DRAIN, #3	5.	CATHODE	5.	COMMON DRAIN (OUTPUT	Г)		
6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPUT		16X	— —
7.	DRAIN, #4	7.		7.			0.58	
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH	,	0.00	
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH			
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPUT	Γ)	_	<u> </u>
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPUT	r)		
12.	SOURCE, #3	12.	ANODE	12.	COMMON DRAIN (OUTPUT	Γ)		
13.	GATE, #2	13.	ANODE	13.	GATE N-CH			
14.	SOURCE, #2	14.	ANODE	14.	COMMON DRAIN (OUTPUT	Γ)		
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPUT	Γ)		PITCH
16.	SOURCE, #1	16.	ANODE	16.	SOURCE N-CH			
								□ 8 9 1 1 7
								1
								DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOIC-16		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. **onsemi** does not convey any license under its patent rights nor the rights of others. 2X L/2


L

☐ 0.15 (0.006)

PIN 1 IDENT.

υ®

DATE 19 OCT 2006

NOTES

Κ

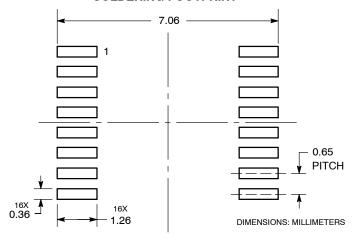
SECTION N-N

0.25 (0.010)

J1

В

-U-


- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT
- EXCEED 0.15 (0.006) PER SIDE.
 DIMENSION B DOES NOT INCLUDE
 INTERLEAD FLASH OR PROTRUSION.
- INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL
 NOT EXCEED 0.25 (0.010) PER SIDE.
 DIMENSION K DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABILE DAMBAR
 PROTRUSION SHALL BE 0.08 (0.003) TOTAL
 IN EXCESS OF THE K DIMENSION AT
 MAXIMUM MATERIAL CONDITION.
 TERMINIAL NILMBERS ADE SUCIUMI ECIP.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.90	5.10	0.193	0.200
В	4.30	4.50	0.169	0.177
С		1.20		0.047
D	0.05	0.15	0.002	0.006
F	0.50	0.75	0.020	0.030
G	0.65 BSC		0.026 BSC	
Н	0.18	0.28	0.007	0.011
7	0.09	0.20	0.004	0.008
J1	0.09	0.16	0.004	0.006
K	0.19	0.30	0.007	0.012
K1	0.19	0.25	0.007	0.010
L	6.40 BSC		0.252 BSC	
М	00	00	00	0 0

DETAIL E -W-☐ 0.10 (0.004) **DETAIL E** SEATING PLANE D

RECOMMENDED SOLDERING FOOTPRINT*

-V-

^{*}For additional information on our Pb-Free strategy and soldering details, please download the onsemi Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

= Specific Device Code XXXX Α = Assembly Location

= Wafer Lot L = Year W = Work Week G or • = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales